
Structured Handling of
Scoped Effects

Nicolas Wu Tom Schrijvers

Zhixuan Yang 🗣

Marco Paviotti Birthe van den Berg
@ESOP 2022

Structured Handling of
Scoped Effects

Nicolas Wu Tom Schrijvers

Zhixuan Yang 🗣

Marco Paviotti Birthe van den Berg
@ESOP 2022

This Talk

Scoped Effects
for the Working
Programmer

This Talk

Scoped Effects
for the Working
Programmer

P

This Talk

Scoped Effects
for the Working
Programmer

More in the
Paper

A Categorical
Analysis of Our
Approach

P

Algebraic Effects

Example The effect of mutable s-state is modelled by

• two operations { put : s ~~> (),

 get : () ~~> s }

A computational effect is modelled as an algebraic theory.

 3

Algebraic Effects

Example The effect of mutable s-state is modelled by

• two operations { put : s ~~> (),

 get : () ~~> s }

A computational effect is modelled as an algebraic theory.

 3

do {put s; x <-- get; k x} = do {put s; k s}

…

• several equations (pairs of terms) characterising put and get, such as

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n
 x <-- get
 if x === 0
 then p
 else do put 0; q

0 1≃
put 0

q

…
put n

get

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n
 x <-- get
 if x === 0
 then p
 else do put 0; q

0 1≃
put 0

q

…
put n

get

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n
 x <-- get
 if x === 0
 then p
 else do put 0; q

0 1≃
put 0

q

…
put n

get

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

 4

put n

get

p put 0

q

do put n
 x <-- get
 if x === 0
 then p
 else do put 0; q

0 1≃
put 0

q

…

 variables

put n
get

Terms of Operations

Generally, terms of an operation signature sig :: * ->- * and variables of type a are

data Free sig a ::: * where
 Var ::: a ->- Free sig a
 Op ::: sig (Free sig a) ->- Free sig a

 5

…

Var x

Op

Var y

… …

sig
a

Terms of Operations

Generally, terms of an operation signature sig :: * ->- * and variables of type a are

data Free sig a ::: * where
 Var ::: a ->- Free sig a
 Op ::: sig (Free sig a) ->- Free sig a

 5

…

Var x

Op

Var y

… …

sig
a

Terms of Operations

Generally, terms of an operation signature sig :: * ->- * and variables of type a are

data Free sig a ::: * where
 Var ::: a ->- Free sig a
 Op ::: sig (Free sig a) ->- Free sig a

 5

Operations are sig-branching
internal nodes

…

Var x

Op

Var y

… …

sig
a

data ES ::: * ->- * where
 Put ::: Int ->- (() ->- x) ->- ES x
 Get ::: () ->- (Int ->- x) ->- ES x
 Throw ::: () ->- (Void ->- x) ->- ES x

Signature Functors
Signature of operations can be packaged into a datatype.

Example The signature for the effect of Int-state and exception throw is

Void is the type with
no constructors

 6

parameter
type

result
type

data ES ::: * ->- * where
 Put ::: Int ->- x ->- ES x
 Get ::: (Int ->- x) ->- ES x
 Throw ::: ES x

Signature Functors
Signature of operations can be packaged into a datatype.

Example The signature for the effect of Int-state and exception throw is

 6

Terms are a syntactic model of effectful computations.

Example A program involving Int-state and exception throwing:

safeDiv ::: Int → Free ES Int
safeDiv n = Op (Get (λ s ->-
 if s ≡ 0
 then Op Throw
 else Op (Put (n / s) (Var (n / s)))))

Term Model of Effectful Programs

 7

Variables are
understood as
return values

Var

The Monad of Terms

We’d like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return ::: a ->- Free sig a

 8

(>>>=) ::: Free sig a ->- (a ->- Free sig b) ->- Free sig b

The Monad of Terms

We’d like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return ::: a ->- Free sig a

 8

(>>>=) ::: Free sig a ->- (a ->- Free sig b) ->- Free sig b

return = Var

The Monad of Terms

We’d like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return ::: a ->- Free sig a

 8

(>>>=) ::: Free sig a ->- (a ->- Free sig b) ->- Free sig b

… >>>= k =

Var x

Op

Var y

… …

k x

Op

k y

…k

return ::: a ->- Free sig a
return = Var

Example safeDiv is also sequential composition of smaller programs:

safeDiv ::: Int → Free ES Int
safeDiv n = Op (Get (s ->-
 if s ≡ 0
 then Op Throw
 else Op (Put (n / s) (Var (n / s)))))

Effectful Programs with Free Monads

 9

Example safeDiv is also sequential composition of smaller programs:

safeDiv ::: Int → Free ES Int
safeDiv n = get >>>= λ s ->-
 if s ≡ 0
 then throw
 else put (n / s) >>>= λ _ ->- return (n / s)

 where get = Op (Get Var)
 put s = Op (Put s (Var ()))
 throw = Op Throw

Effectful Programs with Free Monads

 9

Example safeDiv is also sequential composition of smaller programs:

Effectful Programs with Free Monads

safeDiv ::: Int → Free ES Int
safeDiv n = do s ← get
 if s ≡ 0
 then throw
 else do put (n / s); return (n / s)

 where get = Op (Get Var)
 put s = Op (Put s (Var ()))
 throw = Op Throw

 9

Example safeDiv is also sequential composition of smaller programs:

Effectful Programs with Free Monads

safeDiv ::: Int → Free ES Int
safeDiv n = do s ← get
 if s ≡ 0
 then throw
 else do put (n / s); return (n / s)

 where get = Op (Get Var)
 put s = Op (Put s (Var ()))
 throw = Op Throw
Free sig a is just a syntactic model of effectful programs!

 9

Handlers of Effects

Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)
programs with sig-operations:

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

How sig-operations
act on the carrier b

How to turn a return
value a into the carrier b

 10

Handlers of Effects

Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)
programs with sig-operations:

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

How sig-operations
act on the carrier b

How to turn a return
value a into the carrier b

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

 10

Handlers of Effects

Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)
programs with sig-operations:

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

How sig-operations
act on the carrier b

How to turn a return
value a into the carrier b

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

 10

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

Semantic models (“handlers”) <b:::*, f:::sig b->-b> interpret (“handle”)
programs with sig-operations:

Handlers of Effects

 11

…

Var x

Op

Var y

…handle alg g () = …

g x

alg

g y

…galg

handle ::: (sig b → b) → (a → b) → (Free sig a → b)

Handlers of Effects

Example Given a program r ::: Free ES a, a handler catchHdl r that

• gives the ‘standard’ semantics to Throw, and

• leaves other operations unchanged:

 12

catchHdl ::: Free ES a
 ->- ES (Free ES a) ->- Free ES a
catchHdl r Throw = r
catchHdl r op = Op op

Modularity of Handlers

Separating syntax from semantics allows different handlers of the same effect:

Example A non-standard handler of exception that ignores the recovery code r

 13

catchHdl' ::: Free ES a
 ->- ES (Free ES (Maybe a)) ->- Free ES (Maybe a)
catchHdl' r Throw = return Nothing
catchHdl' r op = Call op

Non-Algebraic Operations

 14

Why is exception throwing an operation but catching a handler?

Non-Algebraic Operations

If we model catch as an operation with Free, then

by the definition of >>>= for Free, but this equality is undesirable:

 14

(catch p r) >>>= k === catch (p >>>= k) (r >>>= k)

Why is exception throwing an operation but catching a handler?

Non-Algebraic Operations

If we model catch as an operation with Free, then

by the definition of >>>= for Free, but this equality is undesirable:

 14

(catch p r) >>>= k === catch (p >>>= k) (r >>>= k)

Why is exception throwing an operation but catching a handler?

The scopes for catching exceptions are different!

Non-Algebraic Operations

Although catch can be modelled as handlers, we lose the separation of syntax
and semantics for catch:

Suppose we want a program that morally means

 15

do x ← catch (safeDiv 5) (return 42)
 put (x + 1)

“ ”

Non-Algebraic Operations

With different handlers, we write for catchHdl

 16

do x ← handle (catchHdl (return 42)) return
 (safeDiv 5)
 put (x + 1)

do xMb ← handle (catchHdl' (return 42)) (return · Just)
 (safeDiv 5)
 case xMb of
 Nothing → return Nothing
 (Just x) → do r ← put (x + 1); return (Just r)

Non-Algebraic Operations

With different handlers, we write for catchHdl

 16

do x ← handle (catchHdl (return 42)) return
 (safeDiv 5)
 put (x + 1)

do x ← handle (catchHdl (return 42)) return
 (safeDiv 5)
 put (x + 1)

but for catchHdl’ we write

do xMb ← handle (catchHdl' (return 42)) (return · Just)
 (safeDiv 5)
 case xMb of
 Nothing → return Nothing
 (Just x) → do r ← put (x + 1); return (Just r)

do xMb ← handle (catchHdl' (return 42)) (return · Just)
 (safeDiv 5)
 case xMb of
 Nothing → return Nothing
 (Just x) → do r ← put (x + 1); return (Just r)

Non-Algebraic Operations

With different handlers, we write for catchHdl

 16

do x ← handle (catchHdl (return 42)) return
 (safeDiv 5)
 put (x + 1)

do x ← handle (catchHdl (return 42)) return
 (safeDiv 5)
 put (x + 1)

:::Free ES (Maybe a)

::: Free ES a

but for catchHdl’ we write

Scoped Effects

do x ← catch (safeDiv 5) (return 42)
 put (x + 1)

“ ”
 We want to write syntactic non-algebraic operations and interpret them differently.

Scoped Effects

Cause Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42)
 put (x + 1)

“ ”
 We want to write syntactic non-algebraic operations and interpret them differently.

Solution Separate syntax and semantics.

Scoped Effects

Cause Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42)
 put (x + 1)

“ ”
 We want to write syntactic non-algebraic operations and interpret them differently.

Solution

• Generalising Free to non-algebraic (“scoped”) operations [Wu et al. 2014];

• Finding nice ways to handle them (contribution of this paper).

Scoped Effects

Cause Handlers model the syntax and semantics of catch at the same time!

do x ← catch (safeDiv 5) (return 42)
 put (x + 1)

“ ”
 We want to write syntactic non-algebraic operations and interpret them differently.

Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

 18

data Free f a ::: * where
 Var ::: a ->- Free f a
 Op ::: f (Free f a) ->- Free f a

Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

 18

data FreeS f g a ::: * where
 Var ::: a ->- FreeS f g a
 Op ::: f (FreeS f g a) ->- FreeS f g a
 SOp ::: g (FreeS f g (FreeS f g a)) ->- FreeS f g a

f: signature of algebraic operations
g: signature of scoped operations

Syntax of Scoped Effects

Intuition Free f are trees, while FreeS f g are nested trees:

 19

SOp

SOp

Op Op

Op

• Boundary of a tree is the
scope of an scoped
operation

Intuition Free f are trees, while FreeS f g are recursively nested trees:

Syntax of Scoped Effects

 20

SOp• Boundary of a tree is the
scope of an scoped
operation

• Trees themselves can be
nested trees, i.e. scoped
operations can be nested.

SOp Op

Op Op
catch (catch p h >>>= k) h’
 >>>= k’

…

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion

 21

data FreeS f g a ::: * where
 Var ::: a ->- FreeS f g a
 Op ::: f (FreeS f g a) ->- FreeS f g a
 SOp ::: g (FreeS f g (FreeS f g a)) ->- FreeS f g a

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion

 21

data FreeS f g a ::: * where
 Var ::: a ->- FreeS f g a
 Op ::: (f + g ∘ FreeS f g) (FreeS f g a) ->- FreeS f g a

Scoped operations are treated as algebraic
operations whose signature is recursively defined

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for
signatures f and g is a type c equipped with

 22

opB ::: f c → c sopB ::: g (FreeS f g c) → c

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for
signatures f and g is a type c equipped with

 22

opB ::: f c → c sopB ::: g (FreeS f g c) → copB ::: f c → c sopB ::: g (FreeS f g c) → c

Problem sopB has too much freedom on how to use FreeS f g

A functorial algebra for algebraic signature f and scoped signature g has

• A functor h:::*->-* equipped with

Proposal of This Paper

 23

varE ::: ∀x. x → h x
opE ::: ∀x. f (h x) → h x
sopE ::: ∀x. g (h (h x)) → h x

opB ::: f c → c
sopB ::: g (h c) → c

• and a type c:::* equipped with

A functorial algebra for algebraic signature f and scoped signature g has

• A functor h:::*->-* equipped with

Proposal of This Paper

 23

varE ::: ∀x. x → h x
opE ::: ∀x. f (h x) → h x
sopE ::: ∀x. g (h (h x)) → h x

opB ::: f c → c
sopB ::: g (h c) → c

• and a type c:::* equipped with

which gives rise to a handling function:

handle ::: FunctorialAlg h c
 ->- (a ->- c) ->- FreeS f g a ->- c

Some Examples

• Exception throwing and catching handled by <Maybe, Maybe a, …>

• Explicit nondeterminism with scoped search strategies like

handled by <x |-->- ([x], [[x]]), [a], …>

• Parallel composition handled by a resumption monad.

 24

bfs (or (dfs (or))
 (or x y))

What Else in the Paper

THM There is an adjunction between functorial algebras and the category ℂ (for
pure values)

whose induced monad T is isomorphic to FreeS f g.

 25

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

 26

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

 26

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

 26

 27

📬🏠

• Non-algebraic operations need not to be handlers.

• They can be operations and handled in a structural way.

Take-Home Messages

Back up slides

Scoped Scoped Operations?

We indeed can make a further generalisation:

 SSOp ::: g (FreeS f g (FreeS f g (FreeS f g a)))
 ->- FreeS f g a

corresponding to operations that look like

Example: explicit substitution subst(P)(x. Q), but not too many.

 29

op ({ P }{x. Q },
 { P' }{y. Q’},.....)

Connections to Delimited Control

Can we implement scoped operations with shift/reset?

• Sounds plausible.

Are shift/reset scoped operations?

• Interesting direction. We need to develop scoped operations on
parameterised monads, since shift and reset are not operations on
ordinary monad Cont r but on parametric monad Cont.

 30

shift ::: ((a ->- r) ->- Cont r r) ->- Cont r a
reset ::: Cont r r ->- Cont w r

