## Structured Handling of Scoped Effects





Imperial College London



## Structured Handling of Scoped Effects





Imperial College London



# This Talk Scoped Effects for the Working Programmer





### More in the Paper

A Categorical Analysis of Our Approach



### **Algebraic Effects**

A computational effect is modelled as an algebraic theory.

**Example** The effect of *mutable* **s**-state is modelled by

- two operations { put : s ~> (),
  - get : () → s }

### **Algebraic Effects**

- A computational effect is modelled as an algebraic theory.
- **Example** The effect of *mutable* **s**-state is modelled by
  - two operations { put : s ~> (),
  - several *equations* (pairs of *terms*) characterising **put** and **get**, such as do {put s;  $x \leftarrow get; k x$ } = do {put s; k s}

- get : () → s }

Terms of a theory are conceptually trees of operations.

**Example** A term for a mutable **Int**-state:

do put n
 x ← get
 if x = 0
 then p
 else do put 0; q



Terms of a theory are conceptually trees of operations.

**Example** A term for a mutable **Int**-state:







data Free sig a :: \* where Var ::  $a \rightarrow Free sig a$ **Op** :: sig (Free sig a)  $\rightarrow$  Free sig a

#### Generally, *terms* of an operation signature $sig :: * \rightarrow *$ and variables of type **a** are



data Free sig a :: \* where Var :: a → Free sig a Op :: sig (Free sig a) → Free sig a

#### Generally, *terms* of an operation signature $sig :: * \rightarrow *$ and variables of type **a** are





#### Generally, *terms* of an operation signature $sig :: * \rightarrow *$ and variables of type a are

#### Signature Functors

- Signature of operations can be packaged into a datatype.
- **Example** The signature for the effect of **Int**-state and exception throw is

| data ES | ••• | $* \rightarrow$ | *             | whe |
|---------|-----|-----------------|---------------|-----|
| Put     | ••• | Int             | $\rightarrow$ | ()  |
| Get     | ••• | ()              | $\rightarrow$ | (In |
| Throw   | ••  | ()              | $\rightarrow$ | (Vo |

parameter type

#### ere ) $\rightarrow$ x) $\rightarrow$ ES x nt $\rightarrow$ x) $\rightarrow$ ES x $\mathsf{pid} \to \mathsf{x}) \to \mathsf{ES} \mathsf{x}$

result type

**Void** is the type with no constructors





#### Signature Functors

- Signature of operations can be packaged into a datatype.
- **Example** The signature for the effect of **Int**-state and exception throw is

| data ES | •• | $* \rightarrow$ | *             | whe |
|---------|----|-----------------|---------------|-----|
| Put     | •• | Int -           | $\rightarrow$ | Х - |
| Get     | •• | (Int            | $\rightarrow$ | x)  |
| Throw   | •• | ES x            |               |     |

ere  $\rightarrow ES x$ )  $\rightarrow ES x$ 

## Term Model of Effectful Programs

- Terms are a syntactic model of effectful computations.
- **Example** A program involving **Int**-state and exception throwing:
  - safeDiv :: Int → Free ES Int
    safeDiv n = Op (Get (λ s →
     if s ≡ 0
     then Op Throw
     else Op (Put (n / s) (Var (n / s))))





#### The Monad of Terms

we equip **Free sig** with a monad structure:

return ::  $a \rightarrow Free sig a$ 

## We'd like to have sequential composition of (the term model of) computations, so

#### (>>=) :: Free sig a $\rightarrow$ (a $\rightarrow$ Free sig b) $\rightarrow$ Free sig b

#### The Monad of Terms

we equip **Free sig** with a monad structure:

return ::  $a \rightarrow Free sig a$ return = Var

## We'd like to have sequential composition of (the term model of) computations, so

#### (>>=) :: Free sig a $\rightarrow$ (a $\rightarrow$ Free sig b) $\rightarrow$ Free sig b

#### The Monad of Terms

we equip **Free sig** with a monad structure:





## We'd like to have sequential composition of (the term model of) computations, so



**Example** safeDiv is also sequential composition of smaller programs:

safeDiv :: Int → Free ES Int safeDiv n = Op (Get (s  $\rightarrow$ if  $s \equiv 0$ then Op Throw **else Op (Put (n / s) (Var (n / s))))** 

- **Example** safeDiv is also sequential composition of smaller programs:
  - safeDiv :: Int → Free ES Int safeDiv n = get >>=  $\lambda$  s  $\rightarrow$ if  $s \equiv 0$ 
    - then throw else put (n / s) >>=  $\lambda$  \_  $\rightarrow$  return (n / s)

    - where get = Op (Get Var)
      - put s = Op (Put s (Var ()))
        - throw = Op Throw

9

- **Example** safeDiv is also sequential composition of smaller programs:
  - safeDiv :: Int → Free ES Int safeDiv  $n = do s \leftarrow get$ if  $s \equiv 0$ 
    - then throw else do put (n / s); return (n / s)
    - where get = Op (Get Var)
      - put s = Op (Put s (Var ()))
        - throw = Op Throw

- **Example** safeDiv is also sequential composition of smaller programs:
  - safeDiv :: Int → Free ES Int safeDiv n = do s ← get if  $s \equiv 0$ then throw

#### Free sig a is just a syntactic model of effectful programs!

## else do put (n / s); return (n / s)

Semantic models ("handlers")  $< b :: *, f :: sig b \rightarrow b >$  interpret ("handle") programs with **sig**-operations:

### handle :: $(sig b \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (Free sig a \rightarrow b)$ How **sig**-operations How to turn a return act on the carrier **b**

value **a** into the carrier **b** 

Semantic models ("handlers")  $< b :: *, f :: sig b \rightarrow b >$  interpret ("handle") programs with **sig**-operations:

How **sig**-operations act on the carrier **b** 

# handle :: $(sig b \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (Free sig a \rightarrow b)$

How to turn a return value **a** into the carrier **b** 

Semantic models ("handlers")  $< b :: *, f :: sig b \rightarrow b >$  interpret ("handle") programs with **sig**-operations:

How **sig**-operations act on the carrier **b** 

# handle :: $(sig b \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (Free sig a \rightarrow b)$

How to turn a return value **a** into the carrier **b** 

Semantic models ("handlers")  $< b :: *, f :: sig b \rightarrow b >$  interpret ("handle") programs with **sig**-operations:

handle ::  $(sig b \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (Free sig a \rightarrow b)$ 





- **Example** Given a program **r** :: Free ES a, a handler catchHdl r that
  - gives the 'standard' semantics to **Throw**, and
  - leaves other operations unchanged:
    - catchHdl :: Free ES a
    - catchHdl r Throw = r
    - catchHdl r op = Op op

#### $\rightarrow$ ES (Free ES a) $\rightarrow$ Free ES a



### **Modularity of Handlers**

- Separating syntax from semantics allows different handlers of the same effect:
- **Example** A non-standard handler of exception that *ignores* the recovery code **r** 
  - catchHdl' :: Free ES a catchHdl' r Throw = return Nothing catchHdl' r op = Call op



# $\rightarrow$ ES (Free ES (Maybe a)) $\rightarrow$ Free ES (Maybe a)



Why is exception throwing an operation but catching a handler?

Why is exception throwing an operation but catching a handler?

If we model **catch** as an operation with **Free**, then

#### $(atch p r) \gg = k =$

by the definition of >> = for **Free**, but this equality is **undesirable**:

#### catch $(p \gg = k)$ $(r \gg = k)$

Why is exception throwing an operation but catching a handler?

If we model **catch** as an operation with **Free**, then



and semantics for **catch**:

Suppose we want a program that *morally* means

put(x + 1)

- Although **catch** can be modelled as handlers, we **lose** the separation of syntax

  - <sup>II</sup> do x ← catch (safeDiv 5) (return 42) 77

With different handlers, we write for **catchHdl** (safeDiv 5) put (x + 1)



With different handlers, we write for **catchHdl** do x ← handle (catchHdl (return 42)) return (safeDiv 5) put (x + 1)but for catchHdl' we write do xMb ← handle (catchHdl' (return 42)) (return · Just) (safeDiv 5) case xMb of Nothing > return Nothing  $(Just x) \rightarrow do r \leftarrow put (x + 1); return (Just r)$ 



- With different handlers, we write for **catchHdl** do x ← handle (catchHdl (return 42)) return (safeDiv 5) put (x + 1)
- but for **catchHdl'** we write
  - (safeDiv 5)
    - case xMb of Nothing > return Nothing

:: Free ES a

#### do xMb ← handle (catchHdl' (return 42)) (return · Just) :: Free ES (Maybe a)

 $(Just x) \rightarrow do r \leftarrow put (x + 1); return (Just r))$ 





We want to write syntactic non-algebraic operations and interpret them differently. **do**  $x \leftarrow catch$  (safeDiv 5) (return 42) put (x + 1)

#### We want to write syntactic non-algebraic operations and interpret them differently. do $x \leftarrow catch$ (safeDiv 5) (return 42) " put (x + 1)

**Cause** Handlers model the syntax and semantics of **catch** at the same time!

#### We want to write syntactic non-algebraic operations and interpret them differently. do $x \leftarrow catch$ (safeDiv 5) (return 42) " put (x + 1)

**Cause** Handlers model the syntax and semantics of **catch** at the same time!

**Solution** Separate syntax and semantics.

#### We want to write syntactic non-algebraic operations and interpret them differently. " 77 do x < catch (safeDiv 5) (return 42)</pre>

**Cause** Handlers model the syntax and semantics of **catch** at the same time!

put (x + 1)

#### Solution

- Finding nice ways to handle them (contribution of this paper).

Generalising Free to non-algebraic ("scoped") operations [Wu et al. 2014];

Extending **Free** to accommodate scoped operations:

data Free f a :: \* where Var ::  $a \rightarrow Free f a$ **Op** :: f (Free f a)  $\rightarrow$  Free f a



#### Extending **Free** to accommodate scoped operations:

data FreeS f g a :: \* where Var ::  $a \rightarrow$  FreeS f g a Op :: f (FreeS f g a)  $\rightarrow$  FreeS f g a

**f**: signature of algebraic operations **g**: signature of scoped operations

## SOp :: g (FreeS f g (FreeS f g a)) $\rightarrow$ FreeS f g a



**Intuition Free f** are trees, while **FreeS f g** are nested trees:

• Boundary of a tree is the scope of an scoped operation



#### Intuition Free f are trees, while FreeS f g are recursively nested trees:

- Boundary of a tree is the scope of an scoped operation
- Trees themselves can be nested trees, i.e. scoped operations can be nested.

## catch (catch p h >>= k) h' >>= k'



- What are the handlers of scoped operations?
- **Proposal 1** Treating them as algebraic effects with recursion
  - data FreeS f g a :: \* where Var :: a → FreeS f g a Op :: f (FreeS f g a) → FreeS f g a SOp :: g (FreeS f g (FreeS f g a)) → FreeS f g a

- What are the handlers of scoped operations?
- **Proposal 1** Treating them as algebraic effects with recursion

data FreeS f g a :: \* where Var ::  $a \rightarrow FreeS f g a$ 

> Scoped operations are treated as algebraic operations whose signature is *recursively* defined

## **Op** :: $(f + g \circ FreeS f g)$ (FreeS f g a) $\rightarrow$ FreeS f g a



What are the handlers of scoped operations?

signatures **f** and **g** is a type **c** equipped with

opB ::  $f c \rightarrow c$ 

- **Proposal 1** Treating them as algebraic effects with recursion, thus a handler for

#### sopB :: $g(FreeS f g c) \rightarrow c$



What are the handlers of scoped operations?

signatures **f** and **g** is a type **c** equipped with

opB ::  $f c \rightarrow c$ 

**Problem sopB** has too much freedom on how to use **FreeS** f g

- **Proposal 1** Treating them as algebraic effects with recursion, thus a handler for





### **Proposal of This Paper**

A *functorial algebra* for algebraic signature **f** and scoped signature **g** has

A functor  $h:: * \rightarrow *$  equipped with and a type c :: \* equipped with opB ::  $f c \rightarrow c$ sopB ::  $g (h c) \rightarrow c$ varE ::  $\forall x. x \rightarrow h x$ opE ::  $\forall x. f(h x) \rightarrow h x$ sopE ::  $\forall x. g(h(h x)) \rightarrow h x$ 







### **Proposal of This Paper**

A *functorial algebra* for algebraic signature **f** and scoped signature **g** has

A functor  $h:: * \rightarrow *$  equipped with and a type c :: \* equipped with varE ::  $\forall x. x \rightarrow h x$ opE ::  $\forall x. f(h x) \rightarrow h x$ sopE ::  $\forall x. g(h(h x)) \rightarrow h x$ 

opB :: 
$$f c \rightarrow c$$
  
sopB ::  $g (h c) \rightarrow c$ 

which gives rise to a handling function:

handle :: FunctorialAlg h c



 $\rightarrow$  (a  $\rightarrow$  c)  $\rightarrow$  FreeS f g a  $\rightarrow$  c





#### Some Examples

- Exception throwing and catching handled by <Maybe, Maybe a, ...>
- Explicit nondeterminism with scoped search strategies like

- handled by  $\langle x \mapsto ([x], [[x]]), [a], ... \rangle$
- Parallel composition handled by a resumption monad.



pure values)

$$\textit{Fn-Alg} \xrightarrow[U_{Fn}]{\textit{Free}_{Fn}} \textit{Endo}_f($$

whose induced monad T is isomorphic to **FreeS** f g.



**THM** There is an adjunction between functorial algebras and the category  $\mathbb{C}$  (for



effects: indexed algebras and Eilenberg-Moore algebras.

models have equal expressivity.





- Functorial algebras are compared with two other adjunctions for handling scoped
- **THM** There are comparison functors between these adjunctions. Thus all these

effects: indexed algebras and Eilenberg-Moore algebras.

models have equal expressivity.





- Functorial algebras are compared with two other adjunctions for handling scoped
- **THM** There are comparison functors between these adjunctions. Thus all these

effects: indexed algebras and Eilenberg-Moore algebras.

models have equal expressivity.





- Functorial algebras are compared with two other adjunctions for handling scoped
- **THM** There are comparison functors between these adjunctions. Thus all these

#### **Take-Home Messages**





#### • Non-algebraic operations need not to be handlers. • They can be operations and handled in a structural way.



### Back up slides

## **Scoped Scoped Operations?**

We indeed can make a further generalisation:

#### SSOp :: g (FreeS f g (FreeS f g (FreeS f g a))) $\rightarrow$ FreeS f g a

corresponding to operations that look like

**Example**: explicit substitution **subst(P)(x. Q)**, but not too many.



### **Connections to Delimited Control**

Can we implement scoped operations with shift/reset?

• Sounds plausible.

Are shift/reset scoped operations?

- Interesting direction. We need to develop scoped operations on parameterised monads, since shift and reset are not operations on ordinary monad **Cont r** but on parametric monad **Cont**.
  - shift ::  $((a \rightarrow r) \rightarrow Cont r r) \rightarrow Cont r a$
  - reset :: Cont r r  $\rightarrow$  Cont w r