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Algebraic Effects

Example   The effect of mutable s-state is modelled by  

• two operations { put : s  ~~> (), 

              get : () ~~> s }

A computational effect is modelled as an algebraic theory.
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do {put s; x <-- get; k x} = do {put s; k s} 

…

• several equations (pairs of terms) characterising put and get, such as



Terms of Operations

Terms of a theory are conceptually trees of operations. 

Example  A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n 
   x <-- get 
   if x === 0 
     then p 
     else do put 0; q

0 1≃
put 0

q

…
put n

get
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Terms of Operations

Terms of a theory are conceptually trees of operations. 

Example  A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n 
   x <-- get 
   if x === 0 
     then p 
     else do put 0; q

0 1≃
put 0

q

…

      variables

put n
get



Terms of Operations

Generally, terms of an operation signature sig :: * ->- * and variables of type a are 

data Free sig a ::: * where 
  Var ::: a ->- Free sig a 
  Op  ::: sig (Free sig a) ->- Free sig a

 5
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Op

Var y

… …

sig
a
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Terms of Operations

Generally, terms of an operation signature sig :: * ->- * and variables of type a are 

data Free sig a ::: * where 
  Var ::: a ->- Free sig a 
  Op  ::: sig (Free sig a) ->- Free sig a

 5

Operations are sig-branching 
internal nodes 

…

Var x

Op

Var y

… …

sig
a



data ES ::: * ->- * where 
  Put   ::: Int ->- (()   ->- x) ->- ES x 
  Get   ::: ()  ->- (Int  ->- x) ->- ES x 
  Throw ::: ()  ->- (Void ->- x) ->- ES x

Signature Functors
Signature of operations can be packaged into a datatype. 

Example  The signature for the effect of Int-state and exception throw is

Void is the type with 
no constructors

 6

parameter 
type

result 
type



data ES ::: * ->- * where 
  Put   ::: Int ->- x ->- ES x 
  Get   ::: (Int ->- x) ->- ES x 
  Throw ::: ES x

Signature Functors
Signature of operations can be packaged into a datatype. 

Example  The signature for the effect of Int-state and exception throw is

 6



Terms are a syntactic model of effectful computations.  

Example    A program involving Int-state and exception throwing: 

safeDiv ::: Int → Free ES Int 
safeDiv n = Op (Get (λ s ->- 
  if s ≡ 0 
    then Op Throw 
    else Op (Put (n / s)  (Var (n / s)))))

Term Model of Effectful Programs

 7

Variables are 
understood as 
return values

Var



The Monad of Terms

We’d like to have sequential composition of (the term model of) computations, so 
we equip Free sig with a monad structure: 

return ::: a ->- Free sig a 
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(>>>=) ::: Free sig a ->- (a ->- Free sig b) ->- Free sig b
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The Monad of Terms

We’d like to have sequential composition of (the term model of) computations, so 
we equip Free sig with a monad structure: 

return ::: a ->- Free sig a 
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(>>>=) ::: Free sig a ->- (a ->- Free sig b) ->- Free sig b

… >>>= k   =   

Var x

Op

Var y

… …

k x

Op

k y

…k

return ::: a ->- Free sig a 
return = Var



Example    safeDiv is also sequential composition of smaller programs: 

safeDiv ::: Int → Free ES Int 
safeDiv n = Op (Get (s ->- 
  if s ≡ 0 
    then Op Throw 
    else Op (Put (n / s)  (Var (n / s)))))

Effectful Programs with Free Monads 

 9



Example    safeDiv is also sequential composition of smaller programs: 

safeDiv ::: Int → Free ES Int 
safeDiv n = get >>>= λ s ->- 
               if s ≡ 0 
                 then throw 
                 else put (n / s) >>>= λ _ ->- return (n / s) 

  where get   = Op (Get Var) 
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Example    safeDiv is also sequential composition of smaller programs: 

Effectful Programs with Free Monads 

safeDiv ::: Int → Free ES Int 
safeDiv n = do s ← get 
               if s ≡ 0 
                 then throw 
                 else do put (n / s); return (n / s) 
   
  where get   = Op (Get Var) 
        put s = Op (Put s (Var ())) 
        throw = Op Throw
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Example    safeDiv is also sequential composition of smaller programs: 

Effectful Programs with Free Monads 

safeDiv ::: Int → Free ES Int 
safeDiv n = do s ← get 
               if s ≡ 0 
                 then throw 
                 else do put (n / s); return (n / s) 
   
  where get   = Op (Get Var) 
        put s = Op (Put s (Var ())) 
        throw = Op Throw
Free sig a is just a syntactic model of effectful programs!
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Handlers of Effects

Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)  
programs with sig-operations:

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

How sig-operations 
act on the carrier b

How to turn a return 
value a into the carrier b
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handle ::: (sig b → b) → (a → b) → (Free sig a → b)



Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)  
programs with sig-operations:

Handlers of Effects
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…

Var x

Op

Var y

…handle alg g (              )    =    …

g x

alg

g y

…galg

handle ::: (sig b → b) → (a → b) → (Free sig a → b)



Handlers of Effects

Example   Given a program r ::: Free ES a, a handler catchHdl r that 

• gives the ‘standard’ semantics to Throw, and  

• leaves other operations unchanged:

 12

catchHdl ::: Free ES a 
         ->- ES (Free ES a) ->- Free ES a 
catchHdl r Throw = r 
catchHdl r op    = Op op



Modularity of Handlers

Separating syntax from semantics allows different handlers of the same effect: 

Example   A non-standard handler of exception that ignores the recovery code r
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catchHdl' ::: Free ES a 
          ->- ES (Free ES (Maybe a)) ->- Free ES (Maybe a) 
catchHdl' r Throw = return Nothing 
catchHdl' r op    = Call op



Non-Algebraic Operations

 14

Why is exception throwing an operation but catching a handler? 



Non-Algebraic Operations

If we model catch as an operation with Free, then 

by the definition of >>>= for Free, but this equality is undesirable: 
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(catch p r) >>>= k     ===     catch (p >>>= k) (r >>>= k)

Why is exception throwing an operation but catching a handler? 



Non-Algebraic Operations

If we model catch as an operation with Free, then 

by the definition of >>>= for Free, but this equality is undesirable: 

 14

(catch p r) >>>= k     ===     catch (p >>>= k) (r >>>= k)

Why is exception throwing an operation but catching a handler? 

The scopes for catching exceptions are different!



Non-Algebraic Operations

Although catch can be modelled as handlers, we lose the separation of syntax 
and semantics for catch:  

Suppose we want a program that morally means

 15

do x ← catch (safeDiv 5) (return 42) 
   put (x + 1)

“                                         ”



Non-Algebraic Operations

With different handlers, we write for catchHdl 
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do x ← handle (catchHdl (return 42)) return  
              (safeDiv 5) 
   put (x + 1)



do xMb ← handle (catchHdl' (return 42)) (return · Just)  
                (safeDiv 5) 
   case xMb of 
     Nothing   → return Nothing 
     (Just x ) → do r ← put (x + 1); return (Just r )

Non-Algebraic Operations

With different handlers, we write for catchHdl 
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do x ← handle (catchHdl (return 42)) return  
              (safeDiv 5) 
   put (x + 1)

do x ← handle (catchHdl (return 42)) return  
              (safeDiv 5) 
   put (x + 1)

:::Free ES (Maybe a)

::: Free ES a

but for catchHdl’ we write



Scoped Effects

do x ← catch (safeDiv 5) (return 42) 
   put (x + 1)

“                                         ”
 We want to write syntactic non-algebraic operations and interpret them differently.



Scoped Effects

Cause   Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42) 
   put (x + 1)

“                                         ”
 We want to write syntactic non-algebraic operations and interpret them differently.



Solution   Separate syntax and semantics. 

Scoped Effects

Cause   Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42) 
   put (x + 1)

“                                         ”
 We want to write syntactic non-algebraic operations and interpret them differently.



Solution   

• Generalising Free to non-algebraic (“scoped”) operations [Wu et al. 2014]; 

• Finding nice ways to handle them (contribution of this paper).

Scoped Effects

Cause   Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42) 
   put (x + 1)

“                                         ”
 We want to write syntactic non-algebraic operations and interpret them differently.



Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

 18

data Free f a ::: * where 
  Var ::: a ->- Free f a 
  Op  ::: f (Free f a) ->- Free f a



Syntax of Scoped Effects

Extending Free to accommodate scoped operations:
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data FreeS f g a ::: * where 
  Var ::: a ->- FreeS f g a 
  Op  ::: f (FreeS f g a) ->- FreeS f g a 
  SOp ::: g (FreeS f g (FreeS f g a)) ->- FreeS f g a

f: signature of algebraic operations 
g: signature of scoped operations



Syntax of Scoped Effects

Intuition   Free f are trees, while FreeS f g are nested trees:

 19

SOp

SOp

Op Op

Op

• Boundary of a tree is the 
scope of an scoped 
operation



Intuition   Free f are trees, while FreeS f g are recursively nested trees:

Syntax of Scoped Effects

 20

SOp• Boundary of a tree is the 
scope of an scoped 
operation 

• Trees themselves can be 
nested trees, i.e. scoped 
operations can be nested.

SOp Op

Op Op
catch (catch p h >>>= k) h’  
  >>>= k’

…



Handlers of Scoped Effects

What are the handlers of scoped operations? 

Proposal 1  Treating them as algebraic effects with recursion
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data FreeS f g a ::: * where 
  Var ::: a ->- FreeS f g a 
  Op  ::: f (FreeS f g a) ->- FreeS f g a 
  SOp ::: g (FreeS f g (FreeS f g a)) ->- FreeS f g a



Handlers of Scoped Effects

What are the handlers of scoped operations? 

Proposal 1  Treating them as algebraic effects with recursion

 21

data FreeS f g a ::: * where 
  Var ::: a ->- FreeS f g a 
  Op  ::: (f + g ∘ FreeS f g) (FreeS f g a) ->- FreeS f g a

Scoped operations are treated as algebraic 
operations whose signature is recursively defined



Handlers of Scoped Effects

What are the handlers of scoped operations? 

Proposal 1  Treating them as algebraic effects with recursion, thus a handler for 
signatures f and g is a type c equipped with  

 22

opB  ::: f c → c       sopB ::: g (FreeS f g c) → c



Handlers of Scoped Effects

What are the handlers of scoped operations? 

Proposal 1  Treating them as algebraic effects with recursion, thus a handler for 
signatures f and g is a type c equipped with  

 22

opB  ::: f c → c       sopB ::: g (FreeS f g c) → copB  ::: f c → c       sopB ::: g (FreeS f g c) → c

Problem  sopB has too much freedom on how to use FreeS f g



A functorial algebra for algebraic signature f and scoped signature g has

• A functor h:::*->-* equipped with

Proposal of This Paper

 23

varE ::: ∀x. x → h x 
opE  ::: ∀x. f (h x) → h x 
sopE ::: ∀x. g (h (h x)) → h x

opB  ::: f c → c 
sopB ::: g (h c) → c

• and a type c:::* equipped with  



A functorial algebra for algebraic signature f and scoped signature g has

• A functor h:::*->-* equipped with

Proposal of This Paper

 23

varE ::: ∀x. x → h x 
opE  ::: ∀x. f (h x) → h x 
sopE ::: ∀x. g (h (h x)) → h x

opB  ::: f c → c 
sopB ::: g (h c) → c

• and a type c:::* equipped with  

which gives rise to a handling function: 

handle ::: FunctorialAlg h c  
       ->- (a ->- c) ->- FreeS f g a ->- c



Some Examples

• Exception throwing and catching handled by <Maybe, Maybe a, …>  

• Explicit nondeterminism with scoped search strategies like 

     

handled by <x |-->- ([x], [[x]]),  [a], …> 

• Parallel composition handled by a resumption monad.

 24

bfs (or (dfs (or .....)) 
        (or x y))



What Else in the Paper

THM  There is an adjunction between functorial algebras and the category ℂ (for 
pure values) 

whose induced monad T is isomorphic to FreeS f g. 

 25



What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped 
effects: indexed algebras and Eilenberg-Moore algebras. 

THM  There are comparison functors between these adjunctions. Thus all these 
models have equal expressivity.

 26
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📬🏠

• Non-algebraic operations need not to be handlers. 

• They can be operations and handled in a structural way.

Take-Home Messages



Back up slides



Scoped Scoped Operations?

We indeed can make a further generalisation: 

  SSOp ::: g (FreeS f g (FreeS f g (FreeS f g a)))  
       ->- FreeS f g a 

corresponding to operations that look like 

Example: explicit substitution subst(P)(x. Q), but not too many. 

 29

op ({ P  }{x. Q }, 
    { P' }{y. Q’},.....)



Connections to Delimited Control

Can we implement scoped operations with shift/reset? 

• Sounds plausible. 

Are shift/reset scoped operations? 

• Interesting direction. We need to develop scoped operations on 
parameterised  monads, since shift and reset are not operations on 
ordinary monad Cont r but on parametric monad Cont.

 30

shift ::: ((a ->- r) ->- Cont r r) ->- Cont r a 
reset ::: Cont r r ->- Cont w r


