Structured Handling of
Scoped Effects

7hixuan Yang $
1 @ES .
Marco Paviotti 22 B,rthe%/cﬂ den Berg
I
Nicolas Wu Tom Schrijvers

Imperial College
London

KU LEUVEN

Structured Handling of
Scoped Effects

7hixuan Yang $
1 @ES .
Marco Paviotti 22 B,rthe%/cﬂ den Berg
I
Nicolas Wu Tom Schrijvers

Imperial College
London

KU LEUVEN

This Talk

This Talk

Scoped Effects A Categorical

for the Working Analysis of Our
Programmer Approach

>

R 2 o
O

Algebraic Effects

A computational effect 1s modelled as an algebraic theory.
Example The effect of mutable s-state iIs modelled by
* two operations { put : s < (),

get : () - s }

Algebraic Effects

A computational effect 1s modelled as an algebraic theory.
Example The effect of mutable s-state iIs modelled by
* two operations { put : s < (),
get : () - s }

* several equations (pairs of terms) characterising put and get, such as

do {put s; x & get; k x} = do {put s; k s}

Terms of Operations

Terms of a theory are conceptually trees of operations.

put n
Example A term for a mutable Int-state: |
get
do put n
X ¢ get -t / 1\
1f x = 0
then p p put 0 put 0

else do put 0; q ‘ ‘

q q

Terms of Operations

Terms of a theory are conceptually trees of operations. put n

Example A term for a mutable Int-state:
get

do put n
X ¢« get ////4;/ 1\\\\<;\
1f x = 0
then p p put 0 put 0
else do put 0; q ‘ ‘

R

q q

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

R

X €& get

1f x = 0
then p P
else do put 0; q

get
do put n ’////,,,——””””————_—______*
/

Terms of Operations

Terms of a theory are conceptually trees of operations.

Example A term for a mutable Int-state:

get
do put n /

R

X €& get
if X = 0

then p P
else do put 0; ¢ /

variables g q
L,

put 0 put 0

Terms of Operations

Generally, terms of an operation signature sig :: * = * and variables of type a are

data Free sig a :: * where
Var :: a — Free sig a
Op :: sig (Free sig a) — Free sig a

Op
1IN
|

Var X Var y

Terms of Operations

Generally, terms of an operation signature sig :: * = * and variables of type a are

data Free sig a :: * where
Var :: a — Free sig a
Op :: sig (Free sig a) — Free sig a

Op
1IN
|

Var X Var y

Terms of Operations

Generally, terms of an operation signature sig :: * = * and variables of type a are

data Free sig a :: * where
Var :: a = Free sig a
Op :: sig (Free sig a) — Free sig a

Operations are sig-branching
Internal nodes

Signature Functors

Signature of operations can be packaged into a datatype.

Example The signature for the effect of Int-state and exception throw is

data ES
Put
Get

Throw ::

* —> * where
Int = (()
s () = (Int = x) = ES x

parameter
type

result
type

— X) = ES X

() = (Void —» x) = ES x

-

Void is the type with

.

no constructors

~

J

6

Signature Functors

Signature of operations can be packaged into a datatype.

Example The signature for the effect of Int-state and exception throw is

data ES :: * = * where

Put e Int 5 X = ES Xx

Get e (Int & x) = ES x
Throw :: ES X

Term Model of Effectful Programs

Terms are a syntactic model of effectful computations.

Example A program involving Int-state and exception throwing:

safeDiv :: Int & Free ES Int f
safeDiv n = Op (Get (A s = Variables are

) - understood as
1f s = 0 /‘retum values
then Op Throw .

else Op (Put (n / s) (var (n / s)))))

The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return :: a = Free sig a

(>>=) :: Free sig a = (a = Free sig b) > Free sig b

The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return :: a = Free sig a
return = Var

(>>=) :: Free sig a = (a = Free sig b) > Free sig b

The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so
we equip Free sig with a monad structure:

return :: a = Free sig a
return = Var

(>>=) :: Free sig a = (a = Free sig b) > Free sig b

Op
7N\ >>= k “f/ \1.

Var x Var vy k x k v

Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

safeDiv :: Int & Free ES Int
safeDiv n = Op (Get (s —
if s = 0
then Op Throw
else Op (Put (n / s) (var (n / s)))))

Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

safeDiv :: Int & Free ES Int
safeDiv n = get >= A s =
if s = 0
then throw
else put (n / s) >= A _ = return (n / s)

where get = Op (Get Var)
put s = Op (Put s (var ()))
throw = Op Throw

Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

safeDiv :: Int & Free ES Int
safeDiv n = do s ¢ get
if s = 0
then throw
else do put (n / s); return (n / s)

where get = Op (Get Var)
put s = Op (Put s (var ()))
throw = Op Throw

Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

safeDiv :: Int 9 Free ES Int
safeDiv n = do s ¢ get
1f s = 0
then throw
else do put (n / s); return (n / s)

Free sig a is justa syntactic model of effectful programs!

Handlers of Effects

Semantic models (“handlers”) <b :: %, f::sig b—>b> interpret (“handle”)

programs with s1g-operations:

handle :: (sig b 9 b) > (a > b) > (Free sig a » b)

O

O

-

How sig-operations
act on the carrier b

~

O

O

-

.

How to turn a return

value a into the carrier b

J

10

Handlers of Effects

Semantic models (“handlers”) <b :: %, f::sig b—>b> interpret (“handle”)

programs with s1g-operations:

O

O

-

How sig-operations
act on the carrier b

~

(a > b)
O

O

-

.

How to turn a return

value a into the carrier b

J

10

Handlers of Effects

Semantic models (“handlers”) <b :: %, f::sig b—>b> interpret (“handle”)

programs with s1g-operations:

O

O

-

How sig-operations
act on the carrier b

~

O

O

(Free sig a » b)

-

.

How to turn a return

value a into the carrier b

J

10

Handlers of Effects

Semantic models (“handlers”) <b :: %, f::sig b—>b> interpret (“handle”)
programs with s1g-operations:

handle :: (sig b > b) > (a > b) > (Free sig a » b)

///”__—‘*Op alg

handle alg g (/ \) = / \

N1 |

Var X Var vy g X gV

11

Handlers of Effects

Example Givena programy :: Free ES a, ahandler catchHdl r that

* gives the ‘standard’ semantics to Throw, and

e leaves other operations unchanged:

catchHdl :: Free ES a

— ES (Free ES a) — Free ES a
catchHdl r Throw = r
catchHdl r op = Op op

12

Modularity of Handlers

Separating syntax from semantics allows different handlers of the same effect:

Example A non-standard handler of exception that ignores the recovery code r

ES (Free ES (Maybe a)) — Free ES (Maybe a)
catchHdl' r Throw = return Nothing

13

Non-Algebraic Operations

Why Is exception throwing an operation but catching a handler?

14

Non-Algebraic Operations

Why Is exception throwing an operation but catching a handler?

If we model catch as an operation with Free, then

(catch p r) >>= k catch (p >>= k) (r >>= k)

by the definition of >>= for Free, but this equality is undesirable:

14

Non-Algebraic Operations

Why Is exception throwing an operation but catching a handler?

If we model catch as an operation with Free, then

(catch p r) >>= k

by the definition of >>= for Free, but this

~

N

catch (p >>= k) (r >>= k)

ality is undesirable:

The scopes for catching exceptions are different!

~

J

14

Non-Algebraic Operations

Although catch can be modelled as handlers, we lose the separation of syntax
and semantics for catch:

Suppose we want a program that morally means

¢ do x ¢ catch (safebiv 5) (return 42) "
put (x + 1)

15

Non-Algebraic Operations

With different handlers, we write for catchHd1l

do x ¢ handle (catchHdl (return 42)) return
(safeDiv 5)
put (x + 1)

16

Non-Algebraic Operations

With different handlers, we write for catchHd1l

do x ¢ handle (catchHdl (return 42)) return
(safeDiv 5)
put (x + 1)

but for catchHd1l’ we write

do xMb ¢ handle (catchHdl' (return 42)) (return - Just)
(safeDiv 5)
case xMb of
Nothing - return Nothing
(Just x) Ydo r ¢ put (x + 1); return (Just r)

16

Non-Algebraic Operations

With different handlers, we write for catchHd1l
do x ¢ :: Free ES a

put (x + 1)
but for catchHd1l’ we write

do xMb ¢ :: Free ES (Maybe a)

case xMb of
Nothing - return Nothing
(Just x) Ydor ¢ put (x + 1); return (Just r))

16

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

¢ do x ¢ catch (safeDiv 5) (return 42) "
put (x + 1)

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

¢ do x ¢ catch (safeDiv 5) (return 42) "
put (x + 1)

a)

Cause Handlers model the syntax and semantics of catch at the same time!

N\ J

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

¢ do x ¢ catch (safeDiv 5) (return 42) M
put (x + 1)
Cause Handlers model the syntax and semantics of catch at the same time!

Solution Separate syntax and semantics.
N\

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

4 do x ¢ catch (safeDiv 5) (return 42) "

put (x + 1)
Cause Handlers model the syntax and semantics of catch at the same time!

Solution

* Generalising Free to non-algebraic (“scoped”) operations [Wu et al. 2014];

e Finding nice ways to handle them (contribution of this paper).

N\ J

Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

data Free f a :: * where
Var :: a = Free f a
Op :: f (Free f a) = Free f a

18

Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

FreeS f g

SOp :: 8 (FreeS f g (FreeS f g a)) = FreeS f g a

4)

f: signature of algebraic operations
g: signature of scoped operations

— _/

Syntax of Scoped Effects

Intuition Free f are trees, while FreeS f g are nested trees:

e Boundary of a tree Is the 0

scope of an scoped
0 A

operation

19

Syntax of Scoped Effects

Intuition Free f are trees, while FreeS f g are recursively nested trees:

e Boundary of a tree is the
scope of an scoped
operation

e Trees themselves can be
nested trees, I.e. scoped
operations can be nested.

catch (catch

20

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion

data FreeS f g a :: * where
Var :: a = FreeS f g a
Op :: f (FreeS f g a) = FreeS f g a
SOp :: 8 (FreeS f g¢ (FreeS f g a)) = FreeS f g a

21

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion

data FreeS f g¢ a :: * where

Var
Op

a = FreeS f g a

t: (fF + 8 o FreeS f g) (FreeS f g a) = FreeS f g a

\

fScoped operations are treated as algebraic

operations whose signature Is recursively defined
_

~

J

21

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for
signatures f and g Is a type ¢ equipped with

opB :: f c > c sopB :: g (FreeS f g c) » c

22

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for
signatures f and g Is a type ¢ equipped with

opB :: fc>c sopB :: g (FreeS f g c) > c

Goblem sopB has too much freedom on how to use FreeS f ¢ >

22

Proposal of This Paper

A functorial algebra for algebraic signature f and scoped signature g has

* and atype c::* equipped with * Afunctor h:: *=>% equipped with

opB :: f c > ¢ varE :: Vx. x 9 h x
sopB :: 8¢ (h'c) » c opE :: ¥x. f (h x) & h x
sopE :: ¥x. g (h (h x)) » h x

23

Proposal of This Paper

A functorial algebra for algebraic signature f and scoped signature g has

* and atype c:: * equipped with —"¢ A functor h :: #—=* equipped with

opB :: f c > ¢ varE :: Vx. x 9 h x
sopB :: 8¢ (h'c) » c opE :: ¥x. f (h x) & h x
sopE :: ¥x. g (h (h x)) » h x

which gives rise to a handling function:

handle :: FunctorialAlg h c
— (a &> c) & FreeS f g a = c

23

Some Examples

* Exception throwing and catching handled by <Maybe, Maybe a,

o Explicit nondeterminism with scoped search strategies like

bfs dfs

handled by <x F— ([x1, [[x1]1), [al, ..>

e Parallel composition handled by a resumption monad.

e

24

What Else in the Paper

THM There is an adjunction between functorial algebras and the category C (for
pure values)

AN

- Freep,

Fn-Alg = 1 . Endoy(C) x C T , C jT

UFn

N

whose induced monad T i1s isomorphic to FreeS f g.

25

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

Freepy, T

Fn-Alg * 1 Endos(C) x C T C
> >
UFn \L
K1y
<N) Freerqy y
K Iz-Alg L CcNI L C
| Urg
Ky |
v F'reep
CP ° 1 C

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

Fn-Alg ° + _ Endos(C) x C T C
> >
UFn \L
K1y
<) Freer,) |
KM Iz-Alg 1 > CcN , C
| Urz J
=3
h Freep
CP ° 1 C

26

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped
effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these
models have equal expressivity.

/F'r'eepn y T
Fn=Alg 1 _ Endof(C)xC " L C
> >
UFn \L
K
A) F'r'ee_rm (
KM Iz-Alg = L X c L C
| Urg
=3
v) F'reep
CF 1 C

Take-Home Messages

N
Nl EY,

~

e Non-algebraic operations need not to be handlers.

_

~

e They can be operations and handled in a structural way.

J

27

Back up slides

Scoped Scoped Operations?

We indeed can make a further generalisation:

SSOp :: g (FreeS f g (FreeS f g (FreeS f g a)))
—> FreeS f g a

corresponding to operations that look like

op ({ P }{x. Q},
{ P Hy. Q'}, ..0)

Example: explicit substitution subst(P)(x. Q), but not too many.

29

Connections to Delimited Control

Can we implement scoped operations with shift/reset?
e Sounds plausible.
Are shift/reset scoped operations?

e Interesting direction. We need to develop scoped operations on
parameterised monads, since shift and reset are not operations on

ordinary monad Cont r but on parametric monad Cont.

shift :: ((a > r) 5 Cont r r) = Cont r a
reset :: Cont rr = Cont wr

30

