Structured Handling of Scoped Effects

Birthe van den Berg
Tom Schrijvers

KULEUVEN

Structured Handling of Scoped Effects

Birthe van den Berg
Tom Schrijvers

KULEUVEN

More in the Paper

A Categorical Analysis of Our Approach

0

Algebraic Effects

A computational effect is modelled as an algebraic theory.
Example The effect of mutable \mathbf{s}-state is modelled by

- two operations \{ put : s \rightarrow (),
get : () $\rightarrow \mathrm{s}\}$

Algebraic Effects

A computational effect is modelled as an algebraic theory.
Example The effect of mutable \mathbf{s}-state is modelled by

- two operations \{ put : s \rightarrow (),

```
get : () \leadsto s }
```

- several equations (pairs of terms) characterising put and get, such as do $\{$ put $s ; x \leftarrow$ get $; k x\}=$ do $\{p u t s ; k s\}$

Terms of Operations

Terms of a theory are conceptually trees of operations.
Example A term for a mutable Int-state:

Terms of Operations

Terms of a theory are conceptually trees of operations.
Example A term for a mutable Int-state:
do put n

$$
x \leftarrow \text { get }
$$

$$
\text { if } x=0
$$

then p
else do put 0; q

Terms of Operations

Terms of a theory are conceptually trees of operations.
Example A term for a mutable Int-state:

Terms of Operations

Terms of a theory are conceptually trees of operations.
Example A term for a mutable Int-state:

Terms of Operations

Generally, terms of an operation signature sig :: * \rightarrow * and variables of type a are

```
data Free sig a :: * where
Var :: a \(\rightarrow\) Free sig a
\(0 p::\) sig (Free sig \(a) \rightarrow\) Free sig \(a\)
```


Terms of Operations

Generally, terms of an operation signature sig :: * \rightarrow * and variables of type a are

Terms of Operations

Generally, terms of an operation signature sig :: * \rightarrow * and variables of type a are

Signature Functors

Signature of operations can be packaged into a datatype.
Example The signature for the effect of Int-state and exception throw is

```
data ES :: * }->\mathrm{ * where
    Put :: Int }->\mathrm{ (() }->\textrm{x})->\textrm{ES}
    Get :: () }->\mathrm{ (Int }->\textrm{x})->\textrm{ES}
    Throw :: () }->\mathrm{ (Void }->\textrm{x})->\textrm{ES}
        parameter result
        type type
```

 Void is the type with
 no constructors

Signature Functors

Signature of operations can be packaged into a datatype.
Example The signature for the effect of Int-state and exception throw is

```
data ES :: * }->\mathrm{ * where
    Put :: Int }->\textrm{x}->\textrm{ES}
    Get :: (Int }->\textrm{x})->\textrm{ES}
    Throw :: ES x
```


Term Model of Effectful Programs

Terms are a syntactic model of effectful computations.
Example A program involving Int-state and exception throwing:

```
safeDiv :: Int }->\mathrm{ Free ES Int
safeDiv n = Op (Get (\lambda s }
    if s = 0
        then Op Throw
        else Op (Put (n / s) (Var (n / s)))))
```


The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so we equip Free sig with a monad structure:

```
return :: a }->\mathrm{ Free sig a
(>>=) :: Free sig a }->\mathrm{ (a }->\mathrm{ Free sig b) }->\mathrm{ Free sig b
```


The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so we equip Free sig with a monad structure:

```
return :: a }->\mathrm{ Free sig a
return = Var
(>>=) :: Free sig a }->\mathrm{ (a }->\mathrm{ Free sig b) }->\mathrm{ Free sig b
```


The Monad of Terms

We'd like to have sequential composition of (the term model of) computations, so we equip Free sig with a monad structure:

```
return :: a }->\mathrm{ Free sig a
return = Var
(>>=) :: Free sig a }->\mathrm{ (a }->\mathrm{ Free sig b) }->\mathrm{ Free sig b
```


$=$

Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

```
safeDiv :: Int }->\mathrm{ Free ES Int
safeDiv n = Op (Get (s ->
    if s \equiv0
        then Op Throw
        else Op (Put (n / s) (Var (n / s)))))
```


Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

```
safeDiv :: Int -> Free ES Int
safeDiv n = get >>= \lambda s }
        if s \equiv 0
        then throw
        else put (n / s) >>= \lambda _ }->\mathrm{ ( return (n / s)
    where get = Op (Get Var)
    put s = Op (Put s (Var ()))
    throw = Op Throw
```


Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

```
safeDiv :: Int }->\mathrm{ Free ES Int
safeDiv n = do s < get
    if s \equiv0
        then throw
        else do put (n / s); return (n / s)
    where get = Op (Get Var)
    put s = Op (Put s (Var ()))
    throw = Op Throw
```


Effectful Programs with Free Monads

Example safeDiv is also sequential composition of smaller programs:

```
safeDiv :: Int }->\mathrm{ Free ES Int
safeDiv n = do s < get
    if s \equiv0
    then throw
    else do put (n / s); return (n / s)
```

Free sig a is just a syntactic model of effectful programs!

Handlers of Effects

Semantic models ("handlers") <b :: *, f:: sig b \rightarrow b> interpret ("handle") programs with sig-operations:

```
handle :: (sig b }->\mathbf{b})->(\textrm{a}->\textrm{b})->(\mathrm{ Free sig a }->\textrm{b}
```

How sig-operations act on the carrier b

How to turn a return value a into the carrier b

Handlers of Effects

Semantic models ("handlers") <b :: *, f:: sig b \rightarrow b> interpret ("handle") programs with sig-operations:

```
handle : : (sig b }->\textrm{b})->(\mathbf{a}->\mathbf{b})->(\mathrm{ Free sig a }->\textrm{b}
```

How sig-operations act on the carrier b

How to turn a return value a into the carrier b

Handlers of Effects

Semantic models ("handlers") <b :: *, f:: sig b \rightarrow b> interpret ("handle") programs with sig-operations:

```
handle :: (sig b }->\textrm{b})->(\textrm{a}->\textrm{b})->(\mathrm{ Free sig a }->\mathbf{b}
```

How sig-operations act on the carrier b

How to turn a return value \mathbf{a} into the carrier \mathbf{b}

Handlers of Effects

Semantic models ("handlers") <b :: *, f:: sig b \rightarrow b> interpret ("handle") programs with sig-operations:
handle : : $($ sig $b \rightarrow b) \rightarrow(a \rightarrow b) \rightarrow($ Free sig $a \rightarrow b)$

Handlers of Effects

Example Given a program re: Free ES a, a handler catchHdl r that

- gives the 'standard' semantics to Throw, and
- leaves other operations unchanged:

```
catchHdl :: Free ES a
    -> ES (Free ES a) }->\mathrm{ Free ES a
```

catchHdl \mathbf{r} Throw = \mathbf{r}
catchHdl r op $=0 p$ op

Modularity of Handlers

Separating syntax from semantics allows different handlers of the same effect:
Example A non-standard handler of exception that ignores the recovery code \mathbf{r}

```
catchHdl' :: Free ES a
    -> ES (Free ES (Maybe a)) }->\mathrm{ Free ES (Maybe a)
catchHdl' r Throw = return Nothing
catchHdl' r op = Call op
```


Non-Algebraic Operations

Why is exception throwing an operation but catching a handler?

Non-Algebraic Operations

Why is exception throwing an operation but catching a handler?
If we model catch as an operation with Free, then

$$
\text { (catch pr) } \gg=k \quad \operatorname{catch}(p \gg=k)(r \gg=k)
$$

by the definition of $\gg=$ for Free, but this equality is undesirable:

Non-Algebraic Operations

Why is exception throwing an operation but catching a handler?
If we model catch as an operation with Free, then

```
(catch p r) >>= k = catch (p >>= k) (r >>= k)
```


The scopes for catching exceptions are different!

Non-Algebraic Operations

Although catch can be modelled as handlers, we lose the separation of syntax and semantics for catch:

Suppose we want a program that morally means

$$
\begin{gathered}
\text { d6 } x \leftarrow \operatorname{catch}(\text { safeDiv } 5)(\text { return 42) "1 } \\
\text { put }(x+1)
\end{gathered}
$$

Non-Algebraic Operations

With different handlers, we write for catchHdl

```
do x & handle (catchHdl (return 42)) return
    (safeDiv 5)
    put (x + 1)
```


Non-Algebraic Operations

With different handlers, we write for catchHdl

```
do x & handle (catchHdl (return 42)) return
    (safeDiv 5)
    put (x + 1)
```

but for catchHdl' we write

```
do xMb & handle (catchHdl' (return 42)) (return • Just)
    (safeDiv 5)
    case xMb of
    Nothing }->\mathrm{ return Nothing
    (Just x ) }->\mathrm{ do r & put (x + 1); return (Just r )
```


Non-Algebraic Operations

With different handlers, we write for catchHdl

```
do x & handle (catchHdl (return 42)) return
:: Free ES a
    (safeDiv 5)
```

 put (\(x+1\))
 but for catchHdl' we write

```
do xMb & handle (catchHdl' (return 42)) (return - Just) :: Free ES (Maybe a)
        (safeDiv 5)
    case xMb of
    Nothing -> return Nothing
    (Just x ) }->\mathrm{ do r & put (x + 1); return (Just r))
```


Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

$$
\begin{gathered}
\text { «6 do } x \leftarrow \operatorname{catch}(\text { safeDiv } 5)(\text { return 42) "1 } \\
\text { put }(x+1)
\end{gathered}
$$

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

$$
\begin{aligned}
& \text { «d do } x \leftarrow \text { catch (safeDiv 5) (return 42) "1 } \\
& \text { put }(x+1)
\end{aligned}
$$

Cause Handlers model the syntax and semantics of catch at the same time!

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

$$
\begin{aligned}
& \text { «d do } x \leftarrow \text { catch (safeDiv 5) (return 42) "1 } \\
& \text { put }(x+1)
\end{aligned}
$$

Cause Handlers model the syntax and semantics of catch at the same time!

Solution Separate syntax and semantics.

Scoped Effects

We want to write syntactic non-algebraic operations and interpret them differently.

```
| do x & catch (safeDiv 5) (return 42) "
    put (x + 1)
```

Cause Handlers model the syntax and semantics of catch at the same time!

Solution

- Generalising Free to non-algebraic ("scoped") operations [Wu et al. 2014];
- Finding nice ways to handle them (contribution of this paper).

Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

```
data Free f a :: * where
    Var :: a -> Free f a
    Op :: f (Free f a) }->\mathrm{ Free f a
```


Syntax of Scoped Effects

Extending Free to accommodate scoped operations:

```
data FreeS f g a :: * where
    Var :: a -> FreeS f g a
    Op :: f (FreeS f g a) -> FreeS f g a
    SOp :: g (FreeS f g (FreeS f g a)) }->\mathrm{ FreeS f g a
```

f: signature of algebraic operations
g : signature of scoped operations

Syntax of Scoped Effects

Intuition Free \mathbf{f} are trees, while FreeS \mathbf{f} g are nested trees:

- Boundary of a tree is the scope of an scoped operation

Syntax of Scoped Effects

Intuition Free f are trees, while Frees f g are recursively nested trees:

- Boundary of a tree is the scope of an scoped operation
- Trees themselves can be nested trees, i.e. scoped operations can be nested.

> catch $($ catch $p \| \gg=\mathbb{k}) h^{\prime}$
> $\gg \mathbb{k}^{\prime}$

Handlers of Scoped Effects

What are the handlers of scoped operations?
Proposal 1 Treating them as algebraic effects with recursion

```
data FreeS f g a :: * where
    Var :: a }->\mathrm{ FreeS f g a
    Op :: f (FreeS f g a) }->\mathrm{ FreeS f g a
    SOp :: g (FreeS f g (FreeS f g a)) }->\mathrm{ FreeS f g a
```


Handlers of Scoped Effects

What are the handlers of scoped operations?
Proposal 1 Treating them as algebraic effects with recursion

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for signatures f and g is a type c equipped with

$$
\text { opB }:: f c \rightarrow c \quad \text { sopB }:: g(\text { FreeS } f g c) \rightarrow c
$$

Handlers of Scoped Effects

What are the handlers of scoped operations?

Proposal 1 Treating them as algebraic effects with recursion, thus a handler for signatures f and g is a type cequipped with

Proposal of This Paper

A functorial algebra for algebraic signature fand scoped signature \boldsymbol{g} has

- and a type c::* equipped with - A functor $h:: * \rightarrow *$ equipped with

$$
\begin{aligned}
& \text { opB }:: f(c \rightarrow c \\
& \text { sopB }:: g(h c) \rightarrow c
\end{aligned}
$$

Proposal of This Paper

A functorial algebra for algebraic signature f and scoped signature g has

- and a type c::* equipped with A functor $\mathrm{h}:: * \rightarrow *$ equipped with

$$
\begin{array}{lll}
\text { opB }:: f(\rightarrow c & \text { varE }:: \forall x \cdot x \rightarrow h x \\
\text { sopB }:: g(h c) \rightarrow c & \text { opE }:: \forall x \cdot f(h x) \rightarrow h x \\
& \text { sopE }:: \forall x \cdot g(h(h x)) \rightarrow h x
\end{array}
$$

which gives rise to a handling function:

```
handle :: FunctorialAlg h c
    ->(a->c) }->\mathrm{ FreeS f g a }->\mathrm{ c
```


Some Examples

- Exception throwing and catching handled by <Maybe, Maybe a, ...>
- Explicit nondeterminism with scoped search strategies like

```
    bfs (or (dfs (or ...))
    (or x y))
    handled by <x \longmapsto ([x], [[x]]), [a], ...>
```

- Parallel composition handled by a resumption monad.

What Else in the Paper

THM There is an adjunction between functorial algebras and the category \mathbb{C} (for pure values)

$$
F n-A l g \underset{U_{F n}}{\stackrel{\text { Free }_{F n}}{\stackrel{\perp}{~}}} \text { Endo }_{f}(\mathbb{C}) \times \mathbb{C} \underset{\downarrow}{\stackrel{\uparrow}{\longleftarrow}} \mathbb{C} \rightsquigarrow T
$$

whose induced monad T is isomorphic to FreeS \mathbf{f}.

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these models have equal expressivity.

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these models have equal expressivity.

What Else in the Paper

Functorial algebras are compared with two other adjunctions for handling scoped effects: indexed algebras and Eilenberg-Moore algebras.

THM There are comparison functors between these adjunctions. Thus all these models have equal expressivity.

Take－Home Messages

－Non－algebraic operations need not to be handlers．
－They can be operations and handled in a structural way．

Back up slides

Scoped Scoped Operations?

We indeed can make a further generalisation:

```
SSOp :: g (FreeS f g (FreeS f g (FreeS f g a)))
    -> FreeS f g a
```

corresponding to operations that look like

$$
\begin{aligned}
& \text { op }\left(\begin{array}{ll}
\{ & P\{x, Q\}, \\
& \left\{P^{\prime}\right\}\left\{y, Q^{\prime}\right\}, \ldots .
\end{array}\right)
\end{aligned}
$$

Example: explicit substitution subst (P) (x 。 Q), but not too many.

Connections to Delimited Control

Can we implement scoped operations with shift/reset?

- Sounds plausible.

Are shift/reset scoped operations?

- Interesting direction. We need to develop scoped operations on parameterised monads, since shift and reset are not operations on ordinary monad Cont r but on parametric monad Cont.

```
shift :: ((a -> r) }->\mathrm{ Cont r r) }->\mathrm{ Cont r a
reset :: Cont r r }->\mathrm{ Cont w r
```

