
Handlers of Higher-Order Effectful Operations

ZHIXUAN YANG, Imperial College London, United Kingdom

NICOLAS WU, Imperial College London, United Kingdom

This paper studies the design of programming languages with handlers of higher-order effectful operations

– effectful operations that may take in computations as arguments or return computations as output. We

present and analyse a core calculus with higher-kinded impredicative polymorphism, handlers of higher-order

effectful operations, and possibly general recursion. The distinctive design choice of this calculus is that

handlers are carried by lawless raw monads, while the computation judgements still satisfy the monadic laws

judgementally. We present the calculus with a logical framework and give denotational models of the calculus

using realizability semantics. We prove closed-term canonicity and parametricity (for the recursion-free

fragment of the language) using synthetic Tait computability and a novel form of the ⊤⊤-lifting technique.

1 Introduction
1.1 What Are Higher-Order Effects and Handlers?
1.1.1 Motivating Higher-Order Effects. One view of Plotkin and Pretnar [2009, 2013]’s effect handlers

is that they are a language feature that empowers the programmer to freely extend the programming

language with new syntax, and to interpret the syntax compositionally where needed using effect

handlers. The syntax that is possible to be added is restricted to be in the form of a generic operation,

which takes in a parameter of some type 𝑃 and returns a result of some type 𝐴1
. In a call-by-value

calculus parameterised by a set Σ of operations, the typing rule for invoking an operation is simply

𝑜 : (𝑃,𝐴) ∈ Σ Γ ⊢Σ 𝑣 : 𝑃

Γ ⊢Σ 𝑜𝑣 : 𝐴

In the original calculus of Plotkin and Pretnar, the parameter type 𝑃 and the return type 𝐴 must

be both ground types, such as integers or Booleans, which do not involve computations directly

or indirectly. The reason for this restriction is that in the denotational model, the semantics of

computations depends on the signatures of the operations, so if the signatures of the operations also

involve computations, they would form a mutual recursion and greatly complicate the semantics.

Nonetheless, it is common for programming languages to have effectful operations that take in

computations as arguments or return computations as results. Typical examples include exception

catching try {p } catch {h}, which has as arguments the exception-raising program 𝑝 and the

exception-handling program ℎ; parallel composition par {p } {q }, which takes in programs 𝑝 and

𝑞 to be executed in parallel; scoped resource acquisition with r {p }, which opens/closes a resource

𝑟 , e.g. a file, before/after entering the scope of a program 𝑝 . Such ‘higher-order operations’ may

be implemented as effect handlers, and indeed exception handling was a primary motivation for

Plotkin and Pretnar’s proposal of effect handlers.

However, as analysed by Wu et al. [2014], implementing higher-order operations as handlers

causes the loss of compositionality that is enjoyed by ordinary operations. For example, if the

programmer decides to write a program 𝑞 using exception throwing and catching, and if exception

catching try {p } catch {h} is implemented as effect handling handle p with { throw ↦→ h} in
the program 𝑞, then the programmer cannot give alternative semantics to exception catching in

1
It is also common to formulate operations in the form of an algebraic operation 𝑜𝑣 (𝑎. 𝑡) where the return value is bound

as a variable in a ‘continuation’ 𝑡 . Generic operations and algebraic operations are equivalent [Plotkin and Power 2003].

Authors’ Contact Information: Zhixuan Yang, Department of Computing, Imperial College London, United Kingdom,

s.yang20@imperial.ac.uk; Nicolas Wu, Department of Computing, Imperial College London, United Kingdom, n.wu@

imperial.ac.uk.

Zhixuan Yang and Nicolas Wu

𝑞 (e.g. after 𝑝 throws an exception and ℎ is executed, 𝑝 gets re-tried again), because there is no

mechanism for the programmer to reinterpret the effect handling construct handle p with h.

To give better treatment of higher-order operations in the framework of algebraic effects and

handlers, a number of authors have studied higher-order algebraic effects and their handlers

[Bach Poulsen and van der Rest 2023; Frumin et al. 2024; Piróg et al. 2018; van den Berg and

Schrijvers 2024; van den Berg et al. 2021; Wu et al. 2014; Yang et al. 2022; Yang and Wu 2023].

Note, however, the precise technical meanings of ‘higher-order (algebraic) effects’ vary in the cited

papers, although they share the connotation of effectful operations that may take in computations as

arguments and/or return computations as results.

1.1.2 TheQuick-and-Dirty Approach. To beginwith, there is nothing stopping the language designer
simply removing the restriction on the parameter types 𝑃 and return types 𝐴 to be ground types,

as far as only the type system and operational semantics are concerned. Indeed, most follow-up

work on effect handlers does not have this restriction. When denotational semantics is concerned,

this relaxation necessitates solving mixed-variant recursive equations between the semantics of

computation types and operation signatures, which can be done using techniques from domain

theory, as demonstrated by Bauer and Pretnar [2014] and Kiselyov et al. [2021] using classical

domain theory, and more recently by Frumin et al. [2024] using synthetic guarded domain theory.

Simply removing the ground-type restriction in the type system is a ‘quick-and-dirty’ approach

to higher-order algebraic effects, which does not reveal the inherent structure in higher-order

operations. For example, suppose that try {p } catch {h} is implemented as an operation catch with

two computation parameters in this way, and throw is implemented as a nullary operation with no

parameters as usual, a (deep) handler {catch p h k ↦→ · · · ; throw ↦→ · · · } for them would accept

unhandled computations p and h as arguments that may invoke catch and throw, in contrast to

the continuation 𝑘 for which catch and throw are already handled. This gives the programmer full

flexibility on how to deal with the computation parameters p and h but undermines handlers as a

structured programming construct that can be reasoned about effectively. After all, what makes (deep)

handlers stand out among powerful control operators is their simple mental model to programmers

– a native form of catamorphism/fold that replaces operation calls in the program being handled

with the corresponding handler clauses.

1.1.3 The Structured Approach. To expose the inherent structure in higher-order operations more

sharply, several authors have proposed a number of refined definitions of (subsets of) higher-order

operations: scoped operations [Bosman et al. 2024; Matache et al. 2025; Piróg et al. 2018; Yang et al.

2022], latent operations [van den Berg et al. 2021], hefty operations [Bach Poulsen and van der Rest

2023], and the general frameworks by Wu et al. [2014], Yang and Wu [2023] and van den Berg and

Schrijvers [2024]. Regardless of the technical differences in their proposals, the common idea is that

the signature of a higher-order operation can take a different form from ordinary operations, and

the carrier of a handler (usually called an algebra in this line of work) for a higher-order operation

does not have to be a type anymore, and usually is a type constructor.

Taking scoped operations for example, in the formulation of Bosman et al. [2024], the signature

of a scoped operation 𝑠 : (𝑃, 𝑆) consists of two types: 𝑃 still means that the operation 𝑠 takes

in a parameter of type 𝑃 , but the type 𝑆 no longer means that the operation returns a value of

type 𝑆 . Instead, it means that the operation 𝑠 delimits 𝑆-many scopes; for example, 𝑆 would be the

two-element type for try { · · · } catch { · · · } because it delimits two scopes. The typing rule for

invoking scoped operations in a call-by-value programming language is

𝑠 : (𝑃, 𝑆) ∈ Σ Γ ⊢Σ 𝑣 : 𝑃 Γ, 𝑥 : 𝑆 ⊢Σ 𝑐 : 𝐴

Γ ⊢Σ 𝑠𝑣 {𝑥 . 𝑐} : 𝐴
(1)

Handlers of Higher-Order Effectful Operations

where the term 𝑐 represents S-many computations that the operation 𝑠 takes in as arguments; these

computations can return an arbitrary type𝐴, which will also be the type of the whole operation call.

This rule here is a simplified version of the calculus by Bosman et al. [2024], but it is the essence.

Because a call to a scoped operation 𝑠 : (𝑃, 𝑆) is polymorphic in the return type 𝐴, a handler for

the scoped operation 𝑠 will also need to be carried by a type constructor𝑀 rather than just a type.

A possible typing rule for handling a scoped operation 𝑠 is

Γ ⊢Σ 𝑝 : 𝐴 Γ, 𝑎 : 𝛼 ⊢Σ 𝑟 : 𝑀 𝛼 Γ, 𝑣 : 𝑃, 𝑐 : 𝑆 → 𝑀 𝛼 ⊢Σ ℎ : 𝑀 𝛼

Γ ⊢Σ handle p with {val a ↦→ r ; s v c ↦→ h} : 𝑀 𝐴
(2)

in which 𝛼 is a free type variable. The practical difference between this approach and the quick-and-

dirty approach mentioned above is that (1) the types 𝑃 and 𝑆 in the signature of a scoped operation

can still be ground types, so the denotational semantics involves no mixed-variance recursive

equations, and reasoning principles such as fusion laws are still available [Yang et al. 2022], and

(2) a handler ℎ of 𝑠 always works with recursively handled computations 𝑐 : 𝑆 → 𝑀 𝛼 , so the

programmer’s mental model of handling scoped operations 𝑠 can still be a fold that replaces every

return value val x with the term 𝑟 and every operation call to 𝑠 with the corresponding handler

clause ℎ, including those calls nested in the scopes of other calls such as 𝑠𝑣 {𝑥 . 𝑠𝑢 {𝑦. · · · } }.

1.2 Interaction of Effect Handlers and Sequential Composition
1.2.1 A Problem with Sequential Composition. The rules above for invoking (1) and handling (2)

scoped operations are still not the end of the story. Any effectful language should have a construct

for sequential composition of computations, such as let-bindings. A question then is how handling

should interact with sequential composition. Concretely, suppose that we have a computation

Γ ⊢Σ 𝑠𝑣{𝑥 . 𝑐} : 𝐴 Γ, 𝑎 : 𝐴 ⊢Σ 𝑑 : 𝐵

Γ ⊢Σ let 𝑎 = 𝑠𝑣{𝑥 . 𝑐} in 𝑑 : 𝐵

that is the sequential composition of a scoped operation 𝑠𝑣{𝑥 . 𝑐} followed by another computation

𝑑 . What should be the result of applying the handling construct (2) to this computation? Applying

the handler recursively to 𝑠𝑣{𝑥 . 𝑐} and 𝑑 would give us two terms of type

Γ ⊢Σ · · · : 𝑀 𝐴 and Γ, 𝑎 : 𝐴 ⊢Σ · · · : 𝑀 𝐵 (3)

and our goal is to have a term of type𝑀 𝐵. Now we have two ways to proceed:

(i) asking𝑀 to additionally come with a monadic bind >>= : 𝑀 𝛼 → (𝛼 → 𝑀 𝛽) → 𝑀 𝛽 , using

which we can combine the recursively handled results (3) into𝑀 𝐵.

(ii) modifying the handler rule (2) so that the handler of 𝑠 takes in a continuation parameter

· · · Γ, 𝑣 : 𝑃, 𝑐 : 𝑆 → 𝑀 𝛼, 𝑘 : 𝛼 → 𝑀 𝛽 ⊢Σ ℎ′ : 𝑀 𝛽

Γ ⊢Σ handle p with {val a ↦→ r ; s v c 𝑘 ↦→ h
′ } : 𝑀 𝐴

and the recursively handled result Γ, 𝑎 : 𝐴 ⊢Σ · · · : 𝑀 𝐵 of 𝑑 is supplied as the continuation

parameter 𝑘 to the handler when handling the operation 𝑠𝑣{𝑥 . 𝑐}.
To programming language designers familiar with effect handlers, approach (ii) may appear as

the more natural one, since there is already a similar continuation parameter for handlers of

generic/algebraic operations in Plotkin and Pretnar’s design. Indeed, Bosman et al. [2024]’s calculus

of scoped effects and handlers follows this approach, but let us not commit to this choice too

quickly; instead, let us first analyse the connections and differences between these two approaches.

From an algebraic point of view, the difference in these two approaches lies in their views of the

universal property of effectful computations. Crudely speaking, approach (i) views computations

Zhixuan Yang and Nicolas Wu

with operation 𝑠 as the initial object among monads 𝑀 equipped with operations of type ∀𝛼. P →
(S → M 𝛼) → M 𝛼 , whereas approach (ii) views computations with 𝑠 as the initial object among

plain type constructor 𝑀 equipped with operations of type ∀𝛼 𝛽. P → (S → M 𝛼) → (𝛼 →
M 𝛽) → M 𝛽 and ∀𝛼. 𝛼 → M 𝛼 .

1.2.2 An Analogy to Lists. The contrast between these two views is analogous to the following more

familiar situation. The type of lists [A] of elements of type 𝐴 has the universal property that [A]
together with the empty list nil : 1 → [𝐴] and cons : A → [A] → [A] is initial among all types 𝐵

equipped with functions 1 → 𝐵 and 𝐴 → 𝐵 → 𝐵. But the type [A] has another universal property:
first of all, it can be equipped with a monoid structure of nil : 1 → [A] and list concatenation

++ : [A] → [A] → [A], and this monoid with the function (𝜆𝑥. cons x nil) : 𝐴 → [𝐴] has
the property of being the free monoid over the type 𝐴 (which means that for every monoid 𝑀

with a function 𝑓 : 𝐴 → 𝑀 , there is a unique monoid homomorphism ℎ : [𝐴] → 𝑀 such that

h (cons x nil) = 𝑓 𝑥 for all 𝑥 ∈ 𝐴). Therefore the same type [𝐴] can be equipped with different

algebraic structures, giving rise to different universal properties. It is pointless to ask which of

the universal properties is ‘the correct one’ for the type [A] per se. The right question should be –

which class of algebraic structures are we interested in when using [A], monoids𝑀 with functions

𝐴 → 𝑀 or types 𝐵 with functions 1 → 𝐵 and 𝐴 → 𝐵 → 𝐵?

Similarly, the right question to ask about approaches (i) and (ii) above should be – when

programming with scoped effects, are we interested in (i) monads 𝑀 with operations of type

∀𝛼. P → (S → M 𝛼) → M 𝛼 or (ii) type constructors 𝑀 equipped with operations of type

∀𝛼 𝛽. P → (S → M 𝛼) → (𝛼 → M 𝛽) → M 𝛽 and ∀𝛼. 𝛼 → M 𝛼?

1.2.3 Sequential Composition Are Operations. To this question, we advocate for the answer (i).

Our rationale is that sequential composition ought to be an operation for a notion of computation,

rather than only a meta-level operation that the initial object ‘accidentally’ support. This view is

supported by the fact that in practice it is not uncommon to consider equations involving both

effectful operations and sequential composition. For example, in the study of process algebra

[Bergstra and Klop 1985], the distributivity equations

(𝑝 + 𝑞); 𝑟 = (𝑝; 𝑟) + (𝑞; 𝑟) 𝑝; (𝑞 + 𝑟) = (𝑝;𝑞) + (𝑝; 𝑟)

between nondeterministic choice and sequential composition are usually considered (and most

models of concurrency satisfy the former but not the latter). If sequential composition is not an

operation in the algebraic theory of the effect of concurrency, these two equations would not be

expressible, and it would be meaningless to ask whether a handler of concurrency satisfies these

two equations if we followed approach (ii).

The point that we are raising here holds regardless of whether the programming language

formally checks equations on effectful operations – even in simply typed programming languages,

programmers usually have equations informally in their mind and reason about effectful programs

with these equations [Gibbons and Hinze 2011]. Also, our point is not specifically about higher-

order operations either: even for algebraic/generic operations like nondeterministic choice 𝑝 + 𝑞,
we may already want to consider equations about the interaction of the effectful operations with

sequential composition. And this is impossible in standard algebraic effects [Plotkin and Power

2002] because sequential composition is not an operation in the theory of the effect, but only an

operation that the free algebras determined by the algebraic theory ‘happens to have’.

1.2.4 A Problem with Laws. As the final twist of our discussion of higher-order effect handlers in

this section, we discuss how we should deal with the monadic laws. As we advocated above, our

handlers of higher-order algebraic effects will be carried by monads, which are type constructors

Handlers of Higher-Order Effectful Operations

M : Type → Type with operations for returning ret : ∀𝛼. 𝛼 → M 𝛼 and sequential composition

>>= : ∀𝛼 𝛽. M 𝛼 → (𝛼 → M 𝛽) → M 𝛽 satisfying the monadic laws

ret a >>= k = k a m >>= ret = m (m >>= k) >>= k
′ = m >>= (𝜆x . k x >>= k

′) (4)

asserting that ret is the left and right identity of >>= and >>= is associative. If our effectful program-

ming language has dependent types – in particular, identity types – we can demand every handler

to come with proofs of the equations (4), and the type checker can check the proofs mechanically.

But if our languages does not have dependent types, it will be impossible for us to mechanically

check if these laws are satisfied. In this case our programming language can only ask handlers to

be carried by ‘raw monads’ ⟨𝑀, ret, >>=⟩ that do not necessarily satisfy these laws. Therefore, in

the absence of dependent types, we as the language designer will not enforce the programmer to

supply lawful monads, but there is a closely related but different question:

Question 1.1. When handlers of computations are carried by raw monads not necessarily sat-

isfying monadic laws (4), can we still make let-bindings and val-returning of the computation

judgements satisfy the following monadic laws judgementally?

(let x = val a in k) ≡ k a (let x = m in val x) ≡ m (5)

(let y = (let x = m in k x) in k
′

y) ≡ (let x = m in (let y = k x in k
′

y)) (6)

It might seem that the answer to the this question would be unavoidably negative, since the

computations of our language are handled into raw monads that do not necessarily satisfy the

monadic laws, and syntax shall only satisfy the equations that are satisfied in all semantic model.

This would be rather unfortunate because these laws are arguably the most fundamental algebraic

properties for a notion of computation, and they are needed by programmers to reason about

effectful programs and compilers to do optimisation, for example, to rewrite a computation that

invokes no effectful operations to the form val v of returning a pure value v.

1.3 Contributions of This Paper
In this paper we show that the answer to Question 1.1 is actually positive, provided that we are

willing to not have the commutativity of handlers and let-bindings:

handle (let x = m in k x) with h ≡ (handle m with h) >>= 𝜆x . handle k x with h

We present a core calculus for higher-order effects and handlers that we call System Fω
ha

(Section 2).

This calculus extends Girard’s [1986] System Fω with higher-order effects in the fine-grain call-by-

value style. Specifically, the signature of a higher-order algebraic effect is given as a higher-order

functor 𝐻 : (Type → Type) → (Type → Type) in Fω
ha

following Yang and Wu [2023] and van den

Berg and Schrijvers [2024]’s categorical frameworks. Every signature 𝐻 has a corresponding

judgement of computations that supports let-bindings, val-returning, invoking 𝐻 -operations,

and being handled with raw monads equipped with 𝐻 -operations.

As promised, the computation judgements of Fω
ha

satisfy the equations (5) and (6), and we show

that the design of Fω
ha

‘works’ by establishing the following meta-theoretic properties about Fω
ha
:

(1) In Section 3, a denotational model of Fω
ha

is given based on realizability, establishing the

consistency of the equational theory of Fω
ha

(Theorem 3.2) and provides a way to translate

Fω
ha

terms to untyped computational models such as 𝜆-calculus or Turing machines (Theo-

rem 3.3). The key idea in the construction of this model is to use continuation-passing-style

(CPS) transformation to reconcile the mismatch between lawful computation judgements

and lawless handlers in Question 1.1. An extension of Fω
ha

with general recursion is also

considered and the realizability model of Fω
ha

is extended to support recursion (Theorem 3.5)

using techniques from synthetic domain theory [Longley and Simpson 1997].

Zhixuan Yang and Nicolas Wu

(2) In Section 4, a logical relation model of Fω
ha

is constructed using the method of synthetic Tait

computability [Sterling 2021] and a novel version ⊤⊤-lifting [Lindley and Stark 2005]. From

this model we obtain canonicity (Theorem 4.1) and parametricity (Remark 4.13) of closed

Fω
ha
-terms, which also imply the adequacy of the realizability model of Fω

ha
(Corollary 4.12).

Moreover, a methodological character of this paper is its heavy use of modern type-theoretic

and category-theoretic tools to study the language Fω
ha
. Although this paper is too short to serve as

a fully satisfactory introduction to these tools, we hope that there is still some pedagogical value in

this paper by showing how these tools are used coherently to present and analyse a polymorphic

programming language that is not too simplistic or complicated. We hope this can contribute to

making these powerful abstract tools more accessible to working programming language theorists.

2 A Core Calculus for Higher-Order Effect Handlers
In this section we present the type theory that we call System Fω

ha
, an extension of System Fω with

handlers of higher-order effectful operations. Instead of in the more traditional way of defining the

calculus by a grammar and typing rules, in this paper we use a logical framework to present Fω
ha
.

Logical frameworks are type theories designed for defining other logics, and they usually provide

useful general results for theories definable in the framework. In particular, the logical framework

that we will use frees us from manipulating variables and substitutions manually and provides a

notion of semantic models of Fω
ha

automatically.

The structure of this section is as follows. In Section 2.1, we briefly introduce the logical framework

that we will use. In Section 2.2, we define Girard’s [1986] System Fω in the logical framework,

which is going to be the basis of our language Fω
ha
. In Section 2.3, we add computational judgements

to Fω
ha
, giving us Fω

ha
. Finally, in Section 2.4, we consider an extension of Fω

ha
with general recursion.

2.1 A Logical Framework
The logical framework (LF) that we will use is the one informally introduced by Sterling [2021] in

his PhD thesis, which is called LccLF by Yang [2025] in his more formal treatment of this framework.

This LF has been used by a number of authors in the study of various type theories [Grodin et al.

2024; Niu et al. 2022; Sterling and Angiuli 2021; Sterling and Harper 2021, 2022]. We aim to be

self-contained about the LF in this paper, but our introduction is unavoidably rather terse and we

refer the reader to Sterling [2021, Chapter 1] and Yang [2025] if needed.

Language 2.1. The logical framework LccLF is a dependent type theory with

• a universe J that is closed under the type formers of extensional Martin-Löf type theory

(the unit type 1, Σ-types, Π-types, extensional equality types 𝑥 = 𝑦);

• outside the universe J, the LF has the unit type 1, Σ-types, and restricted Π-types Π 𝐴 𝐵

where the domain type 𝐴 must be in J (so Π J (𝜆_. J) will not be a valid type).

Notation 2.2. We adopt some notation similar to Agda [Agda Developers 2025] when working

with dependent type theories. Dependent function types are written as (𝑎 : 𝐴) → 𝐵 where 𝑎 may

occur in 𝐵, or 𝐴 → 𝐵 when 𝐵 does not depend on 𝑎 : 𝐴. Iterated Σ-types are written as records of

fields with labels. Implicit function types {𝑎 : 𝐴} → 𝐵 are used when the arguments can inferred.

Things whose names are irrelevant are denoted by the wildcard ‘_’.

The way to define an object logic/type theory in the LF is to write a signature, which is a

sequence of variable declarations in the LF, where the type of each variable may depend on the

preceding declarations (so formally, a signature is exactly a context in the LF). The idea is the

judgements-as-types principle as follows [Harper et al. 1993; Martin-Löf 1987]:

Handlers of Higher-Order Effectful Operations

(1) Judgement forms of the object theory are declared as LF-functions 𝐴 → J into the universe

J. For example, the judgement form of a proposition being true, traditionally written as

⊢ 𝑃 true, is declared as true : prop → J, assuming some prop : J is already declared.

(2) Inference rules for object-theory judgements are declared as LF-functions; for example, the

declaration and-intro : (P,Q : prop) → true P → true Q → true (P ∧ Q) says that the
judgement of P ∧ Q being true can be derived from both 𝑃 and 𝑄 being true.

(3) Judgemental equalities of the object-theory can be treated in two ways: (i) they can be

declared as judgements in J just like other judgements, or (ii) they can be declared using the

(extensional) equality types of the LF. Logical frameworks following the former approach

are sometimes called syntactic logical frameworks, and those following the latter are called

semantic logical frameworks; see Harper [2016] and Sterling [2021, §0.1.2.2] for a comparison

between them. We will follow the semantic approach, which has the advantage that there

is no need to have the tedious congruence rules for the judgemental equalities w.r.t. all

constructs of the object theory, since equality types in the LF are always respected.

These points will be demonstrated concretely in the example of defining Girard’s [1972; 1986]

System Fω in the LF below. Compared to the traditional ‘gamma-and-turnstile’ presentation, there

are three advantages of using LccLF to present our language Fω
ha
:

(1) It provides a compact type-theoretic notation to present the rules of Fω
ha
, and by using

higher-order abstract syntax (HOAS), standard components of Fω
ha

such as contexts and

substitutions can be dealt with automatically.

(2) It provides a notion of models of Fω
ha

in any locally cartesian closed category (LCCC) 𝒞. By

using the internal language of 𝒞, models of Fω
ha

can be defined in a type-theoretic manner.

(3) It provides a classifying category for Fω
ha
, which is an LCCC Jdg Fω

ha
such that models of

Fω
ha

in any LCCC 𝒞 are equivalent to LCCC-functors Jdg Fω
ha → 𝒞. Applying category-

theoretic tools to the category Jdg Fω
ha
, such as Yoneda embedding and Artin gluing, we can

do logical-relation proofs for Fω
ha

in a convenient type-theoretic language.

2.2 The Signature of System Fω

In the following, we present the signature of Fω
ha

in two steps: we first define Girard’s [1972; 1986]

System Fω in the LF (Language 2.1), and in the next section we bring in computations.

2.2.1 Kinds. System Fω has the following declarations for kinds:

ki : J el : ki → J ty : ki _⇒𝑘_ : ki → ki → ki (Fω-1)

where we have a judgement ki for kinds, a family of judgements el for elements of kinds, a base kind

ty : ki whose elements will be types, and function kinds k1 ⇒𝑘 k2. These declarations correspond to

the following things in the traditional presentation: the declaration ki :J corresponds to a judgement

‘Γ ⊢ · · · kind’ of something being a kind; The LF-type el k : J for some kind k : ki corresponds to

the judgement ‘Γ ⊢ · · · : 𝑘’ of something being an element of a kind; the two declarations ty and

⇒𝑘 correspond to two inference rules for constructing kinds:

Γ ⊢ ty kind

Γ ⊢ 𝑘1 kind Γ ⊢ 𝑘2 kind

Γ ⊢ k1 ⇒𝑘 k2 kind

Elements of the base kind ty : ki include a unit type unit, a two-element type bool, function types

A ⇒𝑡 B, and impredicative polymorphic function types ∀̄ k A where 𝑘 can be of any kind:

unit : el ty bool : el ty _⇒𝑡_ : el ty → el ty → el ty

∀̄ : (k : ki) → (el k → el ty) → el ty (Fω-2)

Zhixuan Yang and Nicolas Wu

We use the ∀ symbol with a bar for the polymorphic function type so that we will not confuse it

with meta-level universal quantification later.

Elements of function kinds are specified using higher-order abstract syntax (HOAS) via an

isomorphism to functions in the LF:

⇒k-iso : {k1, k2 : ki } → el (k1 ⇒𝑘 k2) � (el k1 → el k2) (Fω-3)

where the type � of isomorphisms between two LF-types 𝐴 and 𝐵 is the following record type:

record A � B where

fwd : A → B

bwd : B → A

_ : (a : A) → bwd (fwd a) = a

_ : (b : B) → fwd (bwd b) = b

Let us unpack the declaration (Fω-3) a bit and see how it corresponds to the more traditional

presentation. Given two kinds 𝑘1, 𝑘2 : ki, the record el (k1 ⇒𝑘 k2) � (el k1 → el k2) consists of
four fields: the forward-direction function el (k1 ⇒𝑘 k2) → (el k1 → el k2) says that whenever we
have an element of the kind k1 ⇒𝑘 k2 and an element of the kind k1, we can construct an element

of the kind k2. This corresponds to the following rule in the traditional presentation:

Γ ⊢ 𝐹 : 𝑘1 ⇒𝑘 𝑘2 Γ ⊢ 𝐴 : 𝑘1

Γ ⊢ 𝐹 𝐴 : 𝑘2

The backward direction (el k1 → el k2) → el (k1 ⇒𝑘 k2) takes in an LF-function as its argument.

In HOAS, LF-functions correspond to adding new variables to the context of the object theory, and

applications of LF-functions correspond to substitutions in the object theory, so the traditional

counterpart of the backward direction is

Γ, 𝛼 : 𝑘1 ⊢ 𝐹 : 𝑘2

Γ ⊢ 𝜆𝛼. 𝐹 : 𝑘1 ⇒𝑘 𝑘2

The other two fields of the isomorphism el (k1 ⇒𝑘 k2) � (el k1 → el k2) assert that these two
directions are mutual inverses, and this is exactly 𝜂- and 𝛽-rules of k1 ⇒𝑘 k2:

Γ ⊢ 𝐹 : 𝑘1 ⇒𝑘 𝑘2

Γ ⊢ (𝜆𝐴. 𝐹 𝐴) ≡ 𝐹 : 𝑘1 ⇒𝑘 𝑘2

Γ, 𝛼 : 𝑘1 ⊢ 𝐹 : 𝑘2 Γ ⊢ 𝛼 : 𝑘1

Γ ⊢ (𝜆𝛼. 𝐹) 𝐴 ≡ 𝐹 [𝐴/𝛼] : 𝑘2

In summary, we have used a single LF-declaration (Fω-3) to express what would be four rules in the

traditional presentation of functions. We will use this technique a lot in our specification of Fω
ha
.

2.2.2 Types. For terms of types, there is a judgement tm : el ty → J. Terms of (polymorphic)

function types and the unit type are still specified by HOAS:

tm : el ty → J unit-iso : tm unit � 1

⇒t-iso : {A, B : el ty } → tm (A ⇒𝑡 B) � (tm A → tm B) (Fω-4)

¯∀-iso : {k : _} {A : _} → tm (∀̄ k A) � ((𝛼 : el k) → tm (A 𝛼))
For the two-element type, we only include two terms tt and ff :

tt : tm bool ff : tm bool (Fω-5)

This completes the signature of System Fω. We have set it up in a minimal way for simplicity. More

useful types/kinds, such as a Boolean type with the correct universal property, products and lists,

can be added easily and can be found in Appendix A.

Handlers of Higher-Order Effectful Operations

tyco : ki -- type constructors

tyco = (ty ⇒𝑘 ty)
fmap-ty : (F : el tyco) → el ty

fmap-ty F = ∀̄ ty (𝜆𝛼. ∀̄ ty (𝜆𝛽. (𝛼 ⇒𝑡 𝛽) ⇒𝑡 (F 𝛼 ⇒𝑡 F 𝛽)))
record RawFunctor : J where

0 : el tyco

fmap : tm (fmap-ty 0)
record RawMonad : J where

0 : el tyco

ret : tm (∀̄ ty (𝜆𝛼. 𝛼 ⇒𝑡 0 𝛼))
bind : tm (∀̄ ty (𝜆𝛼. ∀̄ ty (𝜆𝛽. 0 𝛼 ⇒𝑡 (𝛼 ⇒𝑡 0 𝛽) ⇒𝑡 0 𝛽)))

trans : (F ,G : el tyco) → el ty

trans F G = ∀̄ ty (𝜆𝛼. F 𝛼 ⇒𝑡 G 𝛼)
record RawHFunctor : J where

0 : el (tyco ⇒𝑘 tyco)
hfmap : (F : RawFunctor) → tm (fmap-ty (0 (F .0)))
hmap : (F,G : RawFunctor) → tm (trans (F .0) (G .0))

→ tm (trans (0 (F .0)) (0 (G .0)))

Fig. 1. Derived concepts in System Fω

Example 2.3. Let us see an example of a program of Fω defined in the LF. Writing app and abs

for the forward and backward directions of the isomorphism ⇒t-iso respectively, and App and Abs

for the two directions of ¯∀-iso, the Church numeral of 2 is

two : tm (∀̄ (𝜆𝛼. (𝛼 ⇒𝑡 𝛼) ⇒𝑡 𝛼 ⇒𝑡 𝛼))
two = Abs (𝜆𝛼. abs (𝜆f . abs (𝜆x . app f (app f x))))

2.2.3 Derived Concepts. Later we will see that signatures of higher-order effectful operations in
Fω
ha

are given as higher-order endofunctors (ty ⇒𝑘 ty) ⇒𝑘 (ty ⇒𝑘 ty) over Fω-functors ty ⇒𝑘 ty,

and handlers in Fω
ha

always have a monad structure. These derived concepts, such as functors and

monads, are essentially the same as the definitions in Haskell, and are collected in Figure 1, which

will be ingredients for our computation judgements in the next step. Note that because Fω does not

have equality types, the equational laws for functors/monads are not included in these definitions

(just like in Haskell), so they are called raw functors/monads.

Notation 2.4. Wewill sometimes suppress the field accessor .0 of raw functors/monads in Figure 1

for readability, so given F : RawFunctor and X : el ty, we may write F X for F .0 X .

2.3 Computation Judgements
Now we are ready to add computation judgements to Fω to obtain Fω

ha
.

2.3.1 Computations. We follow the fine-grain call-by-value (FGCBV) approach [Lassen 1998; Levy

et al. 2003]. For each H : RawHFunctor and A : el ty, there is a judgement co H A for computations

of A-values with effectful operations specified by H :

co : (H : RawHFunctor) → (A : el ty) → J (Fω
ha
-1)

Zhixuan Yang and Nicolas Wu

The judgement has the following two rules for pure computations and sequential composition of

computations respectively:

val : {H ,A} → tm A → co H A

let-in : {H ,A, B} → co H A → (tm A → co H B) → co H B (Fω
ha
-2)

The interaction of val and let-in is axiomatised by the following judgemental equalities, which are

exactly the equations (5) and (6) from the introduction and are essentially the monadic laws:

val-let : {H ,A, B} → (a : tm A) → (k : tm A → co H B) → let-in (val a) k = k a

let-val : {H ,A} → (m : co H A) → let-in m val = m

let-assoc : {H ,A, B,C } → (m1 : co H A) (Fω
ha
-3)

→ (m2 : tm A → co H B) → (m3 : tm B → co H C)
→ let-in (let-in m1 m2) m3 = let-in m1 (𝜆a. let-in (m2 a) m3)

2.3.2 Thunks. We also introduce a new type former th H A for thunks of computations of𝐴-values

with effects of 𝐻 , whose terms are isomorphic to computations:

th : RawHFunctor → el ty → el ty th-iso : {H ,A} → tm (th H A) � co H A (Fω
ha
-4)

The two directions of the isomorphism th-iso will be called ⇑ and ⇓ respectively:

⇑ : tm (th H A) → co H A ⇓ : co H A → tm (th H A)
Thunks can be packed into a raw monad:

th-mnd : RawHFunctor → RawMonad

th-mnd H .0 = th H

th-mnd H .ret = 𝜆A x . ⇓ (val x)
th-mnd H .bind = 𝜆A B m k. ⇓ (let-in (⇑ m) (𝜆a. ⇑ (k a)))

Following from equations (Fω
ha
-3), th-mnd satisfies the monad laws too.

Levy et al. [2003] presented the FGCBV calculus using effectful functions:

⇒[]_ : el ty → RawHFunctor → el ty → el ty

ef -iso : {A,H , B} → tm (A⇒[H] B) � (tm A → co H B)
But since we already have pure functions in the language, it is sufficient to have the thunk type,

and define effectful functions as (A⇒[H] B) := (A ⇒𝑡 th H B).

2.3.3 Operations. Effectful operations that computations can perform are introduced by

op : {H ,A, B} → tm (H (th H) A) → (tm A → co H B) → co H B (Fω
ha
-5)

The first argument o : tm (H (th H) A) is the input to an operation call, such as some parameters

or computations that the operation call acts on. The second argument k : tm A → co H B of op is

the ‘continuation’ of the computation after this operation call, where the argument tm A of k is the

result of the operation call. The result op o k is understood as the computation that first makes an

operation call with input o, which returns an A-value, and then continues as k.

Example 2.5. The higher-order functor 𝐻exc for the effects of exception throwing and catching is

𝐻exc .0 : el ((ty ⇒𝑘 ty) ⇒𝑘 (ty ⇒𝑘 ty))
𝐻exc .0 = abs𝑘 (𝜆𝐹 . abs𝑘 (𝜆𝐴. unit + (app𝑘 𝐹 𝐴) × (app𝑘 𝐹 𝐴)))

with the evident functorial action on 𝐹 and 𝐴, where abs𝑘 and app𝑘 denote the two directions of

the isomorphism ⇒k-iso (Fω-3), and (×), (+) : el ty → el ty → el ty are the binary product and

Handlers of Higher-Order Effectful Operations

sum types that are definable using Church encodings (alternatively they can be added directly into

Fω
ha
). For the computation judgement co 𝐻exc , the operations of throwing and catching are

throw : {A} → co 𝐻exc A

throw = op (inl ∗) val

catch : {A} → co 𝐻exc A → co 𝐻exc A → co 𝐻exc A

catch p h = op (inr (⇓ p, ⇓ h)) val

The interaction of operation calls and sequential composition of computations is the following,

which is similar to the condition for algebraic operations of Plotkin and Power [2001]:

let-op : {H ,A, B,C } → (p : tm (H (th H) A))
→ (k : tm A → co H B) → (k′

: tm B → co H C)
→ let-in (op p k) k

′ = op p (𝜆a. let-in (k a) k
′)

(Fω
ha
-6)

The equation (Fω
ha
-6) implies that every operation call op o k is equal to let-in (op o val) k, we

could have alternatively defined (Fω
ha
-5) as op

′
: {H ,A, B} → tm (H (th H) A) → co H A without

the k argument, which is the formulation (1) that we used in the introduction. This does not make

a big technical difference and we choose the formulation (Fω
ha
-5) as it is closer to the rule presented

by Plotkin and Pretnar [2009, 2013] for ordinary algebraic effects.

2.3.4 Evaluation. Now we axiomatise that computations co H A can be evaluated, or handled, by

any raw monads supporting the operations from H (for which we wrote handle p with h in

Section 1). We define the following structure for monads supporting operations from H :

record MonadAlg (H : RawHFunctor) : J where

include RawMonad as M

malg : tm (trans (H 0) 0)
where by ‘include RawMonad as M’, we mean that MonadAlg has all the fields of the record

RawMonad from Figure 1 – namely, 0, ret, and bind. Moreover, for every m : MonadAlg H , there

is a projection𝑚.𝑀 : RawMonad. We then add to Fω
ha

the following declaration that evaluates a

computation with effect H with any monad that supports the effect:

eval : {H } → (m : MonadAlg H) → (A : el ty) → co H A → tm (m A) (Fω
ha
-7)

The last piece of the signature of Fω
ha

is the computation rules for eval, which are similar to the

operational semantics of handlers in conventional algebraic effects [Plotkin and Pretnar 2009, 2013]:

• When the computation is a value, it is handled by the ret of the monad,

eval-val : {H ,A} → (m : MonadAlg H) → (a : tm A)
→ eval m A (val a) = m .ret A a

(Fω
ha
-8)

• When the computation is an operation call, it is handled by the corresponding operation on

the monad, with all subterms recursively evaluated:

eval-op : {H ,A, B} → (m : MonadAlg H)
→ (p : tm (H (th H) A)) → (k : tm A → co H B)
→ let malg = m .malg A

T = fct-of -mnd (th-mnd H)
M = fct-of -mnd (m .M)

in eval m B (op p k)
= m .bind A B (malg (H .hmap T M (𝜆𝛼 c. eval m 𝛼 (⇑c)) A p))
(𝜆a. eval m B (k a))

(Fω
ha
-9)

where fct-of -mnd is the canonical functor structure of a monad:

fct-of -mnd : RawMonad → RawFunctor

Zhixuan Yang and Nicolas Wu

fct-of -mnd m .0 = m .0

fct-of -mnd m .fmap 𝛼 𝛽 f ma = m .bind 𝛼 𝛽 ma (𝜆a. m .ret _ (f a))

This completes the signature of Fω
ha
. The full signature of Fω

ha
is collected in Appendix A.

Remark 2.6. We do not include in Fω
ha

the equation asserting that eval also commutes with let-in:

eval-let : {H ,A, B} → (m : MonadAlg H) → (c : co H A) → (f : tm A → co H B)
→ eval m B (let-in c f) = m .bind A B (eval m A c) (𝜆a. eval m B (f a))

This is because we have chosen to work with raw monads that may not validate the monad laws,

whereas computations co H A are axiomatised to always satisfy these laws (Fω
ha
-3). Consequently,

we can freely re-associate let-bindings in computations but not in raw monads, so having eval-let

would result in inconsistency. Although eval-let is left out, later we will prove the canonicity of

Fω
ha

– evaluating closed elements of computations never get stuck. This is intuitively because in the

empty context, every computation is always equal to a computation without let-in because of the

equations let-val, let-assoc and let-op.

Remark 2.7. We did not include in Fω
ha

any built-in support for type-and-effect systems that track

the effect operations that a computation may perform [Bauer and Pretnar 2014; Kammar and

Plotkin 2012; Lucassen and Gifford 1988] or support for modular handlers [Yang and Wu 2021,

2023] that organise handlers in a composable way, because both of them can be derived concepts in

Fω
ha
, provided that we extend Fω

ha
with some standard type/kind connectives such as products and

lists. For example, an effect row of algebraic operations can be given as a type-level list [ty ×𝑘 ty],
where each element (P,A) of the list determines an operation receiving an argument of type 𝑃 and

returning a value of type 𝐴. Every list [ty ×𝑘 ty] then determines a RawHFunctor that can be

supplied to the computation judgement co. In this way, effect tracking is a user-level library rather

than a built-in feature of Fω
ha
, and effect polymorphism is just a special case of the (higher-kinded)

polymorphism that Fω
ha

already has. Details of how this is done can be found in Appendix A.2.

Remark 2.8. We will not discuss type checking for Fω
ha

in this paper, as Fω
ha

adds little type-level

complexity to Fω, and we expect the existing algorithms for type-checking polymorphic calculi

[Dunfield and Krishnaswami 2013; Jones et al. 2007; Leijen 2008] can be extended to work with Fω
ha
.

2.4 An Extension of General Recursion
The eval construct of Fω

ha
is a form of structural recursion, and it is also possible to extend Fω

ha
with

general recursion. We will refer to this extension as rFω
ha
. The signature of rFω

ha
extends that of Fω

ha

with a new family of judgements pco for partial computations that has the same signature as co:

pco : (H : RawHFunctor) → (A : el ty) → J. (rFω
ha
-1)

The original computation judgement co is still kept in the language and is used for total computations

as usual. Most accompanying rules for co in Section 2.3 are inherited by pco: val, let-in, th, op, and

all their associated equations. We shall refer to the copy of them for pco by same names as before,

except for thunks of partial computations, which we call pth : RawHFunctor → el ty → el ty.

The new rules for pco are as expected a fixed-point combinator:

Y : {H ,A} → (pth H A → pco H A) → pco H A (rFω
ha
-2)

Y-eq : {H ,A, f } → Y f = f (⇓ Y f)
Another difference between pco and co is the their elimination rule: eval allows computations

co H A to be evaluated into any raw monad T equipped with an 𝐻 -operation, but naturally, pco

shall only be evaluated into monads T that ‘support recursion’. In the current call-by-value setting,

Handlers of Higher-Order Effectful Operations

the only thing that supports recursion is pco, so we will require that the raw monad 𝑇 send every

type A : el ty to thunks of partial computations pth H (F A) for some H : RawHFunctor and type

constructor F : el ty → el ty:

record MonadAlgRec (H : RawHFunctor) : J where

include MonadAlg H as T

H : RawHFunctor

F : el ty → el ty

eq : (A : el ty) → T A = pth H (F A)
Here we have formulated the requirement eq using the equality type of LccLF, and in an imple-

mentation of the type checker for rFω
ha
, the equation eq may be mechanically checked since the

kind language of rFω
ha

is normalising. The language rFω
ha

then has the following declaration:

eval : {H } → (T : MonadAlgRec H) → (A : el ty) → pco H A → tm (T A) (rFω
ha
-3)

together with equations eval-val and eval-op similar to the those of co (Fω
ha
-8, Fω

ha
-9) with co replaced

by pco, th replaced by pth, and MonadAlg replaced by MonadAlgRec.

For discussing its meta-theoretic properties, it is convenient to include in rFω
ha

the empty type:

empty : el ty absurd : (A : el ty) → tm empty → tm A (rFω
ha
-4)

so that we have a judgement pco VoidH of partial computations without any other effects, where

VoidH is the constant raw higher-order functor: VoidH _ _ = empty.

Remark 2.9. Due to space limit, in this paper we cannot demonstrate some programming examples

of Fω
ha
, and we refer readers interested in concrete examples to the previous work on higher-order

effect handlers [Bosman et al. 2024; van den Berg and Schrijvers 2024; van den Berg et al. 2021; Wu

et al. 2014; Yang et al. 2022], whose examples can be adapted to Fω
ha
/rFω

ha
easily.

2.5 Semantic Models and the Category of Judgements
We have presented the calculus Fω

ha
using LccLF, which we hope to be an example demonstrating

the compactness and precision of using a type-theoretic LF to present programming languages.

However, syntactic nicety is not the only advantage of using LFs. A bigger advantage is that an LF

can provide useful general results for object languages defined in it. For every signature, LccLF

provides (1) a notion of semantic models, (2) a category of judgements, and (3) an equivalence

between models and functors out of the category of judgements. These results are established by

Yang [2025] in detail, and below we record the special cases for the signature Fω
ha
.

2.5.1 Semantic Models. To define the concept of models of Fω
ha

in a category, we first need an

auxiliary concept of categories that can interpret the whole logical framework LccLF.

Definition 2.10. An LF-category is a category 𝒞 together with an interpretation of the type

formers of LccLF (Language 2.1), i.e. the unit type 1, Σ-types, restricted Π-types, and a universe J
closed under 1, Σ, Π, and extensional equality types 𝑎 = 𝑏.

We will say ‘an LF-category ⟨𝒞,𝑈 ⟩’ where𝑈 is the interpretation of the universe. Strictly speak-

ing, the interpretation of other type formers is also part of the structure, but they are determined

uniquely (up to isomorphisms) by their respective universal properties.

For example, the category of Set can be made an LF-category, with J being interpreted as some

set-theoretic universe𝑈 . A trivial choice of𝑈 is just the one-element set {1}, which is closed under

1, Σ, Π, =. More generally, the presheaf category Pr𝒞 over a (small) locally cartesian closed category

(LCCC) 𝒞 can be made an LF-category ⟨Pr𝒞,𝑈𝒞⟩ where the universe 𝑈𝒞 classifies exactly (the

Yoneda embedding of) the objects and morphisms of 𝒞; see Yang [2025, §IV] for details.

Zhixuan Yang and Nicolas Wu

Definition 2.11. A model 𝑀 of Fω
ha

in a (small) LCCC 𝒞 is a morphism 𝑀 : 1 → JFωhaK𝒞 in the

presheaf category Pr𝒞, where the object JFωhaK𝒞 is the interpretation of the record type that has

all the declarations of Fω
ha

(Fω-1 to Fω-5, Fω
ha
-1 to Fω

ha
-9) as fields, with J interpreted as𝑈𝒞 .

record Fω
ha

where

ki : J; el : ki → J; ty : ki; ...
(7)

Yang [2025] also defined a notion of model isomorphisms, so we have a groupoid Fω
ha
-Mod (𝒞) of

Fω
ha
-models and isomorphisms in an LCCC 𝒞. In this paper, model isomorphisms will not play an

important role so we omit their definition here.

Remark 2.12. Definitions 2.10 and 2.11 may appear as rather opaque to the reader, but we need

not worry about them too much. For our purposes in this paper, what we need know about them

is that, for every LCCC 𝒞, we can define a model of Fω
ha

in 𝒞 by defining a closed element of the

record type Fω
ha

(7) in an internal language of Pr𝒞 with J replaced by the universe𝑈𝒞 .

In fact, our semantic domain 𝒞 usually already has a universe 𝑈 that can interpret J. In this

case, we do not have to move to the bigger category Pr𝒞. To construct a model of Fω
ha

in 𝒞, it is

sufficient to construct a closed element of the record Fω
ha

in an internal language of 𝒞 itself, with J
replaced by the universe𝑈 . We will see several examples of this in the following sections.

2.5.2 Category of Judgements. In categorical logic, we usually have the category of types or contexts
that organises the syntactic entities of a language as a category. For languages defined using LccLF,

the category containing the syntactic entities is the category of judgements.

Definition 2.13. The category of judgements Jdg Fω
ha

for the language Fω
ha

has (1) LccLF-terms

Fω
ha ⊢ 𝐴 : J as objects, and (2) terms Fω

ha ⊢ 𝑓 : 𝐴 → 𝐵 as morphisms. Identities and composition are

the evident identity function and function composition in LccLF.

The category of judgements is locally cartesian closed. For every object 𝐴 : J of Jdg Fωha (here
we omit the context ‘Fω

ha ⊢’), the terminal object of the slice category Jdg Fω
ha/𝐴 is (𝜆𝑥 . 𝑥) : 𝐴 → 𝐴.

Given two objects 𝑓 : 𝐵 → 𝐴 and 𝑔 : 𝐶 → 𝐴 in Jdg Fω
ha/𝐴, their product is 𝜆𝑝. 𝑓 (𝜋1 𝑝) : 𝑃 → 𝐴

where 𝑃 := Σ(𝑏 : 𝐵). Σ(𝑐 : 𝐶). 𝑓 𝑏 = 𝑔 𝑐 , and their exponential is 𝜋1 : 𝐸 → 𝐴 where

𝐸 := Σ(𝑎 : 𝐴). 𝐵𝑎 → 𝐶𝑎 𝐵𝑎 := Σ(𝑏 : 𝐵). 𝑓 𝑏 = 𝑎 𝐶𝑎 := Σ(𝑐 : 𝐶). 𝑔 𝑐 = 𝑎
Among all LCCCs, the category Jdg Fω

ha
has the following universal property:

Theorem 2.14 (Yang [2025]). Let𝒞 be an LCCC. The groupoid LCCC� (Jdg Fωha,𝒞) of LCC-functors
and natural isomorphisms is equivalent to the groupoid of Fω

ha
-models in 𝒞.

The practical relevance of this theorem is two-folds. Firstly, it gives us a functor J−K𝑀 : Jdg Fω
ha →

𝒞 after we define a model𝑀 of Fω
ha

in 𝒞. This functor assigns a meaning of every Fω
ha
-judgement

and derivation (not just the generating ones declared in the signature Fω
ha
) in the category 𝒞.

Secondly, it provides a connection between Fω
ha

as a syntactic signature and as a category Jdg Fω
ha
.

This connection enables us to use categorical tools to study the theory Fω
ha
. For example, in Section 4,

we will use a categorical tool known as Artin gluing to prove properties of Fω
ha
.

3 The Realizability Model
In this section, we present a model of Fω

ha
in the category Asm(A) of assemblies over an arbitrary

partial combinatory algebra (PCA) A. This model serves two purposes: (1) it shows that Fω
ha

is

consistent in the sense that tt and ff are not equal terms of bool in the equational theory of Fω
ha
,

and (2) it provides a way to extract executable programs, e.g. terms of 𝜆-calculus, from well typed

terms of Fω
ha
, giving us a way to run terms of Fω

ha
without an explicit operational semantics.

Handlers of Higher-Order Effectful Operations

3.1 Assemblies and Their Language
We will only use the category of assemblies as a black box via a type-theoretic internal language

Language 3.1, so in principle the reader does not even need to know what an assembly is to read

this section and treat the model presented in this section as a syntactic translation from Fω
ha

to

another type theory. We refer readers who are interested in how assemblies work ‘under the hood’

to tutorials on realizability by Bauer [2022], de Jong [2024], Streicher [2017], and the comprehensive

book account by van Oosten [2008].

A partial combinatory algebra ⟨A, ·⟩ is an abstraction for an untyped model of computation:A is

a set whose elements serve the dual purpose of programs and data, and · : A ×A ⇀ A is a partial

binary operation subject to certain conditions. The intuition for 𝑛 ·𝑚 is applying the program 𝑛 to

the input data𝑚. Notable examples of PCAs include (1) 𝛽-equivalence classes of closed 𝜆-terms

together with 𝜆-term application and (2) the set of natural numbers together with 𝑛 ·𝑚 being the

result of running the 𝑛-th Turing machine with input𝑚 (if the 𝑛-th Turing machine does not halt

on𝑚, 𝑛 ·𝑚 is undefined). The second example is called Kleene’s first algebra K.

For every PCA ⟨A, ·⟩, the category Asm(A) of assemblies over A (also known as 𝜔-sets) is

roughly a category of ‘computable sets and functions’: an object ⟨𝑋, |−|𝑋 ⟩ of Asm(A) is a set 𝑋
with a function |−|𝑋 : 𝑋 → 𝒫(A) mapping every every 𝑥 ∈ 𝑋 to a non-empty subset |𝑥 |𝑋 of

A. The intuition is that |𝑥 |𝑋 is the set of A-elements that encode or realize 𝑥 ∈ 𝑋 . A morphism

𝑓 : ⟨𝑋, |−|𝑋 ⟩ → ⟨𝑌, |−|𝑌 ⟩ in Asm(A) is a set-theoretic function 𝑓 : 𝑋 → 𝑌 such that there exists

an element 𝑟 ∈ A and for all 𝑥 ∈ 𝑋 , 𝑛 ∈ |𝑥 |𝑋 , 𝑟 · 𝑛 is defined and 𝑟 · 𝑛 ∈ |𝑓 𝑥 |𝑌 .
The category Asm(A) of assemblies has many pleasant properties, making it a standard tool for

interpreting programming languages, especially those with impredicative polymorphism. We will

access the nice structure of Asm(A) via the following type-theoretic internal language.

Language 3.1. The language AsmTT is a dependent type theory with the following type formers:

• dependent function types (Π-types), dependent pair types (Σ-types), extensional equality
types, and inductive types (e.g. the unit type, the empty type, the natural number type);

• three universes 𝑃 : 𝑉1 : 𝑉2, each closed under the aforementioned type formers;

• 𝑃 is impredicative in the sense that for all types 𝐴 (not necessarily in 𝑃) and type families

𝐵 : 𝐴 → 𝑃 , the dependent function type (𝑥 : 𝐴) → 𝐵 𝑥 is in 𝑃 .

The language AsmTT can be interpreted in the category Asm(A) for every non-trivial PCAA.

Interpretations of similar type theories in the category of assemblies can be found in Hofmann

[1997, §3.4] and Luo [1994, Chapter 6]. Non-triviality ofA is needed here for the impredicative

universe 𝑃 to have types with more than one elements (ifA is the trivial one-element PCA,Asm(A)
degenerates to the category of sets and 𝑃 is the set {⊥,⊤} of classical propositions).

3.2 The Realizability Model of Fωha

As mentioned in Remark 2.12, to define a model of Fω
ha

in Asm(A), it is sufficient to construct an

element of the record type JFωhaK𝑉2
in AsmTT that contains all declarations of Fω

ha
with J replaced

by the universe 𝑉2. In the following, we construct a such model 𝑅 : JFωhaK𝑉2
.

The model of the Fω-fragment is standard. Kinds are interpreted as the predicative universe 𝑉1

and the base kind ty : ki is interpreted as the impredicative universe 𝑃 :

𝑅.ki : 𝑉2 𝑅.el : 𝑅.ki → 𝑉2 𝑅.ty : 𝑅.ki 𝑅.tm : 𝑅.el 𝑅.ty → 𝑉2

𝑅.ki = 𝑉1 𝑅.el 𝑘 = 𝑘 𝑅.ty = 𝑃 𝑅.tm 𝐴 = 𝐴

Function kinds 𝑅._⇒𝑘_ : 𝑅.ki → 𝑅.ki → 𝑅.ki are interpreted by function types in𝑉1, and 𝑅.⇒k-iso

is the identity isomorphism. The unit, Boolean, function types of ty in Fω
ha

are interpreted as the

Zhixuan Yang and Nicolas Wu

corresponding type formers in the universe 𝑃 . The impredicative polymorphic function type ∀̄ is

interpreted as dependent function type:

𝑅.∀̄ : (𝑘 : 𝑅.ki) → (𝑅.el 𝑘 → 𝑅.el 𝑅.ty) → 𝑅.el 𝑅.ty

𝑅.∀̄ 𝑘 𝐴 = (𝛼 : 𝑘) → 𝐴 𝛼

This is well typed because 𝑅.ty, i.e. 𝑃 , is an impredicative universe.

The model of the computation judgement co 𝐻 𝐴 is less obvious because of the mismatch

between computations and raw monads in Fω
ha
: computations satisfy the monadic laws strictly

(let-val, val-let, let-assoc from Fω
ha
-3), while raw monads do not. Consequently, we cannot model

co H as the initial raw monad equipped with 𝐻 -operations because it then would not satisfy the

monadic laws. Conversely, we cannot model it as the initial monad equipped with 𝐻 -operations

either because then it cannot be evaluated into raw monads. Our solution is to model computations

by a combination of impredicative encoding and continuation-passing transformation:

𝑅.co : 𝑅.RawHFunctor → 𝑅.el 𝑅.ty → 𝑃

𝑅.co 𝐻 𝐴 = (𝑇 : 𝑅.MonadAlg H) → (𝐵 : 𝑃) → (𝐴 → 𝑇 𝐵) → 𝑇 𝐵
(8)

Thunking th H A can be modelled as the identity, because in the model 𝑅, computations and values

live in the same universe 𝑃 . The computation formers and eval are defined as follows:

𝑅.val : {𝐻,𝐴} → 𝐴 → 𝑅.co 𝐻 𝐴

𝑅.val 𝑎 = 𝜆𝑇 𝐵 (𝑟 : 𝐴 → 𝑇 𝐵). 𝑟 𝑎

𝑅.let-in : {𝐻,𝐴, 𝐵} → 𝑅.co 𝐻 𝐴 → (𝐴 → 𝑅.co 𝐻 𝐵) → 𝑅.co 𝐻 𝐵

𝑅.let-in {𝐴, 𝐵} 𝑐 𝑘 = 𝜆𝑇 𝐶 (𝑟 : 𝐵 → 𝑇 𝐶). 𝑐 𝑇 𝐶 (𝜆𝑎. 𝑘 𝑎 𝑇 𝐶 𝑟)
The model of eval directly follows from the definition of 𝑅.co:

𝑅.eval : {𝐻 } → (𝑇 : 𝑅.MonadAlg 𝐻) → (𝐴 : 𝑃) → 𝑅.co 𝐻 𝐴 → 𝑇 𝐴

𝑅.eval {𝐻 } 𝑇 𝐴 𝑐 = 𝑐 𝑇 𝐴 (𝑇 .ret)
It can be checked the definitions for computations above collectively validate all the equational

laws of Fω
ha
. Detailed calculations can be found in Appendix B

This completes our definition of the model 𝑅 : JFωhaK𝑉2
in Asm(A). An immediate consequence is

the consistency of the equational theory of System Fω
ha
.

Theorem 3.2. The equational theory of System Fω
ha

is consistent, in the sense that the closed terms

tt and ff : bool are not judgementally equal.

Proof. Let A be any non-trivial PCA, such as Kleene’s first algebra. The interpretation of tt

and ff : bool in the realizability model 𝑅 are different morphisms 1 → 1 + 1 in Asm(A). Because
interpretation respects judgemental equalities, tt and ff must not be judgementally equal. □

The realizability model also gives us a way to do program extraction:

Theorem 3.3. For every closed term t : tm bool of Fω
ha
, there exists a 𝜆-term |𝑡 | that normalises to a

Church Boolean value. Moreover, if 𝑡 = 𝑡 ′, |𝑡 | and |𝑡 ′ | normalises to the same value.

Proof. Terms of Fω
ha

are interpreted as morphisms in the category Asm(A) of assemblies, which

are realized by elements of the underlying PCAA, in particular, the PCA Λ of 𝜆-terms. Therefore

every closed term t : tm bool can be interpreted as a morphism 1 → 1 + 1 in Asm(Λ), which by the

definition of Asm is realised by a 𝜆-term. □

The interpretation of Fω
ha

in the realizability model is clearly constructive, so based on the

realizability model we can implement a compiler that takes in well typed Fω
ha
-terms and outputs

𝜆-terms following the definition of the model 𝑅 (by simply erasing the type information in 𝑅). In

Handlers of Higher-Order Effectful Operations

the next section, we will further see that the realizability model is in fact adequate with respect

to the equational theory of Fω
ha
: if the interpretation of a closed Boolean term 𝑝 : tm bool in the

realizability model is true (resp. false), then 𝑝 = tt (resp. 𝑝 = ff) in the equational theory of Fω
ha
.

Modelling General Recursion. The realizability model of Fω
ha

can be extended to a model of rFω
ha

from

Section 2.4 using synthetic domain theory [Hyland 1991; Phoa 1991; Rosolini 1986]. We will not go

into this here for the lack of space, but interested readers can see how it is done in Appendix E,

which also provides a mini introduction to synthetic domain theory. Consequences of this model

are analogues of Theorem 3.2 and Theorem 3.3.

Theorem 3.4. The equational theory of rFω
ha

is consistent: for every H : RawHFunctor , (val tt) and
(val ff) : pco H bool are not judgemental equal in rFω

ha
.

Theorem 3.5. For every closed term t : pco VoidH bool of Fω
ha
, there exists a 𝜆-term |𝑡 | that either

diverges or normalises to a Church Boolean value. Moreover, if 𝑡 = 𝑡 ′, then |𝑡 | and |𝑡 ′ | are Kleene equal.

4 The Synthetic Logical Relation Model
The equational theory of Fω

ha
provides the programmer with a set of reasoning principles to

understand the behaviour of Fω
ha
-programs, and also provides compiler writers with a set of program

transformations for optimisation. One natural question is – how complete is the equational theory?

We answer this question by proving the following theorem in this section.

Theorem 4.1 (Canonicity). For every closed Boolean term 𝑏 : 𝑏𝑜𝑜𝑙 of System Fω
ha
, either 𝑏 = tt or

𝑏 = ff holds (but not both) in the equational theory of Fω
ha
.

The common proof strategy for showing meta-theoretic properties of programming languages

such as canonicity is the method of logical relations [Plotkin 1973, 1980], also known as the

computability method or the reducibility method in the literature [Girard 1972; Martin-Löf 1975a,b;

Statman 1985; Tait 1967]. The high-level idea is to construct a model of a language 𝐿 such that

each judgement 𝐽 of 𝐿 is interpreted as a set of 𝐽 -derivations satisfying certain properties or

equipped with certain data. Inference rules of 𝐿 are then shown to preserve those associated

properties or data. Categorically, such a logical-relation model lives in the glued category of the

category of types/judgements of 𝐿 and the category of sets (or some other presheaf topos where

the meta-theoretic information naturally lives) [Altenkirch et al. 1995; Fiore 2022; Freyd 1978].

A recent development of the method of logical relations is Sterling’s synthetic Tait computability

(STC) [Sterling 2021, 2022; Sterling and Harper 2021], whose idea is to (1) embed the category of

types/judgements in the (presheaf) topos over it by Yoneda embedding, (2) glue this (presheaf) topos

containing information of the object language with the (presheaf) topos where the meta-theoretic

information lives, which always results in a new (presheaf) topos, and then (3) use a type-theoretic

language to describe the constructions in the glued topos. Passing to the presheaf category in the

first step is needed so that the resulting glued topos is a topos, where we have a very rich internal

language to describe the construction of the logical relation model. The advantage of this approach

is that after the internal language is set up, many tedious aspects in a typical logical-relation proof

is taken care of automatically, turning a logical-relation proof into a guided programming puzzle.

4.1 The Language of STC for Fωha

To apply the method of STC to prove canonicity of Fω
ha

(Theorem 4.1), we first recall that in

Section 2.5.2 we defined a category of judgements Jdg Fω
ha

for Fω
ha
, whose objects are terms 𝐽 : J

and morphisms are functions 𝑓 : 𝐽 → 𝐽 ′ under the signature Fωha in LccLF.

Zhixuan Yang and Nicolas Wu

Definition 4.2. The glued category Gl Fω
ha

of Pr (Jdg Fωha) and Set along the global section functor

Hom(1,−) : Pr (Jdg Fωha) → Set is exactly the comma category Set ↓ Hom(1,−), whose objects
are tuples ⟨𝐴 ∈ Pr (Jdg Fωha), 𝑃 ∈ Set, 𝑝 : 𝑃 → Hom(1, 𝐴)⟩, and morphisms ⟨𝐴, 𝑃, 𝑝⟩ → ⟨𝐵,𝑄, 𝑞⟩
are pairs ⟨𝑓 : 𝐴 → 𝐵,𝑔 : 𝑃 → 𝑄⟩ making the following diagram in Set commute:

𝑃 𝑄

Hom(1, 𝐴) Hom(1, 𝐵)

𝑔

𝑝 𝑞

Hom(1,𝑓)

Usually, the presheaf 𝐴 of an object ⟨𝐴, 𝑃, 𝑝⟩ ∈ Gl Fω
ha

will just be the Yoneda embedding of

some Fω
ha
-judgement 𝐽 . In this case Hom(1, 𝐴) is the set of closed derivations of the judgement

𝐽 , and 𝑝 : 𝑃 → Hom(1, 𝐴) is understood as a proof-relevant predicate over 𝐽 -derivations. For

every 𝑎 ∈ Hom(1, 𝐴), the set {𝑒 ∈ 𝑃 | 𝑝 (𝑒) = 𝑎} is the set of proofs that 𝑎 satisfies the predicate
𝑝 : 𝑃 → Hom(1, 𝐴). A morphism ⟨𝑓 , 𝑔⟩ : ⟨𝐴, 𝑃, 𝑝⟩ → ⟨𝐵,𝑄, 𝑞⟩ in Gl Fω

ha
is then a derivation from 𝐴

to 𝐵 that preserves the associated predicates 𝑃 and 𝑄 on 𝐴 and 𝐵.

The presheaf category Pr (Jdg Fωha) contains a syntactic model 𝑀 of Fω
ha
, where every judge-

ment 𝐽 is interpreted as its Yoneda embedding. A (proof-relevant) logical-relation model of

Fω
ha

is then a model 𝑀∗
of Fω

ha
in the category Gl Fω

ha
such that 𝑀∗

under the first projection

Gl Fω
ha → Pr (Jdg Fωha) is exactly the syntactic model 𝑀 . We will construct our logical-relation

model𝑀∗
via an internal language of Gl Fω

ha
. In this following, we first introduce this language; for

a proper introduction, we refer the reader to the exposition by Huang [2023] and Sterling [2022].

The most comprehensive account of STC so far is still Sterling’s [2021] thesis.

Language 4.3. The language StcTT of synthetic Tait computability for Fω
ha

is a dependent type

theory with the structure of an elementary topos (Axiom 4.4), universes (Axiom 4.5), a distinguished

proposition 𝔬𝔟 and a model of Fω
ha

under 𝔬𝔟 (Axiom 4.6), and glue types (Axiom 4.6).

First of all, StcTT has the type formers that axiomatise the structure of an elementary topos.

Axiom 4.4 (StcTT-ETopos). StcTT has the following type formers:

• unit type 1, function types 𝐴 → 𝐵, Σ-types Σ(𝑎 : 𝐴). 𝐵, extensional identity types 𝑎 = 𝑏;

• a universe Ω such that (1) it classifies all propositional types: if a type 𝑃 satisfies (𝑎, 𝑏 : 𝑃) →
𝑎 = 𝑏, then there is ⌈𝑃⌉ : Ω with an isomorphism 𝜙𝑃 : ⌈𝑃⌉ � 𝑃 ; (2) it is univalent: if 𝐴, 𝐵 : Ω
and 𝐴 � 𝐵, then 𝐴 = 𝐵; and (3) it is proof irrelevant: if 𝐴 : Ω and 𝑝, 𝑞 : 𝐴, then 𝑝 = 𝑞.

The theory of elementary toposes [Borceux 1994; Mac Lane and Moerdijk 1994] tells us that a

great deal of well behaved logical structures can be defined from the type formers in Axiom 4.4,

including Π-types (𝑎 : 𝐴) → 𝐵, (intuitionistic) logical connectives (∧, ∨,→, ⊤, ⊥, ∃, ∀) on Ω, the
empty type 0, coproduct types 𝐴 + 𝐵, quotient types 𝐴/𝑅.

Given a type𝐴 and 𝑃 : 𝐴 → Ω, we define {𝑥 : 𝐴 | 𝑃 (𝑥)} := Σ(𝑎 : 𝐴). 𝑃 (𝑎) and treat {𝑥 : 𝐴 | 𝑃 (𝑥)}
as a subtype of 𝐴, eliding the proof of the proposition 𝑃 (𝑥) and the pairing/projections:

𝑎 : 𝐴 _ : 𝑃 (𝑎)
𝑎 : {𝑥 : 𝐴 | 𝑃 (𝑥)}

𝑎 : {𝑥 : 𝐴 | 𝑃 (𝑥)}
𝑎 : 𝐴

𝑎 : {𝑥 : 𝐴 | 𝑃 (𝑥)}
_ : 𝑃 (𝑎)

Of course, when using this notation, we must ensure that we only use 𝑎 : 𝐴 as an element of

{𝑥 : 𝐴 | 𝑃 (𝑥)} when a (necessarily unique) element of 𝑃 (𝑎) is available. Such an informal abuse of

notation can be formally justified by Luo et al. [2013]’s coercive subtyping.

An important special case of subtypes are extension types: given a type 𝐴, 𝜙 : Ω and 𝑎 : 𝜙 → 𝐴,

we define {𝐴 | 𝜙 ↩→ 𝑎} := {𝑥 : 𝐴 | (𝑝 : 𝜙) → 𝑥 = 𝑎(𝑝)} for the type of 𝐴-elements that are

Handlers of Higher-Order Effectful Operations

strictly equal to the partial element 𝑎 when 𝜙 holds. Similarly, if a partial element of 𝐴 is given as

an implicit function 𝑎 : {𝜙} → 𝐴, we also write {𝐴 | 𝜙 ↩→ 𝑎} for {𝑥 : 𝐴 | {𝜙} → 𝑥 = 𝑎}.
Similar to the realizability model, we will again need three universes to model Fω

ha
, which exist

provided that the ambient set theory has enough universes [Gratzer et al. 2022].

Axiom 4.5 (StcTT-Universe). StcTT has three cumulative predicative universes 𝑈0 : 𝑈1 : 𝑈2,

each closed under Π-types, Σ-types, extensional equality types, and inductive types. Moreover, the

universe of propositions is in𝑈0, i.e. Ω : 𝑈0.

The next ingredient of StcTT, perhaps the most important one, is the following axiom.

Axiom 4.6 (StcTT-Obj). StcTT has 𝔬𝔟 : Ω and𝑀 : {𝔬𝔟} → JFωhaK𝑈0
.

The category Gl Fω
ha

embeds the ‘object space’ Pr (Jdg Fωha) and the ‘meta space’ Set as full

subcategories. In the language StcTT, the proposition 𝔬𝔟 serves the purpose of accessing the object

space and the meta space: 𝔬𝔟 is interpreted as an object J𝔬𝔟K in Gl Fω
ha

such that the exponential

functor (−)J𝔬𝔟K sends every object ⟨𝐵,𝑄, 𝑞⟩ ∈ Gl Fω
ha

to ⟨𝐵,Hom(1, 𝐵), id⟩. In other words, the

function type 𝔬𝔟 → 𝐴 in StcTT erases the meta-space information in 𝐴.

For every type 𝐴, we will write #𝐴 := {𝔬𝔟} → 𝐴, and if the function 𝜂◦
𝐴

:= (𝜆𝑎. 𝜆{𝑧 : 𝔬𝔟}. 𝑎) :

𝐴 → #𝐴 is an isomorphism, we say that the type 𝐴 is #-modal. These are types containing no

meta-space information and are essentially objects of Pr (Jdg Fωha). Axiom 4.6 asserts that there is

a Fω
ha
-model𝑀 in the object space; this is interpreted as the syntactic model of Fω

ha
in Pr (Jdg Fωha).

Remark 4.7. When working in StcTT, the reader should pay special attention to whether the

proposition 𝔬𝔟 is assumed in the current context, because we will have types𝐴 and 𝐵 that may look

different but are judgementally equal when 𝔬𝔟 is assumed. In this way, 𝔬𝔟 is more like a modality

for ‘entering the object space’, instead of a tradititional mathematical proposition about which we

care whether it is true or false. The syntax of StcTT is chosen to highlight when 𝔬𝔟 is assumed;

for example, in the type { ?1 | 𝔬𝔟 ↩→ ?2 } the hole ?2 has 𝔬𝔟 assumed. Moreover, when 𝔬𝔟 is

assumed, the type of implicit functions {𝔬𝔟} → 𝐴 and the type 𝐴 can be used interchangeably,

since the proposition 𝔬𝔟 has at most one element and it is assumed in the context.

We have also a modality for erasing the object-space information in types, which may be

expressed as a quotient inductive type in StcTT:

data A where

𝜂•
𝐴

: A → A

pt : {𝔬𝔟 } → A

eq : {𝔬𝔟 } → (a : A) → 𝜂•
𝐴

a = pt

This quotient inductive type 𝐴 can be explicitly constructed using quotient and coproduct types,

in the same way as constructing pushouts in Set. A type 𝐴 is called -modal if the function

𝜂•
𝐴

: 𝐴 → 𝐴 is an isomorphism. In this case, we write 𝜖•
𝐴

: 𝐴 → 𝐴 for the inverse of

𝜂•
𝐴

: 𝐴 → 𝐴. The following lemma says that -modal types have no object-level information.

Lemma 4.8. A type 𝐴 in StcTT is -modal iff #𝐴 is isomorphic to the unit type 1.

Proof. Assume𝐴 is -modal. We define a function 𝑓 : 1 → #𝐴 by 𝑓 ∗ = 𝜆{𝑧 : 𝔬𝔟}. 𝜖•
𝐴
(pt {𝑧}).

The function 𝑓 and 𝜆𝑎. ∗ : #𝐴 → 1 form an isomorphism. To see 𝑓 · (𝜆𝑎. ∗) = id, for every 𝑎 : #𝐴,
we have 𝑓 ((𝜆𝑎. ∗) 𝑎) = 𝑓 ∗ = 𝜆{𝑧 : 𝔬𝔟}. 𝜖•

𝐴
(pt {𝑧}), which is equal to 𝜆{𝑧 : 𝔬𝔟}. 𝜖•

𝐴
(𝜂•
𝐴
𝑎) by

eq a : 𝜂•
𝐴

a = pt, and 𝜖•
𝐴
(𝜂•
𝐴
𝑎) = 𝑎 because 𝜖•

𝐴
is the inverse of 𝜂•

𝐴
, so we have 𝑓 ((𝜆𝑎. ∗) 𝑎) = 𝜆{𝑧 :

𝔬𝔟}. 𝑎 = 𝑎. In the other direction, (𝜆𝑎. ∗) · 𝑓 = id is trivial.

Zhixuan Yang and Nicolas Wu

Conversely, assume #𝐴 � 1. Let 𝑎 be the unique element of #𝐴. We can define 𝜖•
𝐴

: 𝐴 → 𝐴

by 𝜖•
𝐴
(𝜂•
𝐴
𝑎′) = 𝑎′ and 𝜖•

𝐴
pt = 𝑎. The function 𝜖•

𝐴
is a mutual inverse of 𝜂•

𝐴
following the defining

property of the quotient inductive type 𝐴. □

Given an object-space type 𝐴 and a meta-space type family 𝐵 indexed by 𝐴, we can ‘glue’ them

together by Σ(𝑎 : 𝐴). 𝐵 𝑎. Under 𝔬𝔟, we have Σ(𝑎 : 𝐴) . 𝐵 𝑎 � Σ(𝑎 : 𝐴).1 � 𝐴. The following, and
the final, piece of StcTT allows us to do better, giving us a type (𝑎 : 𝐴) ⋉ 𝐵 𝑎 � Σ(𝑎 : 𝐴) . 𝐵 𝑎 such
that under 𝔬𝔟, (𝑎 : 𝐴) ⋉ 𝐵 𝑎 is judgementally equal in StcTT, not just isomorphic, to 𝐴.

Axiom 4.9 (StcTT-Glue). StcTT has strict glue types in its universes𝑈𝑖 :

𝐴 : #𝑈𝑖 𝐵 : ({𝔬𝔟} → 𝐴) → {𝑋 : 𝑈𝑖 | -modal 𝑋 }
(𝑎 : 𝐴) ⋉ 𝐵 𝑎 : {𝑈𝑖 | 𝔬𝔟 ↩→ 𝐴}

and isomorphisms between (𝑎 : 𝐴) ⋉ 𝐵 𝑎 and Σ (𝑎 : {𝔬𝔟} → 𝐴). 𝐵 𝑎
glue : { Σ(𝑎 : {𝔬𝔟} → 𝐴). 𝐵 𝑎 � (𝑎 : 𝐴) ⋉ 𝐵 𝑎 | 𝔬𝔟 ↩→ 𝜋1-iso}

where 𝜋1-iso : {𝔬𝔟} → Σ(𝑎 : {𝔬𝔟} → 𝐴). 𝐵 𝑎 � 𝐴 is the isomorphism that has the projection

𝜋1 : (Σ(𝑎 : 𝐴). 𝐵 𝑎) → 𝐴 as its forward direction (under 𝔬𝔟, 𝐵 𝑎 � 1 so 𝜋1 is an isomorphism).

For all 𝑎 : {𝔬𝔟} → 𝐴 and 𝑏 : 𝐵 𝑎, we will use the following notation in place of glue.fwd (𝑎, 𝑏) to
signal that the value is strictly equal to 𝑎 when 𝔬𝔟 is assumed:

[𝔬𝔟 ↩→ 𝑎 | 𝑏] := glue.fwd (𝑎, 𝑏) : (𝑎 : 𝐴) ⋉ 𝐵 𝑎.

Given an element 𝑔 : (𝑎 : 𝐴)⋉𝐵 𝑎, when 𝔬𝔟 holds (𝑎 : 𝐴)⋉𝐵 𝑎 is equal to𝐴, so we can directly use

𝑔 as an element of 𝐴. To access the second component of a glued element conveniently, we define

unglue : (𝑔 : (𝑎 : 𝐴) ⋉ 𝐵 𝑎) → 𝐵 (𝜆{_ : 𝔬𝔟}. 𝑔)
unglue 𝑔 = 𝜋2 (glue.bwd 𝑔)

4.2 Constructing the Logical Relation Model
Now we construct our logical-relation model to prove Theorem 4.1. Our goal is to define

𝑀∗
: {JFωhaK𝑈2

| 𝔬𝔟 ↩→ 𝑀}
such that𝑀∗ .bool encodes the property that we need. Due to space constraint, this section can only

be a digest of the full proof, focusing on the novel part pertaining to the computation judgements

of Fω
ha
. Appendix C contains a full proof that explains all the definitions slowly.

Notation 4.10. For every declaration dec in the signature of Fω
ha
, we will write dec

∗
for 𝑀∗ .dec

and just dec for𝑀.dec. For example, ki
∗

: {𝑈2 | 𝔬𝔟 ↩→ ki} means𝑀∗ .ki : {𝑈2 | 𝔬𝔟 ↩→ ki}.

4.2.1 Kinds and Types. Every Fωha-type𝐴 is interpreted as a proof-irrelevant predicate𝐴∗
over closed

terms of 𝐴. Every kind 𝑘 is interpreted as a proof-relevant predicate 𝑘∗ over closed elements of 𝑘 . In

particular, for the base kind ty and every closed Fω
ha
-type 𝐴, ty

∗ (𝐴) is the set of all proof-irrelevant
predicates over 𝐴-terms. The idea here is essentially the same as Girard’s [1989] technique of

reducibility candidates in his proof of normalisation for System F, except that here (1) we employ

proof-relevant predicates to deal with higher kinds, and (2) the object language is formulated as an

equational theory rather than a reduction system.

In the language StcTT, the idea above for kinds is precisely expressed as follows:

ki
∗

: {𝑈2 | 𝔬𝔟 ↩→ ki} el
∗

: {ki
∗ → 𝑈1 | 𝔬𝔟 ↩→ el}

ki
∗ = (𝛼 : ki) ⋉ {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} el

∗ 𝑔 = unglue 𝑔

Handlers of Higher-Order Effectful Operations

Define the universe of meta-space propositions by Ω• := {𝑝 : Ω | -modal 𝑝}, which corresponds

to simply the propositions in the ambient set theory. The interpretation of types and terms are

ty
∗

: {ki
∗ | 𝔬𝔟 ↩→ ty} tm

∗
: {el

∗
ty

∗ → 𝑈0 | 𝔬𝔟 ↩→ tm}
ty

∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty) ⋉ ({𝔬𝔟} tm 𝐴) → Ω•] tm
∗ [𝔬𝔟 ↩→ 𝐴 | 𝑃] = (𝑡 : tm 𝐴) ⋉ 𝑃 𝑡

The interpretation for the base type bool is the predicate 𝑃can (𝑏) that the closed term 𝑏 is either

equal to tt : bool or ff : bool as follows. The predicate 𝑃can is the only place in the logical-relation

model𝑀∗
that is specific to canonicity, so we can in fact replace 𝑃can (𝑏) with any other predicates

that hold for tt and ff and get other logical-relation models.

bool
∗

: {el
∗

ty
∗ | 𝔬𝔟 ↩→ bool} tt

∗
: {tm∗

bool
∗ | 𝔬𝔟 ↩→ tt}

bool
∗ = [𝔬𝔟 ↩→ bool | 𝑃can] tt

∗ = [𝔬𝔟 ↩→ tt | 𝜂• (inl refl)]
𝑃can : ({𝔬𝔟} → tm bool) → Ω•

ff
∗

: {tm∗
bool

∗ | 𝔬𝔟 ↩→ ff }
𝑃can 𝑏 = ({𝔬𝔟} → (𝑏 = tt ∨ 𝑏 = ff)) ff

∗ = [𝔬𝔟 ↩→ ff | 𝜂• (inr refl)]
The other type/kind formers are interpreted in the standard way, which is explained in great

detail in Appendix C. Here, let us only show the interpretation for the polymorphic function type:

∀̄∗ : {(𝑘∗ : ki
∗) → (el

∗ 𝑘∗ → el
∗

ty
∗) → el

∗
ty

∗ | 𝔬𝔟 ↩→ ∀̄}
∀̄∗ 𝑘∗ 𝐹 = [𝔬𝔟 ↩→ ∀̄ 𝑘∗ 𝐹 | 𝜆𝑡 . ∀(𝛼∗ : el

∗ 𝑘∗). unglue (𝐹 𝛼∗) (𝜆{_ : 𝔬𝔟}. (𝑡 𝛼∗))]
The logical predicate here on closed terms 𝑡 : {𝔬𝔟} → tm (∀̄ 𝑘 𝐹) of the polymorphic function type

is a universal quantification ∀(𝛼∗ : el
∗ 𝑘∗) over all the ‘logical predicate candidates’ of the kind 𝑘∗,

and we demand the result 𝑡 𝛼∗ of applying the polymorphic function 𝑡 to 𝛼∗ to satisfy the logical

predicate 𝐹 𝛼∗. It is explained in detail in Appendix C.2 how this definition type checks.

With the Fω-fragment of𝑀∗
defined, we automatically have the interpretation for the judgements

that are derived in Fω (Figure 1), such as RawHFuncor and RawMonad. We will also denote their

interpretation by superscripting an asterisk. For example, for the judgement tyco = (ty ⇒𝑡 ty)
from Figure 1, its interpretation tyco

∗
is then ty

∗ ⇒𝑘
∗

ty
∗
.

4.2.2 Computations. What remains is to define the computation fragment of Fω
ha

(Section 2.3)

for our logical-relation model 𝑀∗
. Because in Fω

ha
the only way to ‘observe’ a computation is to

evaluate it with a raw monad using eval (Fω
ha
-7), a natural attempt to define the logical predicate

𝑃co (𝑐) for computations is to assert that the computation 𝑐 : co H A evaluated with every semantic

raw-monad𝑚∗
(i.e. a syntactic raw-monad𝑚 with a proof of𝑚 satisfying the proof-relevant logical

predicate) yields a term that satisfies the logical predicate𝑚∗ .0 𝐴∗
:

𝑃
wrong

co
: {𝐻 ∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻 ∗ 𝐴∗) → Ω•

𝑃
wrong

co
𝑐 = ∀(𝑚∗

: MonadAlg
∗ 𝐻 ∗). unglue (𝑚∗ .0 𝐴∗) (𝜆{_ : 𝔬𝔟}. eval 𝑚∗ 𝐴∗ 𝑐)

However, this definition will not work later when showing that the term constructor let-in (Fω
ha
-2)

satisfies its logical predicate. That is, we need to prove

∀(𝑚∗
: MonadAlg

∗ 𝐻 ∗). unglue (𝑚∗ .0 𝐵∗) (𝜆{_ : 𝔬𝔟}. eval 𝑚∗ 𝐵∗ (let-in 𝑐 𝑓)),

but as mentioned in Remark 2.6, Fω
ha

does not have the law saying that eval commutes with let-in,

so we have no way to further simplify the shaded part above to make use the assumptions that c

and f satisfy their logical predicates.

The way to fix this problem is to use the idea of⊤⊤-lifting [Lindley and Stark 2005]: we strengthen
𝑃

wrong

co
above to quantify over all ‘good continuations’ 𝑘 of the computation 𝑐 , and we demand

eval m (let-in c k) to satisfy its logical predicate. Here a continuation 𝑘 is ‘good’ if 𝑘 followed by

eval sends input satisfying its logical predicate to output satisfying its logical predicate, which can

Zhixuan Yang and Nicolas Wu

be succinctly expressed by a function 𝑘∗ : tm
∗ 𝐴∗ → tm

∗ (𝑚∗ .0 𝑅∗). Precisely, the type of ‘good’
continuations accepting 𝐴∗

-values is the following record:

record Con (𝐻 ∗
: RawHFunctor

∗) (𝐴∗
: el

∗
ty

∗) : 𝑈1 where

𝑚∗
: MonadAlg

∗ 𝐻 ∗

𝑅∗ : el
∗

ty
∗

𝑘 : {𝔬𝔟} → 𝐴∗ → co 𝐻 ∗ 𝑅∗

𝑘∗ : {tm∗ 𝐴∗ → tm
∗ (𝑚∗ .0 𝑅∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)}

and the correct definition of 𝑃co and the interpretation of computation judgements co
∗
is

𝑃co : {𝐻 ∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻 ∗ 𝐴∗) → Ω•

𝑃co 𝑐 = ∀(𝐾 : Con 𝐻 ∗ 𝐴∗). unglue (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}.
eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in 𝑐 𝐾.k))

co
∗

: {HFunctor
∗ → el

∗
ty

∗ → 𝑈0 | 𝔬𝔟 ↩→ co}
co

∗ 𝐻 ∗ 𝐴∗ = (𝑐 : co 𝐻 ∗ 𝐴∗) ⋉ 𝑃co 𝑐

Based on this definition of co
∗
, the interpretation of all constructs of Fω

ha
pertaining to computa-

tions can be defined and are shown in detail in Appendix C.4. Here we only show the case for the

term former let-in, which was previously problematic:

let-in
∗

: {{𝐻 ∗, 𝐴∗, 𝐵∗} → co
∗ 𝐻 ∗ 𝐴∗ → (co

∗ 𝐻 ∗ 𝐴∗ → co
∗ 𝐻 ∗ 𝐵∗)

→ co
∗ 𝐻 ∗ 𝐵 | 𝔬𝔟 ↩→ let-in}

let-in
∗ 𝑐 𝑓 = [𝔬𝔟 ↩→ let-in 𝑐 𝑓 | 𝜆(𝐾 : Con 𝐻 ∗ 𝐴∗). unglue 𝑐 𝐾 ′]

where each field of 𝐾 ′
: Con 𝐻 ∗ 𝐵∗ is defined as follows:

𝐾 ′ .𝑚∗ = 𝐾.𝑚∗ 𝐾 ′ .𝑘 = 𝜆{_ : 𝔬𝔟} 𝑎. let-in (𝑓 𝑎) 𝐾.𝑘
𝐾 ′ .𝑅∗ = 𝐾.𝑅∗ 𝐾 ′ .𝑘∗ = 𝜆𝑎. [𝔬𝔟 ↩→ eval 𝐾 ′ .𝑚∗ 𝐾 ′ .𝑅∗ (let-in (𝑓 𝑎) 𝐾.k) | unglue (𝑓 𝑎) 𝐾]

The definition of 𝐾 ′ .𝑘∗ type checks because 𝑓 𝑎 : co
∗ 𝐻 ∗ 𝐵∗, so unglue (𝑓 𝑎) : 𝑃co (𝑓 𝑎), so by the

definition of 𝑃co, the type of unglue (𝑓 𝑎) 𝐾 is

unglue (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (𝑓 𝑎) 𝐾.k))

which is indeed the type of proofs that the syntactic component of 𝐾 ′ .𝑘∗ satisfies the logical

predicate of the type 𝑘.𝑚∗ .0 𝐾.𝑅∗.
To summarise, we have established the ‘fundamental lemma’ for the logical relation of Fω

ha
.

Lemma 4.11 (Fundamental). In the language StcTT, given any 𝑃 : ({𝔬𝔟} → 𝑀.tm 𝑀.bool) →
Ω•

with 𝑡 : 𝑃 (𝑀.tt) and 𝑓 : 𝑃 (𝑀.ff), there is an𝑀∗
: {JFωhaK𝑈2

| 𝔬𝔟 ↩→ 𝑀} such that

𝑀∗ .tm 𝑀∗ .bool = (𝑏 : 𝑀.tm 𝑀.bool) ⋉ 𝑃 𝑏.

4.3 External Closed Term Canonicity
Finally, we can now prove canonicity (Theorem 4.1) using our logical-relation modal𝑀∗

.

Proof of Theorem 4.1. The denotation of the StcTT-type tm
∗

bool
∗
in Gl Fω

ha
is the following

object (strictly speaking the denotation could be an object only isomorphic to this object, but

pretending they are strictly equal will not cause problems in this proof):

𝐵∗ := ⟨Y(tm bool) ∈ Pr (Jdg Fωha), {𝑡 : 1 → Y(tm bool)) | (𝑡 = Y tt) ∨ (𝑡 = Y ff)}, 𝑗⟩

Handlers of Higher-Order Effectful Operations

where 𝑗 is the inclusion function into {𝑡 : 1 → Y(tm bool))}. For every closed term 𝑏 : tm bool in

Fω
ha
, its interpretation in the model𝑀∗

is a morphism 1 → 𝐵∗ in Gl Fω
ha

as follows:

{∗} {𝑡 | (𝑡 = Y tt) ∨ (𝑡 = Y ff)}

{∗} {𝑡 : 1 → Y(tm bool)}
𝜆∗. Y𝑏

𝑗

The commutativity of this diagram entails Y𝑏 = Ytt or Y𝑏 = Yff , so 𝑏 = tt or 𝑏 = ff since Yoneda

embedding is fully faithful. Moreover, 𝑏 = tt and 𝑏 = ff cannot be true at the same time because tt

and ff have different interpretations in the realizability model in Section 3.2. □

Corollary 4.12. An immediate consequence of canonicity of Fω
ha

is that the realizability model

in Section 3 is adequate in the sense that if two closed Boolean terms 𝑏1 and 𝑏2 have the same

denotation in the realizability model, they must be judgementally equal. This is because canonicity

says that both 𝑏1 and 𝑏2 are either equal to tt or ff , which have different interpretations in the

realizability model, so 𝑏1 = 𝑏2 must be true if their realizability interpretation is the same.

Remark 4.13. Apart from canonicity, Lemma 4.11 can be also used to show other parametricity

results about terms of Fω
ha
; for example, for a closed term 𝑡 : tm (∀̄ ty (𝜆𝛼. 𝛼 ⇒𝑡 𝛼)), 𝑡 applied to

every closed type 𝐴 and closed term 𝑎 : tm A is equal 𝑎. Even more pleasantly, we can obtain a

binary (or 𝑛-ary) logical-relation model of Fω
ha

from the seemingly unary logical-predicate model

Lemma 4.11 by interpreting StcTT in a different glued topos, without modifying the definition of

𝑀∗
at all. These results are elaborated in Appendix D.

Remark 4.14. We based Fω
ha

on fine-grain call-by-value (FGCBV) rather than call-by-push-value

(CBPV) since the theory of higher-order algebraic effects [Yang and Wu 2023] is based on monads

rather than adjunctions, but CBPV is also possible and we sketch the judgements for a CBPV variant

of Fω
ha

without stack judgements here. Again, starting with Fω, instead of co : RawHFunctor →
el ty → J, we add to Fω a new kind for computation types and a judgement for computation terms:

cty : RawHFunctor → ki ctm : {H } → el (cty H) → J
We then add two new type formers for value-returning computations (called returners by Levy

[2003]) and thunk values:

F : (H : RawHFunctor) → el ty → el (cty H) U : {H } → el (cty H) → el ty

We have value returning and sequential composition as usual:

val : {H ,A} → tm A → ctm (F H A)
let-in : {H ,A,X } → ctm (F H A) → (tm A → ctm X) → ctm X

Note that the second argument of let-in can be an arbitrary computation type X : el (cty H) rather
than just value-returning computations F H A : el (cty H). Terms of a thunk type are in bijection

with the terms of the computation type:

U -iso : {H } {X : el (cty H) } → tm (U X) � ctm X

The judgement co H A in Fω
ha

then corresponds to ctm (F H A) in CBPV. What we have in CBPV

but not in Fω
ha

are function computations from a value type A to a computation type X :

⇒𝑐 : {H } → (A : el ty) → (X : el (cty H)) → el (cty H)
⇒c-iso : {H ,A,X } → ctm (A ⇒𝑐 X) � (tm A → ctm X)

Finally, we have 𝐻 -operations and evaluation by raw monads with 𝐻 -operations:

Zhixuan Yang and Nicolas Wu

th : RawHFunctor → el ty → el ty

th H A = U (F H A)
op : {H ,A,X } → tm (H (th H) A) → (tm A → ctm X) → ctm X

eval : {H ,A} → (m : MonadAlg H) → ctm (F H A) → tm (m .0 A)

We see no obvious difficulties in adapting our results for Fω
ha

to this CBPV variant by interpreting 𝐹

and𝑈 using the Eilenberg-Moore adjunction of the monads that we used to model Fω
ha
.

5 Related Work
The most related work is the line of research on (higher-order) algebraic effects and handlers, and

we have discussed the position of this paper within this line of research in Section 1. In this section,

we discuss some more aspects of related work that were not discussed in Section 1.

• In the context of handlers of algebraic effects, the paper by Wu et al. [2014] seems to be the first

to consider higher-order operations. Although the examples of (higher-order) operations considered

in this paper are all what are later called scoped operations, the framework in this paper is actually

designed for general higher-order effects that can be given as higher-order functors, similar to

Yang and Wu [2023], van den Berg and Schrijvers [2024], and the present paper here, except that

Wu et al. [2014] demand the signature (higher-order) functors to come with a weave operation,

which is used for modularly combining handlers of different effects. This design of weave seems

inherently tied to effects similar to mutable state and has not been further developed since then.

• The paper by Wu et al. [2014] is a practically-minded paper presented in Haskell, and the

underlying mathematics for higher-order effects was not clear at its time. Therefore in the following

years, several authors studied the categorical foundation (and practical applications) of several

special cases of Wu et al.’s [2014] framework, including scoped effects by Piróg et al. [2018] and

Yang et al. [2022], latent effects by van den Berg et al. [2021], heafty algebras by Bach Poulsen and

van der Rest [2023]. All these families can be implemented in our calculus Fω
ha
.

• After this trend of diversification, the families of higher-order algebraic effects are re-unified

by Yang and Wu [2023] and van den Berg and Schrijvers [2024]. Yang and Wu [2023] presented

(1) a general categorical framework for defining higher-order algebraic effects (with equations) as

algebraic theories of operations on monoids, and (2) constructions for combining handlers in a

modular way. In contrast, the present paper studies a programming language Fω
ha

for (equation-less)

higher-order algebraic effects. Yang and Wu’s [2023] constructions of modular handlers can be

readily used in Fω
ha

but they are not baked in the language. Another difference is that Yang and Wu

[2023] worked at the level of abstraction of monoids in monoidal categories, encompassing not just

monads but also applicative functors, graded monads, etc.

van den Berg and Schrijvers’s [2024] work is also a general framework for (equation-less) higher-

order algebraic effects (following approach ii), presented as a Haskell library. Their paper provides

a plethora of interesting concrete examples of higher-order effects and handlers, which we did not

explore in this paper but in principle can be programmed in Fω
ha

too.

• The papers discussed above are all about category theory or programming libraries for higher-

order effects. To our knowledge, the only account of standalone programming languages for

higher-order effect handlers so far is Bosman et al.’s [2024] work on 𝜆sc , calculus for scoped effects

and handlers. The key differences between their 𝜆sc and our Fω
ha

are that (1) 𝜆sc is designed for

algebraic and scoped operations, while Fω
ha

supports arbitrary higher-order operations that can

be given as higher-order functor; (2) 𝜆sc uses operations with an continuation argument together

with mere type constructors as handlers (approach (ii) in Section 1), while we uses raw monads as

handlers; (3) 𝜆sc has a baked-in type-and-effect system, while Fω
ha
supports it as a user-level construct

Handlers of Higher-Order Effectful Operations

(Remark 2.7). Also, the work on 𝜆sc focused more on the user-facing aspects of the language, such

as type inference, whereas we have focused on the meta-theoretic properties of Fω
ha

– an equational

theory validated by the ‘compiler’ (the realizability model), canonicity, and parametricity.

6 Future Prospects
In this paper, we defined System Fω

ha
, an extension of System Fω with (equation-less) higher-order

algebraic effects. We gave a denotational model of it using realizability and proved the canonicity

of closed terms using synthetic Tait computability. A further extension with general recursion was

introduced and was modelled using synthetic domain theory. Future work abound:

(1) We should be able to prove normalisation of open Fω
ha
-terms following the lines of Sterling

[2021]. A subtlety is that we will need in StcTT an impredicative universe 𝑈0 that contains the

normalisation model and the syntactic model𝑀 : {𝔬𝔟} → JFωhaK𝑈0
, which means that in the first

place the category of judgements of Fω
ha

has to be constructed in some impredicative universe of

the ambient meta-theory, and this should be workable since we did not rely on anything classical.

(2) The language Fω
ha

is a core calculus. Although important features such as effect systems and

modular models may be implemented as libraries, for practical use they should be supported in a

more seamless way, such as by elaboration or by directly baking into the language.

(3) Only monadic computations are considered in Fω
ha
for simplicity. Generalising Fω

ha
frommonads

to arbitrary user-defined monoidal structures should be very useful. There does not seem to be

much theoretical obstacle, but designing a user-friendly syntax may be challenging.

(4) Efficiency of implementations is also an interesting aspect. Note that a continuation-passing

style translation for Fω
ha
-computations can be readily extracted from the realizability model of Fω

ha
,

but it should be possible to further optimise out all the overhead of effect handlers for statically

known computations and handlers by meta-programming.

(5) The biggest limitation of Fω
ha

is probably that equational axioms on effects are not formally

supported, since we did not include dependent types, in particular equality/identity types. Adding

(intensional) identity types to Fω
ha

is straightforward:

Id : {A : el ty } → (a, b : tm A) → el ty

refl : {A : el ty } → (a : tm A) → el (Id a a)
J : {A : el ty } {C : (a, b : tm A) → Id a b → el ty }

→ ((x : tm A) → C x x (refl x)) → {a, b : tm A} → (p : Id a b) → C a b p

and Σ and Π types are no more difficult. With Id we can then define in Fω
ha

law-abiding functors,

monads, higher-order functors, equational systems, etc. These allow us to ensure that a user-defined

monad to be used with eval must satisfy the equations associated to the operations. However,

what is challenging is adding equalities from the algebraic theory of effectful operations to the

computation judgements without breaking the canonicity of the type theory. This difficulty is

the same as that of adding quotient types to types theories without breaking canonicity, which is

possible in observational type theory [Pujet and Tabareau 2022] and cubical type theory [Coquand

et al. 2018]. Apart from the difficulty with quotients, having general recursion, impredicative

polymorphism, and dependent types all together is not straightforward either because the category

of well complete objects that we used in Section 2.4 as predomains is unlikely locally cartesian

closed, so we need to find another category of predomains.

References
Agda Developers. 2025. Agda. https://agda.readthedocs.io/

https://agda.readthedocs.io/

Zhixuan Yang and Nicolas Wu

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical reconstruction of a reduction free nor-

malization proof. In Category Theory and Computer Science, David Pitt, David E. Rydeheard, and Peter Johnstone (Eds.).

Springer Berlin Heidelberg, 182–199.

Steve Awodey, Jonas Frey, and Sam Speight. 2018. Impredicative Encodings of (Higher) Inductive Types. In Proceedings of

the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for

Computing Machinery, 76–85. doi:10.1145/3209108.3209130

Casper Bach Poulsen and Cas van der Rest. 2023. Hefty Algebras: Modular Elaboration of Higher-Order Algebraic Effects.

Proc. ACM Program. Lang. 7, POPL (2023). doi:10.1145/3571255

Andrej Bauer. 2022. Notes on Realizability. https://github.com/andrejbauer/notes-on-realizability Lecture notes for the

Midlands Graduate School 2022 lecture series on realizability.

Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Logical Methods in Computer

Science Volume 10, Issue 4 (2014). doi:10.2168/LMCS-10(4:9)2014

J.A. Bergstra and J.W. Klop. 1985. Algebra of communicating processes with abstraction. Theoretical Computer Science 37

(1985), 77–121. doi:10.1016/0304-3975(85)90088-x

Francis Borceux. 1994. Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Vol. 3. Cambridge University Press.

Roger Bosman, Birthe van den Berg, Wenhao Tang, and Tom Schrijvers. 2024. A Calculus for Scoped Effects & Handlers.

Logical Methods in Computer Science Volume 20, Issue 4, Article 17 (2024). doi:10.46298/lmcs-20(4:17)2024

Thierry Coquand, Carl Gunter, and Glynn Winskel. 1989. Domain theoretic models of polymorphism. Information and

Computation 81, 2 (1989), 123–167. doi:10.1016/0890-5401(89)90068-0

Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. On Higher Inductive Types in Cubical Type Theory. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).

Association for Computing Machinery, New York, NY, USA, 255–264. doi:10.1145/3209108.3209197

Roy L. Crole. 1994. Categories for Types. Cambridge University Press.

Tom de Jong. 2024. Categorical Realizability. https://github.com/andrejbauer/notes-on-realizability Lecture notes for the

course on Categorical Realizability at the Midlands Graduate School 2024.

Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and easy bidirectional typechecking for higher-rank

polymorphism. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (Boston,

Massachusetts, USA) (ICFP ’13). Association for Computing Machinery, New York, NY, USA, 429–442. doi:10.1145/

2500365.2500582

Marcelo Fiore. 2022. Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus. arXiv:2207.08777 [cs.LO]

doi:10.48550/arXiv.2207.08777.

Marcelo Fiore and Gordon Plotkin. 1997. An extension of models of Axiomatic Domain Theory to models of Synthetic

Domain Theory. In Computer Science Logic, Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Dirk Dalen, and Marc Bezem

(Eds.). Vol. 1258. Springer Berlin Heidelberg, 129–149. doi:10.1007/3-540-63172-0_36

Marcelo Fiore and Giuseppe Rosolini. 1997. Two models of synthetic domain theory. Journal of Pure and Applied Algebra

116, 1–3 (1997), 151–162. doi:10.1016/S0022-4049(96)00164-8

Peter Freyd. 1978. On proving that 1 is an indecomposable projective in various free categories. Manuscript (1978).

Dan Frumin, Amin Timany, and Lars Birkedal. 2024. Modular Denotational Semantics for Effects with Guarded Interaction

Trees. Proc. ACM Program. Lang. 8, POPL (2024). doi:10.1145/3632854

Jeremy Gibbons and Ralf Hinze. 2011. Just do it: simple monadic equational reasoning. In Proceedings of the 16th ACM

SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing

Machinery, New York, NY, USA, 2–14. doi:10.1145/2034773.2034777

Jean-Yves Girard. 1972. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre supérieur. Thèse d’État.

Université Paris VII.

Jean-Yves Girard. 1986. The System F of variable types, fifteen years later. Theoretical Computer Science 45 (1986), 159–192.

doi:10.1016/0304-3975(86)90044-7

Jean-Yves Girard. 1989. Proofs and types. Cambridge University Press.

Daniel Gratzer, Michael Shulman, and Jonathan Sterling. 2022. Strict universes for Grothendieck topoi. arXiv:2202.12012

https://arxiv.org/abs/2202.12012

Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. 2024. Decalf: A Directed, Effectful Cost-Aware Logical

Framework. Proceedings of the ACM on Programming Languages 8, POPL (2024), 273–301. doi:10.1145/3632852

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.). Cambridge University Press, Cambridge.

Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A framework for defining logics. J. ACM 40, 1 (1993), 143–184.

doi:10.1145/138027.138060

Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Semantics and Logics of Computation (Publications of

the Newton Institute), Andrew M. Pitts and P.Editors Dybjer (Eds.). Cambridge University Press, 79–130. doi:10.1017/

CBO9780511526619.004

https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1145/3571255
https://github.com/andrejbauer/notes-on-realizability
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/0304-3975(85)90088-x
https://doi.org/10.46298/lmcs-20(4:17)2024
https://doi.org/10.1016/0890-5401(89)90068-0
https://doi.org/10.1145/3209108.3209197
https://github.com/andrejbauer/notes-on-realizability
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582
https://arxiv.org/abs/2207.08777
https://doi.org/10.48550/arXiv.2207.08777
https://doi.org/10.1007/3-540-63172-0_36
https://doi.org/10.1016/S0022-4049(96)00164-8
https://doi.org/10.1145/3632854
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1016/0304-3975(86)90044-7
https://arxiv.org/abs/2202.12012
https://arxiv.org/abs/2202.12012
https://doi.org/10.1145/3632852
https://doi.org/10.1145/138027.138060
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004

Handlers of Higher-Order Effectful Operations

Xu Huang. 2023. Synthetic Tait Computability the Hard Way. arXiv:2310.02051 [cs.LO] https://arxiv.org/abs/2310.02051

J.M.E. Hyland. 1991. First steps in synthetic domain theory. In Category Theory, Aurelio Carboni, Maria Cristina Pedicchio,

and Guiseppe Rosolini (Eds.). Vol. 1488. Springer Berlin Heidelberg, 131–156. doi:10.1007/BFb0084217

Mamuka Jibladze. 1997. A presentation of the initial lift-algebra. Journal of Pure and Applied Algebra 116, 1–3 (1997),

185–198. doi:10.1016/S0022-4049(96)00108-9

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. Journal of Functional Programming 17, 1 (Jan. 2007), 1–82. doi:10.1017/s0956796806006034

Ohad Kammar and Gordon Plotkin. 2012. Algebraic foundations for effect-dependent optimisations. In Proceedings of the

39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 349–360. doi:10.1145/

2103656.2103698

Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. 2018. Codensity Lifting of Monads and its Dual. Logical Methods in

Computer Science Volume 14, Issue 4 (2018). doi:10.23638/LMCS-14(4:6)2018

Shin-ya Katsumata. 2005. A Semantic Formulation of ⊤⊤-Lifting and Logical Predicates for Computational Metalanguage.

Lecture Notes in Computer Science, Vol. 3634. Springer Berlin Heidelberg, 87–102. doi:10.1007/11538363_8

Oleg Kiselyov, Shin-Cheng Mu, and Amr Sabry. 2021. Not by equations alone. Journal of Functional Programming 31 (2021).

doi:10.1017/S0956796820000271

Søren Bøgh Lassen. 1998. Relational Reasoning about Functions and Nondeterminism. Ph. D. Dissertation. Aarhus University.

https://www.brics.dk/DS/98/2/ Series: BRICS Dissertation Series.

Daan Leijen. 2008. HMF: simple type inference for first-class polymorphism. In Proceedings of the 13th ACM SIGPLAN

International Conference on Functional Programming (Victoria, BC, Canada) (ICFP ’08). Association for Computing

Machinery, New York, NY, USA, 283–294. doi:10.1145/1411204.1411245

Paul Blain Levy. 2003. Call-By-Push-Value. Springer Netherlands. doi:10.1007/978-94-007-0954-6

Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Information and Computation 185, 2 (2003), 182–210. doi:10.1016/S0890-5401(03)00088-9

Sam Lindley and Ian Stark. 2005. Reducibility and ⊤⊤-Lifting for Computation Types. In Typed Lambda Calculi and

Applications (Lecture Notes in Computer Science, Vol. 3461), Paweł Urzyczyn (Ed.). Springer Berlin Heidelberg, 262–277.

doi:10.1007/11417170_20

John Longley and Alex Simpson. 1997. A uniform approach to domain theory in realizability models. Mathematical Structures

in Computer Science 7, 5 (1997), 469–505. doi:10.1017/S0960129597002387

John R. Longley. 1995. Realizability Toposes and Language Semantics. Ph. D. Dissertation. University of Edinburgh. https:

//era.ed.ac.uk/handle/1842/402

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’88). Association for Computing

Machinery, 47–57. doi:10.1145/73560.73564

Zhaohui Luo. 1994. Computation and reasoning: a type theory for computer science. Oxford University Press.

Zhaohui Luo, Sergei Soloviev, and Tao Xue. 2013. Coercive subtyping: Theory and implementation. Information and

Computation 223 (2013), 18–42. doi:10.1016/j.ic.2012.10.020

Saunders Mac Lane and Ieke Moerdijk. 1994. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer

New York. doi:10.1007/978-1-4612-0927-0

Per Martin-Löf. 1975a. About models for intuitionistic type theories and the notion of definitional equality. In Studies in

Logic and the Foundations of Mathematics. Vol. 82. Elsevier, 81–109.

Per Martin-Löf. 1975b. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium 73 Proceedings of the Logic

Colloquium, H. E. Rose and J. C. Shepherdson (Eds.). Elsevier, 73–118.

Per Martin-Löf. 1987. The Logic of Judgements. https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/The-

logic-of-judgements-typeset-1987.pdf Talk at Workshop on General Logic, Laboratory for Foundations of Computer

Science, University of Edinburgh, 23-27 February 1987.

Cristina Matache, Sam Lindley, Sean Moss, Sam Staton, Nicolas Wu, and Zhixuan Yang. 2025. Scoped Effects, Scoped

Operations, and Parameterized Algebraic Theories. ACM Trans. Program. Lang. Syst. 47, 2, Article 8 (2025), 33 pages.

doi:10.1145/3731678

Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. 2022. A cost-aware logical framework. Proc. ACM Program.

Lang. 6, POPL, Article 9 (2022), 31 pages. doi:10.1145/3498670

Wesley Phoa. 1991. Domain Theory in Realizability Toposes. Ph. D. Dissertation. University of Edinburgh. https://www.lfcs.

inf.ed.ac.uk/reports/91/ECS-LFCS-91-171/

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics for Operations with Scopes. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). Association for Computing

Machinery, 809–818. doi:10.1145/3209108.3209166

https://arxiv.org/abs/2310.02051
https://arxiv.org/abs/2310.02051
https://doi.org/10.1007/BFb0084217
https://doi.org/10.1016/S0022-4049(96)00108-9
https://doi.org/10.1017/s0956796806006034
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.23638/LMCS-14(4:6)2018
https://doi.org/10.1007/11538363_8
https://doi.org/10.1017/S0956796820000271
https://www.brics.dk/DS/98/2/
https://doi.org/10.1145/1411204.1411245
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/11417170_20
https://doi.org/10.1017/S0960129597002387
https://era.ed.ac.uk/handle/1842/402
https://era.ed.ac.uk/handle/1842/402
https://doi.org/10.1145/73560.73564
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1007/978-1-4612-0927-0
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/The-logic-of-judgements-typeset-1987.pdf
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/The-logic-of-judgements-typeset-1987.pdf
https://doi.org/10.1145/3731678
https://doi.org/10.1145/3498670
https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171/
https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171/
https://doi.org/10.1145/3209108.3209166

Zhixuan Yang and Nicolas Wu

Gordon Plotkin. 1973. Lambda Definability and Logical Relations. Memorandum SAI-RM-4. University of Edinburgh.

https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf

Gordon Plotkin. 1977. LCF considered as a programming language. Theoretical Computer Science 5, 3 (1977), 223–255.

doi:10.1016/0304-3975(77)90044-5

Gordon Plotkin. 1980. Lambda-Definability in the Full Type Hierarchy. In To H. B. Curry: Essays in Combinatory Logic,

Lambda Calculus, and Formalism, J. P. Seldin and J. R. Hindley (Eds.). Academic Press, 363–373. https://homepages.inf.

ed.ac.uk/gdp/publications/Lambda_Definability.pdf

Gordon Plotkin and John Power. 2001. Semantics for algebraic operations. Electronic Notes in Theoretical Computer Science

45 (2001), 332–345. doi:10.1016/S1571-0661(04)80970-8

Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Foundations of Software Science and

Computation Structures, 5th International Conference (FOSSACS 2002), Mogens Nielsen and Uffe Engberg (Eds.). Springer,

342–356. doi:10.1007/3-540-45931-6_24

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1 (2003),

69–94. doi:10.1023/A:1023064908962

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, Giuseppe

Castagna (Ed.). Springer Berlin Heidelberg, 80–94. doi:10.1007/978-3-642-00590-9_7

Gordon Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).

doi:10.2168/lmcs-9(4:23)2013

Loïc Pujet and Nicolas Tabareau. 2022. Observational equality: now for good. Proc. ACM Program. Lang. 6, POPL, Article 32

(2022), 27 pages. doi:10.1145/3498693

Bernhard Reus. 1996. Program verification in synthetic domain theory. Ph. D. Dissertation. Ludwig Maximilian University of

Munich. https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/reus.pdf

Bernhard Reus. 1999. Formalizing Synthetic Domain Theory. Journal of Automated Reasoning 23, 3 (1999), 411–444.

doi:10.1023/A:1006258506401

Bernhard Reus and Thomas Streicher. 1999. General synthetic domain theory – a logical approach. Mathematical Structures

in Computer Science 9, 2 (1999), 177–223. doi:10.1017/S096012959900273X

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress.

Giuseppe Rosolini. 1986. Continuity and effectiveness in topoi. Ph. D. Dissertation. University of Oxford.

Dana S. Scott. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science 121, 1 (1993),

411–440. doi:10.1016/0304-3975(93)90095-B

Alex Simpson. 2004. Computational adequacy for recursive types in models of intuitionistic set theory. Annals of Pure and

Applied Logic 130, 1-3 (2004), 207–275. doi:10.1016/j.apal.2003.12.005

Alex K. Simpson. 1999. Computational Adequacy in an Elementary Topos. In Computer Science Logic. Vol. 1584. Springer

Berlin Heidelberg, 323–342. doi:10.1007/10703163_22 Series Title: Lecture Notes in Computer Science.

R. Statman. 1985. Logical relations and the typed 𝜆-calculus. Information and Control 65, 2 (1985), 85–97. doi:10.1016/S0019-

9958(85)80001-2

Jonathan Sterling. 2021. First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical Type Theory. Ph. D.

Dissertation. Carnegie Mellon University. doi:10.5281/zenodo.6990769 Version 1.1, revised May 2022.

Jonathan Sterling. 2022. Naïve logical relations in synthetic Tait computability. (June 2022). Unpublished manuscript.

Jonathan Sterling. 2023. Adequacy of sheaf semantics of noninterference. https://www.jonmsterling.com/jms-005Z.xml

Erratum.

Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. Proceedings - Symposium on Logic in

Computer Science 2021-June (2021), 1–22. doi:10.1109/LICS52264.2021.9470719 arXiv: 2101.11479.

Jonathan Sterling and Robert Harper. 2021. Logical Relations as Types: Proof-Relevant Parametricity for Program Modules.

J. ACM 68, 6, Article 41 (2021). doi:10.1145/3474834

Jonathan Sterling and Robert Harper. 2022. Sheaf Semantics of Termination-Insensitive Noninterference. In 7th International

Conference on Formal Structures for Computation andDeduction (FSCD 2022) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 228), Amy P. Felty (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 5:1–5:19. doi:10.4230/LIPIcs.

FSCD.2022.5

Thomas Streicher. 2006. Domain-theoretic foundations of functional programming. World Scientific Publishing Company.

Thomas Streicher. 2017. Realizability. https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf Lecture

notes.

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. The Journal of Symbolic Logic 32, 2 (1967),

198–212. http://www.jstor.org/stable/2271658

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. https:

//homotopytypetheory.org/book.

https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://doi.org/10.1016/0304-3975(77)90044-5
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1145/3498693
https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/reus.pdf
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1017/S096012959900273X
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1016/j.apal.2003.12.005
https://doi.org/10.1007/10703163_22
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.5281/zenodo.6990769
https://www.jonmsterling.com/jms-005Z.xml
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1145/3474834
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
http://www.jstor.org/stable/2271658
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Handlers of Higher-Order Effectful Operations

Birthe van den Berg and Tom Schrijvers. 2024. A framework for higher-order effects & handlers. Sci. Comput. Program. 234,

C (2024), 32 pages. doi:10.1016/j.scico.2024.103086

Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and Nicolas Wu. 2021. Latent Effects for Reusable Language

Components. In Programming Languages and Systems, Hakjoo Oh (Ed.). Springer International Publishing, Cham,

182–201.

Jaap van Oosten. 2008. Realizability: an introduction to its categorical side (1st ed.). Elsevier, Oxford.

Philip Wadler. 1989. Theorems for free!. In Proceedings of the fourth international conference on Functional programming

languages and computer architecture - FPCA ’89, Vol. 19. ACM Press, 347–359. doi:10.1145/99370.99404

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell - Haskell ’14 (2014), 1–12. doi:10.1145/2633357.2633358

Zhixuan Yang. 2025. Revisiting the Logical Framework for Locally Cartesian Closed Categories. (2025). https://yangzhixuan.

github.io/pdf/lcclf.pdf Manuscript.

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. 2022. Structured Handling of Scoped

Effects. Springer International Publishing, 462–491. doi:10.1007/978-3-030-99336-8_17

Zhixuan Yang and Nicolas Wu. 2021. Reasoning about Effect Interaction by Fusion. Proc. ACM Program. Lang. 5, ICFP,

Article 73 (2021), 29 pages. doi:10.1145/3473578

Zhixuan Yang and Nicolas Wu. 2023. Modular Models of Monoids with Operations. Proc. ACM Program. Lang. 7, ICFP,

Article 208 (2023), 38 pages. doi:10.1145/3607850

A Complete Signatures of the Languages
This appendix collects the full signatures of the languages in the paper.

A.1 Signature of System Fω
ha

The following is the signature of System Fω
ha

from Section 2 for easy reference.

• Kinds

ki : J

el : ki → J
ty : ki

⇒𝑘 : ki → ki → ki

• Elements of the kind of types

unit : el ty

bool : el ty

⇒𝑡 : el ty → el ty → el ty

∀̄ : (k : ki) → (el k → el ty) → el ty

• Elements of function kinds

record A � B : J where

fwd : A → B

bwd : B → A

_ : (a : A) → bwd (fwd a) = a

_ : (b : B) → fwd (bwd b) = b

⇒k-iso : {A, B : ki } → el (A ⇒𝑘 B) � (el A → el B)
• Terms

tm : el ty → J
unit-iso : tm unit � 1

⇒t-iso : {A, B : el ty } → tm (A ⇒𝑡 B) � (tm A → tm B)
¯∀-iso : {k : _} {A : _} → tm (∀̄ k A) � ((𝛼 : el k) → tm (A 𝛼))

https://doi.org/10.1016/j.scico.2024.103086
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/2633357.2633358
https://yangzhixuan.github.io/pdf/lcclf.pdf
https://yangzhixuan.github.io/pdf/lcclf.pdf
https://doi.org/10.1007/978-3-030-99336-8_17
https://doi.org/10.1145/3473578
https://doi.org/10.1145/3607850

Zhixuan Yang and Nicolas Wu

tt : tm bool

ff : tm bool

• Functors

tyco : ki

tyco = (ty ⇒𝑘 ty)
fmap-ty : (F : el tyco) → el ty

fmap-ty F = ∀̄ ty (𝜆𝛼. ∀̄ ty (𝜆𝛽. (𝛼 ⇒𝑡 𝛽) ⇒𝑡 (F 𝛼 ⇒𝑡 F 𝛽)))
record RawFunctor : J where

0 : el tyco

fmap : tm (fmap-ty 0)
• Monads

record RawMonad : J where

0 : el tyco

ret : tm (∀̄ ty (𝜆𝛼. 𝛼 ⇒𝑡 0 𝛼))
bind : tm (∀̄ ty (𝜆𝛼. ∀̄ ty (𝜆𝛽. 0 𝛼 ⇒𝑡 (𝛼 ⇒𝑡 0 𝛽) ⇒𝑡 0 𝛽)))

• Higher-order functors

htyco : ki

htyco = tyco ⇒𝑘 tyco

trans : (F ,G : el tyco) → el ty

trans F G = ∀̄ ty (𝜆𝛼. F 𝛼 ⇒𝑡 G 𝛼)
record RawHFunctor : J where

0 : el htyco

hfmap : (F : RawFunctor) → tm (fmap-ty (0 (F .0)))
hmap : (F,G : RawFunctor) → tm (trans (F .0) (G .0))

→ tm (trans (0 (F .0)) (0 (G .0)))
• Computations

co : (H : RawHFunctor) → (A : el ty) → J
val : {H ,A} → tm A → co H A

let-in : {H ,A, B} → co H A → (tm A → co H B) → co H B

• Laws of computations

val-let : {H ,A, B} → (a : tm A) → (k : tm A → co H B)
→ let-in (val a) k = k a

let-val : {H ,A} → (m : co H A) → let-in m val = m

let-assoc : {H ,A, B,C } → (m1 : co H A)
→ (m2 : tm A → co H B) → (m3 : tm B → co H C)
→ let-in (let-in m1 m2) m3 = let-in m1 (𝜆a. let-in (m2 a) m3)

• Thunks

th : RawHFunctor → el ty → el ty

th-iso : {H ,A} → tm (th H A) � co H A

⇑ : {H ,A} → tm (th H A) → co H A

Handlers of Higher-Order Effectful Operations

⇑ = th-iso .fwd

⇓ : {H ,A} → co H A → tm (th H A)
⇓ = th-iso .bwd

th-mnd : RawHFunctor → RawMonad

th-mnd H .0 = th H

th-mnd H .ret = 𝜆A x . ⇓ (val x)
th-mnd H .bind = 𝜆A B m k. ⇓ (let-in (force m) (𝜆a. ⇑ (k a)))

• Operations

op : {H ,A, B} → tm (H (th H) A) → (tm A → co H B) → co H B

let-op : {H ,A, B,C } → (p : tm (H (th H) A))
→ (k : tm A → co H B) → (k′

: tm B → co H C)
→ let-in (op p k) k

′ = op p (𝜆a. let-in (k a) k
′)

• Monads with algebras

record MonadAlg (H : RawHFunctor) : J where

include RawMonad as M

malg : tm (trans (H .0 0) 0)
th-alg : (H : RawHFunctor) → MonadAlg H

th-alg H .M = th-mnd H

th-alg H .malg = 𝜆𝛼 o. ⇓ (op o val)
• Evaluation of computations

eval : {H } → (m : MonadAlg H) → (A : el ty) → co H A → tm (m .0 A)
eval-val : {H ,A} → (m : MonadAlg H) → (a : tm A)

→ eval m A (val a) = m .ret A a

eval-op : {H ,A, B} → (m : MonadAlg H)
→ (p : tm (H (th H) A)) → (k : tm A → co H B)
→ let bind = m .bind A B

malg = m .malg A

T = fct-of -mnd (th-mnd H)
M = fct-of -mnd (m .M)

in eval m B (op p k)
= bind (malg (H .hmap T M (𝜆𝛼 c. eval m 𝛼 (⇑c)) A p))

(𝜆a. eval m B (k a))
fct-of -mnd : RawMonad → RawFunctor

fct-of -mnd m .0 = m .0

fct-of -mnd m .fmap 𝛼 𝛽 f ma = m .bind 𝛼 𝛽 ma (𝜆a. m .ret _ (f a))

A.2 Effect Families in Fω
ha

We did not include in System Fω
ha

any judgements for modular handlers [Yang and Wu 2021, 2023]

or effect systems [Bauer and Pretnar 2014; Kammar and Plotkin 2012; Lucassen and Gifford 1988]

that track the effect operations that a computation may perform, because both of them can be

derived concepts in Fω
ha
.

Zhixuan Yang and Nicolas Wu

Firstly, the judgement for effect families [Yang and Wu 2023] is the following record in Fω
ha
:

record Fam : J where

eff : ki

sig : el eff → RawHFunctor

add : el eff → el eff → el eff

The elements of the kind eff : ki are effect signatures in this family, each of them determining a

higher-order functor via sig. Additionally, there is a way add to combine two effects in a family.

Then we have the following definitions for monads and computations for an effect e in a family

F , which can be viewed as a generic effect system parameterised by an effect family F :

MonadEff : (F : Fam) → (e : el (F .eff)) → J
MonadEff F e = MonadAlg (F .sig e)
co[_∋_] : (F : Fam) → (e : el (F .eff)) → el ty → J
co[F ∋ e] = co (F .sig e)

Amodular handler processing the effect e in a family F and outputting the effect o is the structure

record Hdl (F : Fam) (e o : el (F .eff)) : J where

alg : (𝜇 : el (F .eff)) → MonadEff F (F .add o 𝜇)
→ MonadEff F (F .add e 𝜇)

res : el (ty ⇒𝑘 ty)
run : (𝜇 : el (F .eff)) → (Mo : MonadEff F (F .add o 𝜇))

→ tm (trans (alg 𝜇 Mo) (𝜆A. Mo (res A)))

Modular handlers as such can be applied to computations co[F ∋ (F .add e 𝜇)] A, for all

‘ambient’ effects 𝜇, removing the effect e and generating the effect o, yielding computations

co[F ∋ (F .add o 𝜇)] (h .res A):

handle : {F , e, o, 𝜇,A} → (h : Hdl F e o) → co[F ∋ (F .add e 𝜇)] A

→ co[F ∋ (F .add o 𝜇)] (h .res A)
handle h c = ⇑ (h .run 𝜇 T A c

′) where

T : MonadEff F (F .add o 𝜇)
T = th-alg (F .sig (F .add o 𝜇))
c
′

: tm (h .alg 𝜇 T A)
c
′ = eval (h .alg 𝜇 (th-alg (F .sig (F .add o 𝜇)))) _ c

The complete definition of the effect family algFam, together with the needed standard type

connectives, is collected below.

• Kind-level and type-level products

_ ×𝑘 _ : ki → ki → ki

×k-iso : {k k
′

: ki } → el (k ×𝑘 k
′) = Σ (el k) (𝜆_. el k

′)
_ ×𝑡 _ : el ty → el ty → el ty

×t-iso : {A B : el ty } → tm (A ×𝑡 B) = Σ (tm A) (𝜆_. tm B)

• The empty type

empty : el ty

Handlers of Higher-Order Effectful Operations

absurd : (A : el ty) → tm empty → tm A

absurd-uniq : {A : el ty } → (f : tm empty → tm A) → f = absurd A

• Coproducts

We only need type-level coproducts, but for generality we define coproducts parameterised

by judgements U : J and T : U → J:
record coprod_intro (U : J) (T : U → J) : J where

+ : U → U → U

inl : {a, b} → T a → T (a + b)
inr : {a, b} → T b → T (a + b)

record coprod_elim (U : J) (T : U → J) (V : J) (S : U → J)
(intr : coprod_intro U T) : J where

open coprod_intro intr

case : {a, b, c } → (T a → S c) → (T b → S c) → (T (a + b) → S c)
case_𝛽_l : {a, b, c } → (l : T a → S c) → (r : T b → S c) → (x : T a)

→ case l r (inl x) = l x

case_𝛽_r : {a, b, c } → (l : T a → S c) → (r : T b → S c) → (x : T b)
→ case l r (inr x) = r x

case_𝜂 : {a, b, c } → (f : T (a + b) → S c)
→ case (𝜆x . f (inl x)) (𝜆x . f (inr x)) = f

record coprod (U : J) (T : U → J) : J where

cpintr : coprod_intro U T

cpelim : coprod_elim U T U T cpintr

We then instantiate with U = el ty and T = tm to get type-level coproducts:

coprodTy : coprod (el ty) tm

In this way, if kind-level coproducts are also needed, they can be easily added by a declaration

coprodKi : coprod ki el.

• Kind-level lists with elimination to ML-style signatures

We first define the judgements of lists parameterised by the universe (𝑈 ,𝑇) that the lists
live in and the universe (𝑉 , 𝑆) that the lists can eliminate into:

record ListAlg {U : J } {V : J } (T : U → J) (S : V → J)
(k : U) (a : V) : J

where

fst : S a

snd : T k → S a → S a

record ListHom {U : J } {V : J } {W : J }
{T : U → J } {S : V → J } {R : W → J }
{k : U } {a : V } {b : W }
(alga : ListAlg T S k a) (algb : ListAlg T R k b) : J

where

f : S a → R b

homnil : f (alga .fst) = algb .fst

Zhixuan Yang and Nicolas Wu

homcons : (x : T k) → (a : S a) → f (alga .snd x a) = algb .snd x (f a)
record ListIntro (U : J) (T : U → J) : J where

listc : U → U

listcalg : {k : U } → ListAlg T T k (listc k)
nil : (k : U) → T (listc k)
nil k = listcalg .fst

cons : {k : U } → T k → T (listc k) → T (listc k)
cons x xs = listcalg .snd x xs

record ListElim (U : J) (T : U → J) (V : J) (S : V → J)
(intr : ListIntro U T) : J

where

open ListIntro intr

fold : {k : U } → {a : V } → (alga : ListAlg T S k a)
→ T (listc k) → S a

fold𝛽nil : {k, a} → (alga : ListAlg T S k a)
→ fold alga (nil k) = alga .fst

fold𝛽cons : {k, a} → (alga : ListAlg T S k a)
→ (x : T k) (xs : T (listc k))
→ fold alga (cons x xs) = alga .snd x (fold alga xs)

fold𝜂 : {k, a} → (alga : ListAlg T S k a)
→ (h : ListHom listcalg alga)
→ fold alga = h .f

record List (U : J) (T : U → J) (V : J) (S : V → J) : J where

intr : ListIntro U T

elim : ListElim U T V S intr

We have kind-level lists with declarations

ListKi : List ki el ki el

We additionally have elimination of kind-level lists to ML-style signatures

si : J

si = Σ ki (𝜆k. (el k → el ty))
mo : si → J
mo (k, t) = Σ (el k) (𝜆𝛼. tm (t 𝛼))
ListKiTyElim : ListElim ki el si mo (ListKi .intr)

In the following we will rename the components of lists as follows:

open List ListKi renaming

(listc ↦→ listk ; nil ↦→ nilk ; cons ↦→ consk ;

fold ↦→ foldk ; fold𝛽nil ↦→ foldk𝛽ni;

fold𝛽cons ↦→ foldk𝛽cons; fold𝜂 ↦→ foldk𝜂)
open ListElim ListKiTyElim renaming

Handlers of Higher-Order Effectful Operations

(fold ↦→ foldkt ; fold𝛽nil ↦→ foldkt𝛽nil;

fold𝛽cons ↦→ foldkt𝛽cons; fold𝜂 ↦→ foldkt𝜂)

• The constantly empty higher-order functor

VoidH : RawHFunctor

VoidH = record {0 = voidH0

; hfmap = hfmapVoid

; hmap = hmapVoid }
where

voidH0 : el htyco

voidH0 _ _ = empty

hfmapVoid : (F : RawFunctor) → tm (fmap-ty (voidH0 (0 F)))
hfmapVoid F 𝛼 𝛽 f x = x

hmapVoid : (F G : RawFunctor) → tm (trans (0 F) (0 G))
→ tm (nat − ty (voidH0 (0 F)) (voidH0 (0 G)))

hmapVoid F G _ 𝛼 x = x

• Coproduct of higher-order functors

coprodHF : RawHFunctor → RawHFunctor → RawHFunctor

coprodHF H1 H2 .0 = 𝜆F A. (H1 .0 F A) + (H2 .0 F A)
coprodHF H1 H2 .hfmap = 𝜆F 𝛼 𝛽 f x .

case {c = H1 .0 (0 F) 𝛽 + H2 .0 (0 F) 𝛽 }
(𝜆l. inl (H1 .hfmap F 𝛼 𝛽 f l))
(𝜆r . inr (H2 .hfmap F 𝛼 𝛽 f r))
x

coprodHF H1 H2 .hmap = 𝜆F G s 𝛼 x .

case {c = H1 .0 (0 G) 𝛼 + H2 .0 (0 G) 𝛼 }
(𝜆l. inl (H1 .hmap F G s 𝛼 l))
(𝜆r . inr (H2 .hmap F G s 𝛼 r))
x

• Higher-order functor for an algebraic operation

AlgOpHFun : el ty → el ty → RawHFunctor

AlgOpHFun P A =

record {0 = 𝜆_ X . P ×𝑡 (A ⇒𝑡 X)
; hfmap = 𝜆F 𝛼 𝛽 f (p, k). (p, (𝜆x . f (k x)))
; hmap = 𝜆F G s 𝛼 pk. pk }

• The ML-style signature corresponding of functors

FctSig : si

FctSig = tyco, fmap-ty

FctToMod : RawFunctor → mo FctSig

FctToMod F = (0 F), (fmap F)

Zhixuan Yang and Nicolas Wu

FctFromMod : mo FctSig → RawFunctor

FctFromMod (F, fmap) = record {0 = F ; fmap = fmap }

• The ML-style signature corresponding of higher-order functors

HFctSig : si

HFctSig = htyco, (𝜆H . hfmapTy H ×𝑡 hmapTy H) where

hfmapTy : (H : el htyco) → el ty

hfmapTy H = ∀̄ tyco (𝜆F . fmap-ty F ⇒𝑡 fmap-ty (H F))
hmapTy : (H : el htyco) → el ty

hmapTy H = ∀̄ tyco (𝜆F . fmap-ty F ⇒𝑡

∀̄ tyco (𝜆G. fmap-ty G ⇒𝑡

(trans F G ⇒𝑡 nat_ty (H F) (H G))))
HFctToMod : RawHFunctor → mo HFctSig

HFctToMod H = (H .0),
((𝜆F fmap. H .hfmap (FctFromMod (F, fmap)))
, 𝜆F fmap1 G fmap2 .

H .hmap (FctFromMod (F , fmap1))
(FctFromMod (G, fmap2)))

HFctFromMod : mo HFctSig → RawHFunctor

HFctFromMod (H , (hfmap, hmap)) =
record {0 = H

; hfmap = 𝜆F . hfmap (F .0) (F .fmap)
; hmap = 𝜆F G. hmap (F .0) (F .fmap) (G .0) (G .fmap) }

• The family of algebraic operations

AlgSig : el (listk (ty ⇒𝑘 ty)) → RawHFunctor

AlgSig es = HFctFromMod

(foldkt {a = HFctSig }
(record { fst = HFctToMod VoidH

; snd = 𝜆(P,A) H .

HFctToMod (coprodHF (AlgOpHFun P A)
(HFctFromMod H)) })

es)
ListAppk : {k : ki } → el (listk k) → el (listk k) → el (listk k)
ListAppk {k } x y =

foldk {a = listk k }
(record { fst = y; snd = consk }) x

algFam : Fam

algFam = record {eff = listk (ty ×𝑘 ty)
; sig = AlgSig

; add = ListAppk }

Handlers of Higher-Order Effectful Operations

B Equations of Computations for the Realizability Model
In Section 3.2 we defined a model of Fω

ha
in the language of assemblies (Language 3.1). This appendix

shows that the equational laws of Fω
ha

are validated by the definitions in Section 3.2.

The monadic laws of computations (Fω
ha
-3) are satisfied:

• For val-let, given any 𝑎 : 𝑅.tm A and 𝑘 : 𝑅.tm A → 𝑅.co H B,

let-in (val a) k

= {by definition of 𝑅.let-in}
𝜆𝑇 𝐶 𝑟 . val a T C (𝜆a. k a T C r)

= {by definition of 𝑅.val}
𝜆𝑇 𝐶 𝑟 . k a T C r

= {𝜂-rule for functions}
k a

• The case for let-val is very similar. Given any 𝑐 : 𝑅.co H A,

let-in c val

= {by definition of 𝑅.let-in}
𝜆𝑇 𝐶 𝑟 . c T C (𝜆a. val a T C r)

= {by definition of 𝑅.val}
𝜆𝑇 𝐶 𝑟 . c T C (𝜆a. r a)

= {𝜂-rule for functions}
𝑐

• For let-assoc, given any 𝑐1, 𝑐2, and 𝑐3, we have

let-in (let-in c1 c2) c3

= 𝜆T C r . (let-in c1 c2) T C (𝜆b. c3 b T C r)
= 𝜆T C r . c1 T C (𝜆a. c2 a T C (𝜆b. c3 b T C r))
= 𝜆T C r . c1 T C (𝜆a. let-in (c2 a) c3)
= let-in c1 (𝜆a. let-in (c2 a) c3)

Now we check that the equation eval-val (Fω
ha
-8) is satisfied: for all 𝐻 : 𝑅.RawHFunctor , 𝐴 :

𝑅.el 𝑅.ty, 𝑇 : 𝑅.MonadAlg H and 𝑎 : 𝐴,

𝑅.eval 𝑇 𝐴 (𝑅.val 𝑎)
= {by definition of 𝑅.eval}
𝑅.val 𝑎 𝑇 𝐴 𝑇 .ret

= {by definition of 𝑅.val}
(𝜆𝑇 𝐵 𝑟 . 𝑟 𝑎) 𝑇 𝐴 𝑇 .ret

= 𝑇 .ret 𝑎

Zhixuan Yang and Nicolas Wu

The model of operations is defined as follows:

𝑅.op : {𝐻,𝐴, 𝐵} → 𝐻 (th H) 𝐴 → (𝐴 → 𝑅.co 𝐻 𝐵) → 𝑅.co 𝐻 𝐵

𝑅.op 𝑜 𝑘 = 𝜆𝑇 𝐶 𝑟 .

𝑇 .bind 𝐴 𝐶

(𝑇 .malg 𝐴 (𝐻.hmap (th H) 𝑇 (𝑅.eval 𝑇) 𝐴 𝑜))
(𝜆𝑎. 𝑘 𝑎 𝑇 𝐶 𝑟)

It remains to check that the equations let-op (Fω
ha
-6) and eval-op (Fω

ha
-9) are satisfied.

For let-op, given arbitrary 𝑜 : H (th H) A, k : A → co H B, k
′

: B → co H C,

let-in (op o k) k
′

= {by definition of 𝑅.let-in}
𝜆𝑇 𝐶 𝑟 . (op o k) T C (𝜆𝑏. k

′ 𝑏 𝑇 𝐶 𝑟)

=

{
by definition of 𝑅.op and let o

′
be

𝑇 .malg _ (𝐻.hmap _ _ (𝑅.eval 𝑇) _ 𝑜)

}
(9)

𝑇 .bind _ _ o
′ (𝜆𝑎. 𝑘 𝑎 𝑇 _ (𝜆𝑏. k

′
b T _ r))

= {by definition of 𝑅.let-in (k a) k
′}

op o (𝜆a. let-in (k a) k
′)

For eval-op, given any 𝑇 : MonadAlg H , 𝑜 : H (th H) A and k : A → co H B,

eval T (op o k)
= {by definition of 𝑅.eval}
(op o k) T _ 𝑇 .ret

= {by definition of 𝑅.op and let o
′
be the same as in (9)}

𝑇 .bind _ _ o
′ (𝜆𝑎. k a T _ 𝑇 .ret)

= {by definition of 𝑅.eval 𝑇 _ k a}
𝑇 .bind _ _ o

′ (𝜆𝑎. eval T _ (k a))

C The Synthetic Logical Relation Model of Fωha

In this appendix, we define the logical relation model of Fω
ha

in detail. Let us start two useful lemmas

that we did not include in the main text.

The first of them says that we can not only glue but also tear types apart. Given any type 𝐴 : 𝑈

in StcTT, we can tear it to an object-space fragment 𝐴◦
and a meta-space fragment 𝐴•

:

𝐴◦
: #𝑈 𝐴•

: ({𝔬𝔟} → 𝐴) → 𝑈 •

𝐴◦ = 𝜂◦𝑈 𝐴 𝐴• = 𝜆𝑜. {𝐴 | 𝔬𝔟 ↩→ 𝑜}

where𝑈 • := {𝐴 : 𝑈 | -modal 𝐴} is the subuniverse of -modal types. The type {𝐴 | 𝔬𝔟 ↩→ 𝑎} is
 -modal because it is a singleton under 𝔬𝔟 (Lemma 4.8).

Lemma C.1. For every type 𝐴 : 𝑈 in StcTT, there is an isomorphism 𝐴 � (𝑜 : 𝐴◦) ⋉𝐴• 𝑜 .

Proof. The two directions of the isomorphism are

fwd : 𝐴 → (𝑜 : 𝐴◦) ⋉𝐴• 𝑜 bwd : ((𝑜 : 𝐴◦) ⋉𝐴• 𝑜) → 𝐴

fwd 𝑎 = [𝔬𝔟 ↩→ 𝜆{_ : 𝔬𝔟}. 𝑎 | 𝑎] bwd [𝔬𝔟 ↩→ 𝑜 | 𝑐] = 𝑐

Handlers of Higher-Order Effectful Operations

These two functions are indeed mutual inverses: for all 𝑎 : 𝐴,

bwd (fwd a) = bwd [𝔬𝔟 ↩→ 𝜆{_ : 𝔬𝔟}. 𝑎 | 𝑎] = 𝑎;

for all [𝔬𝔟 ↩→ 𝑜 | 𝑐], by definition fwd (bwd [𝔬𝔟 ↩→ 𝑜 | 𝑐]) = [𝔬𝔟 ↩→ 𝑐 | 𝑐], but 𝑐 has type
𝐴• := {𝑐 | 𝔬𝔟 ↩→ 𝑜}, so [𝔬𝔟 ↩→ 𝑐 | 𝑐] = [𝔬𝔟 ↩→ 𝑜 | 𝑐]. □

Since every type of StcTT is isomorphic to a glue type, we can characterise function types of

StcTT more extrinsically, which explicitises the idea that a map between logical predicates sends

(proofs for) related input to (proofs for) related output.

Lemma C.2. For all universes𝑈 of StcTT, there is an isomorphism ⋉-fun-iso:(
(𝑎 : 𝐴) ⋉ 𝑃 𝑎

)
→

(
(𝑏 : 𝐵) ⋉𝑄 𝑏

)
� (𝑓 : 𝐴 → 𝐵) ⋉

(
(𝑎 : {𝔬𝔟} → 𝐴) → 𝑃 𝑎 → 𝑄 (𝑓 𝑎)

)
for all 𝐴, 𝐵 : #𝑈 , 𝑃 : ({𝔬𝔟} → 𝐴) → 𝑈 •

, and 𝑄 : ({𝔬𝔟} → 𝐵) → 𝑈 •
, where 𝑈 •

is the subuniverse

{𝐴 : 𝑈 | -modal 𝐴} of -modal types.

Proof. The two directions of the isomorphism are

fwd 𝑔 = [𝔬𝔟 ↩→ 𝜆𝑎. 𝑔 𝑎 | 𝜆𝑎 𝑝. unglue (𝑔 [𝔬𝔟 ↩→ 𝑎 | 𝑝])]
bwd [𝔬𝔟 ↩→ 𝑓 | ℎ] [𝔬𝔟 ↩→ 𝑎 | 𝑝] = [𝔬𝔟 ↩→ 𝑓 𝑎 | ℎ 𝑎 𝑝]

It is routine calculation to check that these two directions are mutual inverses.

bwd (fwd 𝑔)
= bwd ([𝔬𝔟 ↩→ 𝜆𝑎. 𝑔 𝑎 | 𝜆𝑎 𝑝. unglue (𝑔 [𝔬𝔟 ↩→ 𝑎 | 𝑝])])
= 𝜆[𝔬𝔟 ↩→ 𝑎 | 𝑝] . [𝔬𝔟 ↩→ 𝑔 𝑎 | unglue (𝑔 [𝔬𝔟 ↩→ 𝑎 | 𝑝])]
= 𝜆𝑎∗ . 𝑔 𝑎∗

= 𝑔

fwd (bwd [𝔬𝔟 ↩→ 𝑓 | ℎ])
= fwd (𝜆[𝔬𝔟 ↩→ 𝑎 | 𝑝] . [𝔬𝔟 ↩→ 𝑓 𝑎 | ℎ 𝑎 𝑝])
= [𝔬𝔟 ↩→ 𝜆𝑎. 𝑓 𝑎 | 𝜆𝑎 𝑝. unglue [𝔬𝔟 ↩→ 𝑓 𝑎 | ℎ 𝑎 𝑝]]
= [𝔬𝔟 ↩→ 𝑓 | ℎ] □

Now we come back to define the logical relation model:

𝑀∗
: {JFωhaK𝑈2

| 𝔬𝔟 ↩→ 𝑀} (10)

Notation C.3. In the rest of this section, for every declaration dec in the signature of Fω
ha
, we

will write dec
∗
for 𝑀∗ .dec and just dec for 𝑀.dec. For example, ki

∗
: {𝑈2 | 𝔬𝔟 ↩→ ki} means

𝑀∗ .ki : {𝑈2 | 𝔬𝔟 ↩→ ki}.

The logical predicate model of the judgement of kinds (Fω-1) is

ki
∗

: {𝑈2 | 𝔬𝔟 ↩→ ki}
ki

∗ = (𝛼 : ki) ⋉ {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} (11)

This uses the glue type (4.9) correctly because the generic model𝑀 (4.6) has type {𝔬𝔟} → JFωhaK𝑈0
,

so the type of ki, or more explicitly 𝜆{𝑧 : 𝔬𝔟}. (𝑀 {𝑧}) .ki, is {𝔬𝔟} → 𝑈0, i.e. #𝑈0. The type

{𝑈1 | 𝔬𝔟 ↩→ el 𝛼} is -modal because when 𝔬𝔟 holds, all elements of {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} are equal
to el 𝛼 , so the type {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} has exactly one element so isomorphic to the unit 1. By

Lemma 4.8, the type {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} is -modal.

Zhixuan Yang and Nicolas Wu

More intuitively, the definition (11) is the proof-relevant logical predicate for kinds. A proof for a

kind 𝛼 : ki satisfying the predicate is a type 𝐴 : 𝑈1 that restrict to el 𝛼 in the object space. Such a

type 𝐴 is a ‘candidate’ for the logical predicate for the kind 𝛼 . This is the same idea as reducibility

candidates in Girard’s proof of strong normalisation of System F [Girard 1989].

In accordance, the corresponding𝑀∗ .el is as follows:

el
∗

: {ki
∗ → 𝑈1 | 𝔬𝔟 ↩→ el}

el
∗ 𝑔 = unglue 𝑔

(12)

Let us more carefully examine how this definition type checks: the argument 𝑔 has type ki
∗ = (𝛼 :

ki) ⋉ {𝑈1 | 𝔬𝔟 ↩→ el 𝛼}. Therefore unglue 𝑔 has type {𝑈1 | 𝔬𝔟 ↩→ el 𝑔} (note that under 𝔬𝔟, the
type of 𝑔 is strictly equal to the type ki, thus it makes sense to write el 𝑔 in a context where 𝔬𝔟

holds). Thus el
∗
is indeed a function ki

∗ → 𝑈1 that strictly restricts to el under 𝔬𝔟.

For kind-level functions, we need to define

⇒𝑘
∗

: {ki
∗ → ki

∗ → ki
∗ | 𝔬𝔟 ↩→ _⇒𝑘_}

Let us derive the definition step-by-step. Our goal is to fill the hole ?0 in

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗
𝑘

[𝔬𝔟 ↩→ 𝛽 | 𝐵] = ?0 : {ki
∗ | 𝔬𝔟 ↩→ 𝛼 ⇒𝑘 𝛽} ,

where the variables in context have the following types

𝛼, 𝛽 : {𝔬𝔟} → ki 𝐴 : {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} 𝐵 : {𝑈1 | 𝔬𝔟 ↩→ el 𝛽}. (13)

Since ki
∗
is a glue type (11), we can use the term former of glue types:

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗
𝑘
[𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ ?1 | ?2]

Since ?0 must restrict to 𝛼 ⇒𝑘 𝛽 under 𝔬𝔟, ?1 has to be 𝛼 ⇒𝑘 𝛽 :

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗
𝑘
[𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼 ⇒𝑘 𝛽 | ?2]

The hole ?2 now has type {𝑈1 | 𝔬𝔟 ↩→ el (𝛼 ⇒𝑘 𝛽)}; in other words, ?2 is a type in𝑈1 such that

it restricts to el (𝛼 ⇒𝑘 𝛽) when 𝔬𝔟 holds. We again use the glue type to satisfy the restriction:

?2 := (𝑓 : el (𝛼 ⇒𝑘 𝛽)) ⋉ ?3 .

Conceptually, ?2 is the logical predicate for the function kind 𝛼 ⇒𝑘 𝛽 . Readers experienced with

traditional logical relations might expect ?3 to be the proposition asserting that 𝑓 sends input

𝑎 : el 𝛼 satisfying the logical predicate𝐴 to output 𝑓 𝑎 : el 𝛽 satisfying logical predicate 𝐵. However,

here the predicates 𝐴 and 𝐵 are proof-relevant, so the correct definition of ?3 should be the type

of functions sending proofs for 𝑎 : el 𝛼 satisfying 𝐴 to proofs for 𝑓 𝑎 : el 𝛽 satisfying 𝐵. This can be

concisely expressed in StcTT as

?3 := {𝐴 → 𝐵 | 𝔬𝔟 ↩→ ⇒k-iso.fwd 𝑓 }

where⇒k-iso is the isomorphism in Fω
ha

specifying function kinds:

⇒k-iso : el (𝛼 ⇒𝑘 𝛽) � (el 𝛼 → el 𝛽).
The function type 𝐴 → 𝐵 in StcTT is translated to exponentials in the glued topos𝒢, which takes

care of ‘sending related input to related output’ by construction.

For the record, we have completed our initial goal _⇒𝑘_
∗
:

⇒𝑘
∗

: {ki
∗ → ki

∗ → ki
∗ | 𝔬𝔟 ↩→ _⇒𝑘_}

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗
𝑘
[𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼 ⇒𝑘 𝛽 | 𝐹] (14)

Handlers of Higher-Order Effectful Operations

where 𝐹 is the logical predicate for the function kind 𝛼 ⇒𝑘 𝛽 :

𝐹 := (𝑓 : el (𝛼 ⇒𝑘 𝛽)) ⋉ {𝐴 → 𝐵 | 𝔬𝔟 ↩→ ⇒k-iso.fwd 𝑓 }. (15)

We also need to exhibit the isomorphism⇒k-iso (Fω − 3) for𝑀∗
:

⇒k-iso
∗

: {𝛼∗, 𝛽∗ : ki
∗} → {el

∗ (𝛼∗ ⇒∗
𝑘
𝛽∗) � (el

∗ 𝛼∗ → el
∗ 𝛽∗) | 𝔬𝔟 ↩→ ⇒k-iso}.

Again by pattern matching the input 𝛼∗ and 𝛽∗ as [𝔬𝔟 ↩→ 𝛼 | 𝐴] and [𝔬𝔟 ↩→ 𝛽 | 𝐵] as in (13), after

expanding out the definition of el
∗
, what we need to construct is an isomorphism 𝐹 � 𝐴 → 𝐵

that restricts to ⇒k-iso under 𝔬𝔟, where 𝐹 is defined as in (15). We let the two directions of this

isomorphism be

fwd [𝔬𝔟 ↩→ 𝑓 | 𝑔] = 𝑔 bwd ℎ = [𝔬𝔟 ↩→ ⇒k-iso.bwd ℎ | ℎ]
where ℎ : 𝐴 → 𝐵, 𝑓 : {𝔬𝔟} → el (𝛼 ⇒𝑘 𝛽), and

𝑔 : {𝐴 → 𝐵 | 𝔬𝔟 ↩→ ⇒k-iso.fwd 𝑓 }.
These two functions are mutual inverses because

fwd (bwd ℎ) = fwd ([𝔬𝔟 ↩→ ⇒k-iso.bwd ℎ | ℎ]) = ℎ
and from the other direction,

bwd (fwd [𝔬𝔟 ↩→ 𝑓 | 𝑔]) = bwd 𝑔 = [𝔬𝔟 ↩→ ⇒k-iso.bwd 𝑔 | 𝑔];
now by the type of 𝑔, 𝑔 = (⇒k-iso.fwd 𝑓) under 𝔬𝔟, so the above further equals

[𝔬𝔟 ↩→ ⇒k-iso.bwd (⇒k-iso.fwd 𝑓) | 𝑔] = [𝔬𝔟 ↩→ 𝑓 | 𝑔] .
The definition (15) of the logical predicate 𝐹 for function kinds may look complicated at first,

but it has a very intuitive explanation: 𝐹 is basically the same as the type 𝐴 → 𝐵, except that its

component in the object space, which is equal to el 𝛼 → el 𝛽 , is swapped for el (𝛼 ⇒𝑘 𝛽) along
the isomorphism⇒k-iso, just like in the old days when a component of a personal computer can

be replaced by a compatible part. This will be a recurring construction in the future, so for every

universe𝑈 we define

realign : (𝐴 : 𝑈) → (𝐵 : {𝔬𝔟} → 𝑈) → ({𝔬𝔟} → 𝐵 � 𝐴) → {𝑈 | 𝔬𝔟 ↩→ 𝐵}
realign 𝐴 𝐵 𝜙 = (𝑏 : 𝐵) ⋉ {𝐴 | 𝔬𝔟 ↩→ 𝜙.fwd 𝑏}

realign-iso : (𝐴 : 𝑈) → (𝐵 : {𝔬𝔟} → 𝑈) → (𝜙 : {𝔬𝔟} → 𝐵 � 𝐴)
→ {realign 𝐴 𝐵 𝜙 � 𝐴 | 𝔬𝔟 ↩→ 𝜙}

(realign-iso 𝐴 𝐵 𝜙).fwd [𝔬𝔟 ↩→ 𝑏 | 𝑎] = 𝑎
(realign-iso 𝐴 𝐵 𝜙).bwd 𝑎 = [𝔬𝔟 ↩→ 𝜙.bwd 𝑎 | 𝑎]

This construction is called realignment [Sterling 2021, §3.3] on the universe𝑈 . In fact, realignment

and strict glue types (Axiom 4.9) are inter-definable: if we take realign and realign-iso as axioms,

we can define strict glue types (𝑎 : 𝐴) ⋉ 𝐵 by realigning the dependent pair type Σ(𝑎 : 𝐴). 𝐵.
Using realignment, the definition (14) can be succinctly expressed as

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗
𝑘
[𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼 ⇒𝑘 𝛽 | realign (𝐴 → 𝐵) ⇒k-iso]

and ⇒k-iso
∗
is simply realign-iso (𝐴 → 𝐵) ⇒k-iso.

We move on to the logical predicates for types and terms. Similar to function kinds, ty
∗
is ty

glued together with some additional data:

ty
∗

: {ki
∗ | 𝔬𝔟 ↩→ ty}

ty
∗ = [𝔬𝔟 ↩→ ty | ?0 : {𝑈1 | 𝔬𝔟 ↩→ el ty}]

Zhixuan Yang and Nicolas Wu

Since ?0 is a type in𝑈1 that is equal to el ty under 𝔬𝔟, it can be a glue type:

ty
∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty) ⋉ ?1] (16)

which means that an element of the kind ty in the model𝑀∗
is a syntactic type 𝐴 together with the

data ?1 . It is natural to expect that the data ?1 associated to a type 𝐴 is a (candidate of) logical

predicate for the type 𝐴, which is just any type that restricts to tm 𝐴 under 𝔬𝔟:

ty
∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty) ⋉ {𝑈0 | 𝔬𝔟 ↩→ tm 𝐴}] (∗)

mimicking the kind structure (11) that we have seen earlier. However, this definition will not work

when we come to impredicative polymorphic types ∀𝛼.𝐴 later, because𝑈0 is not impredicative in

the sense of being closed under Π-types Π 𝐴 𝐵 for arbitrary types 𝐴 that are not necessarily in𝑈0.

In every topos, we do have an impredicative universe – the universe Ω of propositions. Unfortu-

nately, this universe is ‘too small’ for interpreting Fω
ha
-types. If we have an element 𝐴∗

: {Ω | 𝔬𝔟 ↩→
tm 𝐴} for some object-space type 𝐴 : el ty, when 𝔬𝔟 holds, 𝐴∗

is equal to tm 𝐴, but 𝐴∗
is in the

universe Ω, so we have {𝔬𝔟} → (𝑎, 𝑏 : tm 𝐴) → 𝑎 = 𝑏, which means that the object-space type 𝐴

has at most one element, and this is clearly not true in general.

To find a way out, let us recall how traditional logical predicates/relations of System F work in,

for example, Girard’s [1989] normalisation proof. For every type 𝐴 of System F, its logical predicate

is a proof-irrelevant predicate on the set of terms of 𝐴, or equivalently, a function from terms of

𝐴 to the set of classical propositions. Moreover, the logical predicate 𝑃 (𝑡) of the impredicative

polymorphic type ∀𝛼. 𝐴 is defined by ‘for all types 𝑋 and all candidate logical predicates 𝑄 over

terms of 𝑋 , the term 𝑡 [𝑋] is related by the logical predicate of 𝐴 with 𝛼 replaced by (𝑋,𝑄)’. This
works because classical propositions are impredicative, so we can quantify over all 𝑋 and 𝑄 .

Mimicking the traditional approach, we first define a universe of meta-space propositions (which

are just classical propositions {⊤,⊥} when StcTT is interpreted in the Artin gluing of the syntactic

category and the category of sets):

Ω•
:= {𝑝 : Ω | -modal 𝑝}.

The universe Ω•
inherits all the connectives that Ω has, including impredicative quantification.

For example, if 𝐴 is an arbitrary type and 𝐵 : 𝐴 → Ω•
, the type ∀(𝑥 : 𝐴).𝐵 𝑥 is in Ω, and when

𝔬𝔟 holds, 𝐵 𝑥 � 1 because a type is -modal iff it is isomorphic to 1 under 𝔬𝔟 (Lemma 4.8), so

∀(𝑥 : 𝐴).𝐵 𝑥 = ∀(𝑥 : 𝐴).1 � 1.

Using Ω•
, we fill out the hole ?1 in ty

∗
(16) by

ty
∗

: {ki
∗ | 𝔬𝔟 ↩→ ty}

ty
∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty) ⋉ ({𝔬𝔟} → tm 𝐴) → Ω•] (17)

That is to say, the candidate of a logical predicate for a type 𝐴 is given as a meta-space predicate

𝑃 : ({𝔬𝔟} → tm 𝐴) → Ω•
.

Then tm
∗
glues terms tm 𝐴 of an object-space type 𝐴 with the predicate 𝑃 :

tm
∗

: {el
∗

ty
∗ → 𝑈0 | 𝔬𝔟 ↩→ tm}

tm
∗ [𝔬𝔟 ↩→ 𝐴 | 𝑃] = (𝑡 : tm 𝐴) ⋉ 𝑃 𝑡

(18)

That is to say, in the model𝑀∗
, a term of the semantic type [𝔬𝔟 ↩→ 𝐴 | 𝑃] : ty

∗
is a term 𝑡 of the

syntactic type 𝐴 that satisfies the meta-space predicate 𝑃 .

Notation C.4. For every 𝐴∗
: el

∗
ty

∗
, we define

pre 𝐴∗
: ({𝔬𝔟} → tm 𝐴∗) → Ω•

pre 𝐴∗ = unglue 𝐴∗

Handlers of Higher-Order Effectful Operations

to remind us that ungluing a semantic type gives its underlying logical predicate. Similarly, for

every 𝑎∗ : tm
∗ 𝐴∗

, we define

prf 𝑎∗ : pre 𝐴∗ (𝜆{_ : 𝔬𝔟}. 𝑎∗)
prf 𝑎∗ = unglue 𝑎∗

to remind us that ungluing a semantic term is the proof that the underlying syntactic term satisfies

the corresponding logical predicate.

Remark C.5. For every 𝐴∗
: el

∗
ty

∗
, the type tm

∗ 𝐴∗
satisfies the property that for every 𝑎 :

{𝔬𝔟} → 𝐴∗
, there is at most one element 𝑎∗ : tm

∗ 𝐴∗
that restricts to 𝑎 under 𝔬𝔟, because the

meta-space component of tm
∗ 𝐴∗

is a (fiberwise) meta-space proposition. Based on this observation,

there is a more intrinsic alternative definition of ty
∗
: for every universe𝑈 of StcTT, we can define

its proof-irrelevant subuniverse𝑈 ir
to be

𝑈 ir
:= {𝐴 : 𝑈 | ∀(𝑎 : {𝔬𝔟} → 𝐴). (𝑥,𝑦 : {𝐴 | 𝔬𝔟 ↩→ 𝑎}) → (𝑥 = 𝑦)}.

Then we can define ty
∗
and tm

∗
as simply

ty
∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty) ⋉ {𝑈 ir

0
| 𝔬𝔟 ↩→ tm 𝐴}]

tm
∗ 𝐴∗ = unglue 𝐴∗

which directly mirrors the definition of ki
∗
(11) and el

∗
(12).

This alternative definition is in a suitable sense equivalent to the one above (17, 18) because for

every 𝐴 : {𝔬𝔟} → 𝑈 , we have an equivalence

{𝑈 ir

0
| 𝔬𝔟 ↩→ 𝐴} � (({𝔬𝔟} → 𝐴) → Ω•).

when treating them as categories (in fact, preorders) suitably. We choose to work with ty
∗
(17)

in terms of Ω•
-valued predicates because it is slightly more convenient for logical predicates on

computation judgements later.

C.1 Base Types
Since in the theory of Fω

ha
, the unit type is specified to be isomorphic to meta-level unit type (Fω-4),

we have no choice for the logical predicate for the logical predicate of the unit type (of Fω
ha
) other

than the always true predicate:

unit
∗

: {el
∗

ty
∗ | 𝔬𝔟 ↩→ unit}

unit
∗ = [𝔬𝔟 ↩→ unit | 𝜆(_ : {𝔬𝔟} → tm unit). 1]

Recall that tm
∗

unit
∗
computes to (𝑡 : tm unit) ⋉ 1, we define

unit-iso
∗

: tm
∗

unit
∗ � 1

unit-iso
∗ .fwd _ = ∗

unit-iso
∗ .bwd _ = [𝔬𝔟 ↩→ unit-iso.bwd | ∗]

This is an isomorphism because tm unit � 1 by unit-iso.

The other base type is the weak Boolean type bool. It is also the type that canonicity is about, so

its logical predicate is specific to canonicity:

bool
∗

: {el
∗

ty
∗ | 𝔬𝔟 ↩→ bool}

bool
∗ = [𝔬𝔟 ↩→ bool | 𝑃can]

𝑃can : ({𝔬𝔟} → tm bool) → Ω•

𝑃can 𝑏 = ({𝔬𝔟} → (𝑏 = tt ∨ 𝑏 = ff))

(19)

Zhixuan Yang and Nicolas Wu

The closed modality is needed here to erase the object-space component of the proposition

{𝔬𝔟} → (𝑏 = tt ∨ 𝑏 = ff), turning it -modal. We also need to define the two terms of the weak

Boolean types, i.e. showing that the two terms ff and tt satisfy the logical predicate of bool:

tt
∗

: {tm∗
bool

∗ | 𝔬𝔟 ↩→ tt}
tt
∗ = [𝔬𝔟 ↩→ tt | 𝜂• (inl refl)]

ff
∗

: {tm∗
bool

∗ | 𝔬𝔟 ↩→ ff }
ff

∗ = [𝔬𝔟 ↩→ ff | 𝜂• (inr refl)]
In the construction of𝑀∗

, the only things that are specific to canonicity are 𝑃can, tt
∗
and ff

∗
. They

can be changed to anything else without affecting other parts of𝑀∗
(although there seemingly are

not many interesting choices of 𝑃can).

C.2 Function Types
A function 𝑡 : tm (A ⇒𝑡 B) is related by the logical predicate for the type A ⇒𝑡 B if it maps input

𝑎 satisfying the logical predicate for 𝐴 to output t a satisfying the logical predicate for 𝐵:

⇒𝑡
∗

: {el
∗

ty
∗ → el

∗
ty

∗ → el
∗

ty
∗ | 𝔬𝔟 ↩→ _⇒𝑡_}

[𝔬𝔟 ↩→ 𝐴 | 𝑃] ⇒∗
𝑡 [𝔬𝔟 ↩→ 𝐵 | 𝑄] = [𝔬𝔟 ↩→ 𝐴⇒𝑡 𝐵 | 𝑃⇒𝑡

]

𝑃⇒𝑡
:= 𝜆𝑡 . ∀(𝑎 : {𝔬𝔟} → 𝐴). 𝑃 𝑎 → 𝑄 (𝜆{_ : 𝔬𝔟}. 𝑡 𝑎)

(20)

Note that in the expression t a, we have elided the isomorphism⇒t-iso (Fω-4) between tm (𝐴⇒𝑡 𝐵)
and tm 𝐴 → tm 𝐵.

We also need to define an isomorphism, for all 𝐴∗, 𝐵∗ : el
∗

ty
∗
,

⇒t-iso
∗

: tm
∗ (𝐴∗ ⇒∗

𝑡 𝐵
∗) � (tm∗ 𝐴∗) → (tm∗ 𝐵∗).

Letting 𝐴∗ = [𝔬𝔟 ↩→ 𝐴 | 𝑃] and 𝐵∗ = [𝔬𝔟 ↩→ 𝐵 | 𝑄], we compute as follows:

tm
∗ ([𝔬𝔟 ↩→ 𝐴 | 𝑃] ⇒∗

𝑡 [𝔬𝔟 ↩→ 𝐵 | 𝑄])
= (𝑡 : tm (𝐴⇒𝑡 𝐵)) ⋉ (𝑎 : {𝔬𝔟} → tm 𝐴) → 𝑃 𝑎 → 𝑄 (𝑡 𝑎)
� {by ⇒t-iso (Fω-4)}
(𝑡 : tm 𝐴 → tm 𝐵) ⋉ (𝑎 : {𝔬𝔟} → tm 𝐴) → 𝑃 𝑎 → 𝑄 (𝑡 𝑎)
� {by ⋉-fun-iso from Lemma C.2}(

(𝑎 : tm 𝐴) ⋉ 𝑃 𝑎
)
→

(
(𝑏 : tm 𝐵) ⋉𝑄 𝑏

)
= (tm∗ [𝔬𝔟 ↩→ 𝐴 | 𝑃]) → (tm∗ [𝔬𝔟 ↩→ 𝐵 | 𝑄])

The logical predicate for polymorphic functions is

∀̄∗ : {(𝑘∗ : ki
∗) → (el

∗ 𝑘∗ → el
∗

ty
∗) → el

∗
ty

∗ | 𝔬𝔟 ↩→ ∀̄}
∀̄∗ 𝑘∗ 𝐹 = [𝔬𝔟 ↩→ ∀̄ 𝑘∗ 𝐹 | 𝜆𝑡 . ∀(𝛼∗ : el

∗ 𝑘∗). pre (𝐹 𝛼∗) (𝜆{_ : 𝔬𝔟}. (𝑡 𝛼∗))] (21)

Let us check the type of this definition step-by-step. The object-space component ∀̄ 𝑘∗ 𝐹 is well

typed because under 𝔬𝔟, ki
∗
equals ki, so 𝑘∗ : ki under 𝔬𝔟, and similarly 𝐹 : el k → el ty under 𝔬𝔟,

thus ∀̄ 𝑘∗ 𝐹 : el ty as expected.

The meta-space component 𝜆𝑡 . · · · should be an Ω•
-valued predicate on 𝑡 : {𝔬𝔟} → tm (∀̄ 𝑘∗ 𝐹).

We have 𝐹 𝛼∗ : el
∗

ty
∗
; this type computes to

(𝐴 : el ty) ⋉ ({𝔬𝔟} → tm 𝐴) → Ω•

by definitions (12, 17). Thus pre (𝐹 𝛼∗) has type ({𝔬𝔟} → tm (𝐹 𝛼∗)) → Ω•
. On the other hand,

𝑡 has type {𝔬𝔟} → tm (∀̄ 𝑘∗ 𝐹), which is isomorphic to {𝔬𝔟} → (𝛼∗ : el 𝑘∗) → tm (𝐹 𝛼∗)

Handlers of Higher-Order Effectful Operations

via ¯∀-iso (Fω-4), which we elided in the definition above. The implicit function 𝜆{_ : 𝔬𝔟}. (𝑡 𝛼∗)
then has type {𝔬𝔟} → tm (𝐹 𝛼∗), and therefore it can be supplied as an argument to pre (𝐹 𝛼∗),
yielding a proposition in Ω•

. The quantification ∀(𝛼∗ : el
∗ 𝑘∗) is allowed because Ω•

is closed

under impredicative universal quantification.

We also need to define an isomorphism for 𝑘∗ : ki
∗
and 𝐹 : el

∗ 𝑘∗ → el
∗

ty
∗

¯∀-iso
∗

: tm
∗ (∀̄∗ 𝑘∗ 𝐹) � ((𝛼∗ : el

∗ 𝑘∗) → tm
∗ (𝐹 𝛼∗)) .

This is very similar to ⇒t-iso
∗
in (20), and we give a direct definition here:

fwd [𝔬𝔟 ↩→ 𝑡 | 𝑝] = 𝜆𝛼∗ . [𝔬𝔟 ↩→ 𝑝 𝛼∗ | ¯∀-iso.fwd 𝑡 𝛼∗]

bwd ℎ = [𝔬𝔟 ↩→ ¯∀-iso.bwd ℎ | 𝜆𝛼∗ . prf (ℎ 𝛼∗)]
By this point we have completed the definition of the logical predicates for the Fω-fragment of

Fω
ha
, so the derived concepts in Figure 1 such as raw functors can be interpreted in𝑀∗

as well. For

example, we have

tyco
∗

: ki
∗

tyco
∗ = ty

∗ ⇒∗
𝑘

ty
∗

fmap-ty
∗

: (F : el
∗

tyco
∗) → el

∗
ty

∗

fmap-ty
∗

F = ∀̄∗ ty
∗ (𝜆𝛼. ∀̄∗ ty

∗ (𝜆𝛽. (𝛼 ⇒∗
𝑡 𝛽) ⇒∗

𝑡 (F 𝛼 ⇒∗
𝑡 F 𝛽)))

record RawFunctor
∗

:𝑈1 where

0 : el
∗

tyco
∗

fmap : tm
∗

fmap-ty
∗

0

which is simply the same as the definition of RawFunctor in Figure 1 except that all the judgements

of Fω such as ki and ty are replaced by their corresponding interpretation in𝑀∗
. Interpretations of

other derived concepts in Figure 1 such as RawMonad
∗
and RawHFunctor

∗
can be obtained in this

way as well.

C.3 Computation Judgements
What remains is the logical predicates for computation judgements of Fω

ha
. Recall that given H :

RawHFunctor and A : el ty, the judgements co H A in Fω
ha

roughly axiomatise a monad equipped

with H -operations – more precisely, co H A axiomatises the Kleisli category of this monad since

co H A is not an Fω
ha
-type but a separate judgement.

(First attempt) Since our logical predicates live in an impredicative universe, a natural idea is to

define the logical predicate for co by an impredicative encoding of the initial monad equipped with

H -operations:

co
∗

: {HFunctor
∗ → el

∗
ty

∗ → 𝑈0 | 𝔬𝔟 ↩→ co}
co

∗ 𝐻 ∗ 𝐴∗ = (𝑐 : co 𝐻 ∗ 𝐴∗) ⋉ 𝑃co 𝑐

𝑃co : {𝐻 ∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻 ∗ 𝐴∗) → Ω•

𝑃co 𝑐 = ∀(𝑚 : MonadAlg
∗ 𝐻 ∗). pre (𝑚.0 𝐴∗) (eval 𝑚 𝐴∗ 𝑐)

(22)

The function 𝑃co type-checks as follows: the type of𝑚.0 is el
∗

tyco
∗
, and

el
∗

tyco
∗

= {by definition}
el
∗ (ty∗ ⇒∗

𝑘
ty

∗)
� {by the axiom (Fω-3)}

Zhixuan Yang and Nicolas Wu

el
∗

ty
∗ → el

∗
ty

∗

Therefore the type of𝑚.0 𝐴∗
is el

∗
ty

∗
, which is the glue type

(𝐴 : el ty) ⋉ ({𝔬𝔟} → tm 𝐴) → Ω•

by (12, 17). Then pre (𝑚.0 𝐴∗) has type ({𝔬𝔟} → tm (𝑚.0 𝐴∗)) → Ω•
, i.e. it is a meta-space

predicate on terms of type {𝔬𝔟} → 𝑚.0 𝐴∗
. The term eval 𝑚 𝐴∗ 𝑐 , which in fact is the implicit

function 𝜆{_ : 𝔬𝔟}. eval 𝑚 𝐴∗ 𝑐 , has precisely the type {𝔬𝔟} → tm (𝑚.0 𝐴∗). Finally, since Ω•
is

closed under universal quantification ∀(𝑚 : MonadAlg
∗ 𝐻 ∗), 𝑃co 𝑐 has type Ω

•
, i.e. {Ω | 𝔬𝔟 ↩→ 1}.

Remark C.6. Usually, the impredicative encoding of a datatype needs to be ‘refined’ by some

additional equalities to have the correct universal property [Awodey et al. 2018]. For example, the

impredicative encoding of the coproduct type 𝐴 + 𝐵 in an impredicative universe𝑈 is

𝐴 + 𝐵 =
∑(𝛼 : (𝑋 : 𝑈) → (𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝑋) 𝑁 𝛼

𝑁 𝛼 = (𝑋,𝑌 : 𝑈) → (𝑓 : 𝑋 → 𝑌) → (ℎ : 𝐴 → 𝑋) → (𝑘 : 𝐵 → 𝑋)
→ 𝑓 (𝛼 𝑋 ℎ 𝑘) = 𝛼 𝑌 (𝑓 ◦ ℎ) (𝑓 ◦ 𝑘)

Without imposing 𝑁 on 𝛼 , the impredicative encoding would not satisfy the 𝜂-rule of the coproduct

type. However, our logical predicates land in a universe propositions, where two elements of the

same type are automatically equal, so this refinement is unnecessary.

However, as we commented in Remark 2.6, evaluating the sequential composition let-in c f is not

compositional because of the discrepancy between computations co and raw monads: co satisfies

the monadic laws while raw monads do not. For this reason, with the above definition of 𝑃co, we

will have problems with showing the term constructor let-in satisfies its logical predicate:

let-in
∗

: {{𝐻 ∗, 𝐴∗, 𝐵∗} → co
∗ 𝐻 ∗ 𝐴∗ → (tm∗ 𝐴∗ → co

∗ 𝐻 ∗ 𝐵∗)
→ co

∗ 𝐻 ∗ 𝐵∗ | 𝔬𝔟 ↩→ let-in}
let-in

∗ 𝑐 𝑓 = [𝔬𝔟 ↩→ let-in 𝑐 𝑓 | 𝜆𝑚. ?1]

where the hole ?1 has type 𝑃co (let-in 𝑐 𝑓), that is, by the definition of 𝑃co above,

∀(𝑚 : MonadAlg
∗ 𝐻 ∗). pre (𝑚.0 𝐵∗) (eval 𝑚 𝐵∗ (let-in 𝑐 𝑓)) .

Sincewe do not have the equation eval-let in Remark 2.6 to simplify the computation eval 𝑚 𝐵∗ (let-in 𝑐 𝑓),
we have no way to fill in the hole ?1 using 𝑐 and 𝑓 .

To fix this problem, we strengthen 𝑃co 𝑐 above to take into account all possible continuations after

the computation c, which is essentially the idea of ⊤⊤-lifting [Katsumata et al. 2018; Katsumata

2005; Lindley and Stark 2005]. We first define a type of continuations accepting 𝐴∗
-values:

record Con (𝐻 ∗
: RawHFunctor

∗) (𝐴∗
: el

∗
ty

∗) : 𝑈1 where

𝑚∗
: MonadAlg

∗ 𝐻 ∗

𝑅∗ : el
∗

ty
∗

𝑘 : {𝔬𝔟} → 𝐴∗ → co 𝐻 ∗ 𝑅∗

𝑘∗ : {tm∗ 𝐴∗ → tm
∗ (𝑚∗ .0 𝑅∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)}

and the strengthened definition of 𝑃co is

𝑃co : {𝐻 ∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻 ∗ 𝐴∗) → Ω•

𝑃co 𝑐 = ∀(𝐾 : Con 𝐻 ∗ 𝐴∗). pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}.
eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in 𝑐 𝐾.k))

(23)

Compared to the earlier version of 𝑃co (22), the new version asserts that the computation 𝑐 extended

with an arbitrary ‘good’ continuation 𝑘 and evaluated into a raw monad results in a value satisfying

its logical predicate. Here a continuation 𝑘 is ‘good’ if 𝑘 followed by eval sends input satisfying

Handlers of Higher-Order Effectful Operations

its logical predicate to output satisfying its logical predicate, which is succinctly expressed by a

function 𝑘∗ : tm
∗ 𝐴∗ → tm

∗ (𝑚∗ .0 𝑅∗), c.f. Lemma C.2.

Remark C.7. The new definition of 𝑃co is similar to the model of computations in the realizability

model ((8)), except that here we only consider Kleisli morphisms 𝑘∗ : 𝐴∗ →𝑚∗ .0 𝑅∗ whose object-
space component factors through some 𝑘 : {𝔬𝔟} → 𝐴∗ → co 𝐻 ∗ 𝑅∗. The author currently does not

know if there could be a conceptual explanation of such a modified codensity transformation.

The logical predicate for thunks is the same as that for computations, modulo the isomorphism

th-iso : {H ,A} → tm (th H A) � co H A from (Fω
ha
-4):

th
∗

: {RawHFunctor
∗ → el

∗
ty

∗ → el
∗

ty
∗ | 𝔬𝔟 ↩→ T}

th
∗ 𝐻 ∗ 𝐴∗ = [𝔬𝔟 ↩→ T 𝐻 ∗ 𝐴 | 𝜆𝑡 . 𝑃co (𝜆{_ : 𝔬𝔟}. ⇑ 𝑡)]

where ⇑ is the forward direction of the isomorphism th-iso. The isomorphism th-iso
∗

: tm
∗ (T 𝐻 ∗ 𝐴∗) �

co
∗ 𝐻 ∗ 𝐴∗

is also straightforward:

fwd [𝔬𝔟 ↩→ 𝑡 | 𝑝] = [𝔬𝔟 ↩→ ⇑ 𝑡 | 𝑝], bwd [𝔬𝔟 ↩→ 𝑐 | 𝑝] = [𝔬𝔟 ↩→ ⇓ 𝑐 | 𝑝] .

C.4 Computation Terms
Finally, we need to prove that the constructors val, let-in, op and the eliminator eval of computations

satisfy the logical predicates. We start with val:

val
∗

: {{𝐻 ∗, 𝐴∗} → tm
∗ 𝐴∗ → co

∗ 𝐻 ∗ 𝐴∗ | 𝔬𝔟 ↩→ val}
val

∗ {𝐻 ∗} {𝐴∗} 𝑎 = [𝔬𝔟 ↩→ val 𝑎 | ?1]

where the hole ?1 has type 𝑃co (val 𝑎), that is, by definition (23),

∀(𝐾 : Con 𝐻 ∗ 𝐴∗). pre (𝐾.𝑚∗ .0 𝐾.𝑅∗)
(𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (val 𝑎) 𝐾.k))

= {by axiom let-val (Fω
ha
-3)}

∀(𝐾 : Con 𝐻 ∗ 𝐴∗). pre (𝐾.𝑚∗ .0 𝐾.𝑅∗)
(𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (𝐾.k 𝑎))

We put ?1 = 𝜆𝐾. prf (𝐾.𝑘∗ 𝑎), which is well typed because 𝐾.𝑘∗ has type

𝑘∗ : {tm∗ 𝐴∗ → tm
∗ (𝑚∗ .0 𝑅∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)} (24)

so 𝐾.𝑘∗ 𝑎 has type tm
∗ (𝐾.𝑚∗ .0 𝐾.𝑅∗), and prf (𝐾.𝑘∗ 𝑎) has type

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. (𝐾.𝑘∗ 𝑎))
= {by the restriction of 𝑘∗ under 𝔬𝔟 in (24)}

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. 𝜆𝑎. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (𝐾.𝑘 𝑎))

which is the desired type of ?1 .

The case for let-in is similar:

let-in
∗

: {{𝐻 ∗, 𝐴∗, 𝐵∗} → co
∗ 𝐻 ∗ 𝐴∗ → (co

∗ 𝐻 ∗ 𝐴∗ → co
∗ 𝐻 ∗ 𝐵∗)

→ co
∗ 𝐻 ∗ 𝐵 | 𝔬𝔟 ↩→ let-in}

let-in
∗ 𝑐 𝑓 = [𝔬𝔟 ↩→ let-in 𝑐 𝑓 | 𝜆(𝐾 : Con 𝐻 ∗ 𝐴∗). unglue 𝑐 𝐾 ′]

where each field of 𝐾 ′
: Con 𝐻 ∗ 𝐵∗ is defined as follows:

𝐾 ′ .𝑚∗ = 𝐾.𝑚∗

𝐾 ′ .𝑅∗ = 𝐾.𝑅∗

Zhixuan Yang and Nicolas Wu

𝐾 ′ .𝑘 = 𝜆{_ : 𝔬𝔟} 𝑎. let-in (𝑓 𝑎) 𝐾.𝑘
𝐾 ′ .𝑘∗ = 𝜆𝑎. [𝔬𝔟 ↩→ eval 𝐾 ′ .𝑚∗ 𝐾 ′ .𝑅∗ (let-in (𝑓 𝑎) 𝐾.k) | unglue (𝑓 𝑎) 𝐾]

The last line type checks because 𝑓 𝑎 : co
∗ 𝐻 ∗ 𝐵∗, so unglue (𝑓 𝑎) : 𝑃co (𝑓 𝑎), so by definition (23),

the type of unglue (𝑓 𝑎) 𝐾 is

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (𝑓 𝑎) 𝐾.k))

which is indeed the type of proofs that the syntactic component of 𝐾 ′ .𝑘∗ satisfies the logical

predicate of the type 𝑘.𝑚∗ .0 𝐾.𝑅∗.
The case for op is slightly more involved, so let us first show that eval satisfies the corresponding

logical predicate:

eval
∗

: {{𝐻 ∗} → (𝑚∗
: MonadAlg

∗ 𝐻 ∗) → (𝐴∗
: _)

→ co
∗ 𝐻 ∗ 𝐴∗ → tm

∗ (𝑚∗ .0 𝐴∗) | 𝔬𝔟 ↩→ eval}
eval

∗ 𝑚∗ 𝐴∗ 𝑐∗ = [𝔬𝔟 ↩→ eval 𝑚∗ 𝐴∗ 𝑐 | unglue 𝑐∗ 𝐾]

where the continuation 𝐾 : Con 𝐻 ∗ 𝐴∗
is defined by

𝐾.𝑚∗ =𝑚∗ 𝐾.𝑅∗ = 𝐴∗

𝐾.𝑘 = 𝜆{_ : 𝔬𝔟}. val 𝐾.𝑘∗ =𝑚∗ .ret

The definition of 𝐾.𝑘∗ is well typed because the expected type of 𝐾.𝑘∗ is

{tm∗ 𝐴∗ → tm
∗ (𝑚∗ .0 𝑅∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)}

= {by the definition of 𝐾.𝑘 above}
{tm∗ 𝐴∗ → tm

∗ (𝑚∗ .0 𝐴∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (val 𝑎)}
= {by axiom eval-val (Fω

ha
-8)}

{tm∗ 𝐴∗ → tm
∗ (𝑚∗ .0 𝐴∗) | 𝔬𝔟 ↩→ 𝜆𝑎. 𝑚∗ .ret 𝑅∗ 𝑎}

Coming back to op, we start with some obvious steps and a hole:

op
∗

: {{𝐻 ∗, 𝐴∗, 𝐵∗} → tm
∗ (𝐻 ∗ .0 (T∗ 𝐻 ∗) 𝐴∗)

→ (tm∗ 𝐴∗ → co
∗ 𝐻 ∗ 𝐵∗) → co

∗ 𝐻 ∗ 𝐵∗ | 𝔬𝔟 ↩→ op}
op

∗ 𝑜 𝑘 = [𝔬𝔟 ↩→ op 𝑜 𝑘 | 𝜆(𝐾 : Con 𝐻 ∗ 𝐵∗). ?1]

where the hole ?1 has type

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (op 𝑜 𝑘) 𝐾.𝑘))
= {by axiom let-op (Fω

ha
-6)}

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (op 𝑜 (𝜆𝑎. let-in (𝑘 𝑎) 𝐾.𝑘)))
= {by axiom eval-op (Fω

ha
-9)}

pre (𝐾.𝑚∗ .0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. 𝐾 .𝑚∗ .bind 𝑜 ′ (𝜆𝑎. eval _ _ (let-in (𝑘 𝑎) 𝐾.𝑘)))

where 𝑜 ′ : tm
∗ (𝐾.𝑚∗ .0 𝐴∗) is the result of evaluating the operand 𝑜 inside the higher-order functor

𝐻 and then applying the operation on the monad 𝐾.𝑚∗
:

𝑜 ′ := 𝐾.𝑚∗ .malg _ (𝐻 ∗ .hmap _ _ 𝑒 _ 𝑜),

and 𝑒 : tm
∗ (trans

∗ (𝑀∗ .T 𝐻 ∗) 𝐾.𝑚∗ .0) is eval
∗
specialised to 𝐾.𝑚∗

:

𝑒 𝐴∗ 𝑐 = eval
∗ 𝐾.𝑚∗ 𝐴∗ (⇑ 𝑐).

Handlers of Higher-Order Effectful Operations

Now coming back to the hole ?1 , using 𝑘 we can define

𝑓 : (𝑎 : tm
∗ 𝐴∗) → tm

∗ (𝐾.𝑚∗ .0 𝐾.𝑅∗)
𝑓 = [𝔬𝔟 ↩→ eval _ _ (let-in (𝑘 𝑎) 𝐾.𝑘) | unglue (𝑘 𝑎) 𝐾]

and finally we can put ?1 = prf (𝐾.𝑚∗ .bind 𝑜 ′ 𝑓).
The last bit of our construction of the glued model𝑀∗

is showing that it satisfies the equational

axioms of Fω
ha
pertaining to computations, but this is easy because our interpretation of computations

and terms in𝑀∗
is proof irrelevant. For every universe𝑈 of StcTT, there is a subuniverse

𝑈 ir = {𝐴 : 𝑈 | ∀(𝑎 : {𝔬𝔟} → 𝐴). (𝑥,𝑦 : {𝐴 | 𝔬𝔟 ↩→ 𝑎}) → 𝑥 = 𝑦}
which classifies proof-irrelevant logical predicates in𝑈 , in the sense that partial elements 𝑎 : {𝔬𝔟} →
𝐴 of a type 𝐴 : 𝑈 ir

have unique total extensions (if exist).

Lemma C.8. For all 𝐴∗
: el

∗
ty

∗
and 𝐻 ∗

: RawHFunctor
∗
, the types

tm
∗ 𝐴∗

: 𝑈0 and co
∗ 𝐻 ∗ 𝐴∗

: 𝑈0

are classified by the subuniverse𝑈 ir

0
.

Proof. Let𝐴∗
be [𝔬𝔟 ↩→ 𝐴 | 𝑃] where𝐴 : {𝔬𝔟} → el ty is an object-space type and 𝑃 : ({𝔬𝔟} →

tm 𝐴) → Ω•
is a meta-space predicate. By definition (18), tm

∗ 𝐴∗
is the glue type (𝑎 : tm 𝐴) ⋉ 𝑃 𝑎.

Thus a partial element 𝑎 of tm
∗ 𝐴∗

is exactly an element 𝑎 : {𝔬𝔟} → tm 𝐴. Given two elements

𝑥,𝑦 : {tm∗ 𝐴∗ | 𝔬𝔟 ↩→ 𝑎}, unglue 𝑥 = unglue 𝑦 since they are elements of the propositional type

𝑃 𝑎, so 𝑥 = [𝔬𝔟 ↩→ 𝑎 | unglue 𝑥] = [𝔬𝔟 ↩→ 𝑎 | unglue 𝑦] = 𝑦. The case for co
∗
is similar. □

Corollary C.9. The glued model 𝑀∗
satisfies the equational axioms val-let, let-val, let-assoc

(Fω
ha
-3), let-op (Fω

ha
-6), eval-val (Fω

ha
-8), eval-op (Fω

ha
-9) of Fω

ha
.

Proof. Taking val-let for example, we need to show

val-let
∗

: {𝐻 ∗, 𝐴∗, 𝐵∗} → (𝑎 : tm
∗ 𝐴∗) → (𝑘 : tm

∗ 𝐴 → co
∗ 𝐻 ∗ 𝐵∗)

→ let-in
∗ (val

∗ 𝐻 ∗ 𝑎) 𝑘 = 𝑘 𝑎

Since the type co
∗ 𝐻 ∗ 𝐵∗ is in the universe 𝑈 ir

0
, it is sufficient to show that let-in

∗ (val
∗ 𝐻 ∗ 𝑎) 𝑘

and 𝑘 𝑎 are equal under 𝔬𝔟,

let-in
∗ (val

∗ 𝐻 ∗ 𝑎) 𝑘
= {under 𝔬𝔟, let-in

∗ = let-in and val
∗ = val}

let-in (val 𝐻 ∗ 𝑎) 𝑘
= {𝑀 satisfies val-let}
𝑘 𝑎

The case for other equational axioms are similar. □

We have completed the construction of𝑀∗
and thus proved Lemma 4.11.

D Parametricity and Free Theorems
An appealing aspect of the synthetic fundamental lemma (4.11) is that it is proved solely in the

language StcTT, thus applicable to any category𝒢 that models StcTT. As an instance, we can

deduce the abstraction theorem [Reynolds 1983], also known as parametricity [Wadler 1989], for

System Fω
ha
.

Let𝑀 : Jdg Fω
ha → 𝒞 be any model of Fω

ha
in a small LCCC𝒞. We can interpret StcTT in the Artin

gluing𝒢𝒞 of Pr𝒞 and Set along the global section functor HomPr𝒞 (1,−) : Pr𝒞 → Set, with the

Zhixuan Yang and Nicolas Wu

object-space model𝑀 of StcTT interpreted as the given functor𝑀 : Jdg Fω
ha → 𝒞 composed with

Yoneda embedding Y : 𝒞 → Pr𝒞.

We have a functor𝑀∗ : Jdg Fω
ha → 𝒢𝒞 by instantiating the fundamental lemma (4.11) with 𝑃can

as in (19). For every A : 1 → el ty ∈ Jdg Fω
ha
, we let 𝑃𝐴 be𝑀∗ (tm A) ∈ 𝒢 viewed as a predicate (in

the ambient meta-theory) on the set 𝒞(1, 𝑀 (tm A)). Similarly, for every K : 1 → ki ∈ Jdg Fω
ha
, we

let 𝑃𝐾 be𝑀∗ (el K) ∈ 𝒢 viewed as a family of sets indexed by the set 𝒞(1, 𝑀 (el K)).

Theorem D.1 (Unary Parametricity). For every A : 1 → el ty and t : 1 → tm A in Jdg Fω
ha
,

𝑃𝐴 (𝑀 𝑡) holds. Moreover, for every K : 1 → ki and t : 1 → el K , there is an element 𝑡∗ ∈ 𝑃𝐾 (𝑀 𝑡).

Proof. Given 𝑡 : 1 → tm A ∈ Jdg Fω
ha
, it is mapped by the logical predicate model 𝑀∗ to a

morphism 1 → 𝑀∗ (tm A) in𝒢𝒞 , which amounts to a commutative square:

{∗} {𝑡 : 1 → 𝑀 (tm A) | 𝑃𝐴 (𝑡)}

{∗} HomPr𝒞 (1, 𝑀 (tm A))
!

𝜆∗. 𝑀𝑡

𝑡∗

⊆

The commutativity of the square means that𝑀𝑡 satisfies 𝑃𝐴.

The statement for 𝑡 : 1 → el K is essentially the same, with the element 𝑡∗ ∈ 𝑃𝐾 (𝑡) given by the

top arrow of the diagram. □

Example D.2. Parametricity are useful for deriving ‘free theorems’ of programming languages

[Wadler 1989]. As a ‘hello world’-application, we can use parametricity to deduce that for every

closed Fω
ha

term 𝑡 : tm (∀̄ ty (𝜆𝛼. 𝛼 ⇒𝑡 𝛼)), 𝑡 applied to every closed type 𝐴 and closed term

𝑎 : tm A is equal 𝑎.

First of all, internal to StcTT, we prove the following statement:

lem : (𝑡∗ : tm
∗ (∀̄∗ ty

∗ (𝜆𝛼. 𝛼 ⇒∗
𝑡 𝛼)))

→ (𝐴 : {𝔬𝔟} → el ty) → (𝑎 : {𝔬𝔟} → tm 𝐴)
→ ({𝔬𝔟} → 𝑡∗ 𝐴 𝑎 = 𝑎)

lem 𝑡∗ 𝐴 𝑎 = ?0

Recall that prf 𝑡∗ is the proof that the object-space component of 𝑡∗ satisfies its logical predicate.
Expanding definitions (18, C.4, 21), we have

prf 𝑡∗ : ∀(𝛼∗ : el
∗

ty
∗). pre (𝛼∗ ⇒∗

𝑡 𝛼
∗) (𝜆{_ : 𝔬𝔟}. (𝑡∗ 𝛼∗)) .

To use prf 𝑡∗, we define a predicate 𝐴∗
: {el

∗
ty

∗ | 𝔬𝔟 ↩→ 𝐴} by
𝐴∗

:= [𝔬𝔟 ↩→ 𝐴 | 𝜆𝑥. ({𝔬𝔟} → 𝑥 = 𝑎)]
for which only the element 𝑎 : 𝔬𝔟 → tm A is satisfied. Now we have

prf 𝑡∗ 𝐴∗
: pre (𝐴∗ ⇒∗

𝑡 𝐴
∗) (𝜆{_ : 𝔬𝔟}. (𝑡∗ 𝐴)) .

Expanding the definition of ⇒∗
𝑡 from (20), we have

prf 𝑡∗ 𝐴∗
: ∀(𝑥 : {𝔬𝔟} → 𝐴). ({𝔬𝔟} → 𝑥 = 𝑎) → ({𝔬𝔟} → 𝑡∗ 𝐴 𝑥 = 𝑎).

The element 𝑎 is always equal to itself, so we can complete the hole:

?0 = prf 𝑡∗ 𝐴∗ 𝑎 (𝜂• refl𝑎).
Now we interpret lem in the glued topos Gl Fω

ha
. Evaluating the interpretation of lem at 𝑡 , 𝐴, and

𝑎, we get a global section of the interpretation of (𝑡 𝐴 𝑎 = 𝑎), which implies 𝑡 𝐴 𝑎 and 𝑎 are equal

morphisms 1 → tm A in Jdg Fω
ha
.

Handlers of Higher-Order Effectful Operations

It is also possible to extend the unary parametricity result above to the binary (or 𝑛-ary) case.

Following Sterling and Harper [2021], given two models𝑀𝐿 : Jdg Fω
ha → 𝒞 and𝑀𝑅 : Jdg Fω

ha → 𝒟,

we consider the Artin gluing𝒢𝒞𝒟 of the product category Pr𝒞 × Pr𝒟 and the category of sets

along the functor

⟨𝐴, 𝐵⟩ ↦→ 𝒞(1, 𝐴) ×𝒟(1, 𝐵).
The category 𝒢𝒞𝒟 is equivalent to the presheaf topos over (𝒞 + 𝒟)⊤, and every object in the

category𝒢𝒞𝒟 is a tuple

⟨𝐴 ∈ Pr𝒞, 𝐵 ∈ Pr𝒟, 𝑃 ∈ Set, 𝑙 : 𝑃 → Hom(1, 𝐴), 𝑟 : 𝑃 → Hom(1, 𝐵)⟩,
i.e. a proof-relevant binary relation (also known as a span) over global elements of the presheaves

𝐴 and 𝐵. The category𝒢𝒞𝒟 has two subterminal objects

𝔬𝔟𝐿 := ⟨1Pr𝒞, 0, ∅, !, !⟩ and 𝔬𝔟𝑅 := ⟨0, 1Pr𝒟, ∅, !, !⟩,
which determine two open subtoposes that are equivalent to Pr𝒞 and Pr𝒟 respectively. The

disjunction of 𝔬𝔟𝐿 and 𝔬𝔟𝑅 is another subterminal object

𝔬𝔟 := ⟨1Pr𝒞, 1Pr𝒟, ∅, !, !⟩,
whose corresponding open subtopos is equivalent to Pr (𝒞 +𝒟).

The type theory StcTT can be interpreted in 𝒢𝒞𝒟 as usual, with 𝔬𝔟 : Ω interpreted as the

subterminal object 𝔬𝔟 above. Moreover, we can extend StcTT with the following new constants

with the evident interpretation in𝒢𝒞𝒟:

𝔬𝔟𝐿 : Ω 𝔬𝔟𝑅 : Ω _ : 𝔬𝔟𝐿 ∨ 𝔬𝔟𝑅 = 𝔬𝔟 _ : 𝔬𝔟𝐿 ∧ 𝔬𝔟𝑅 = 0

𝑀𝐿 : {𝔬𝔟𝐿} → JFωhaK𝑈0
𝑀𝑅 : {𝔬𝔟𝑅} → JFωhaK𝑈0

_ : 𝑀 = 𝜆{𝑧 : 𝔬𝔟}. case z of {inl (_ : 𝔬𝔟𝐿) ↦→ 𝑀𝐿 ; inr (_ : 𝔬𝔟𝑅) ↦→ 𝑀𝑅}
We refer to the extended language by 2-TTstc.

The synthetic fundamental lemma (4.11) holds in 2-TTstc without needing any modification,

since 2-TTstc only adds new axioms to StcTT. However, in 2-TTstc an 𝔬𝔟-partial element {𝔬𝔟} →
𝐴 of some type 𝐴 is now equal to an element of type {𝔬𝔟𝐿 ∨𝔬𝔟𝑅} → 𝐴, which are equivalently two

partial elements {𝔬𝔟𝐿} → 𝐴 and {𝔬𝔟𝑅} → 𝐴. Therefore the unary logical predicates in the proof of

Lemma 4.11 can be now read as binary logical relations.

Specially, we can set both 𝑀𝐿 and 𝑀𝑅 to be Id : Jdg Fω
ha → Jdg Fω

ha
, and we obtain the binary

version of parametricity of closed Fω
ha
-terms (Theorem D.1) by instantiating the fundamental lemma

with the logical relation 𝑃 for bool to be equality (this relation cannot be internally defined in

2-TTstc though, since this relation only makes sense when𝑀𝐿 = 𝑀𝑅).

E The Realizability Model for General Recursion
Simply typed 𝜆-calculi with general recursion famously can be modelled by variations of complete

partial orders from classical domain theory [Plotkin 1977; Scott 1993; Streicher 2006]. However,

the language rFω
ha

has impredicative polymorphism, which is very tricky to model using classical

domain theory, although not impossible [Coquand et al. 1989; Crole 1994].

Alongside a few other reasons, the difficulty of modelling polymorphism in classical domain

theory motivated the development of synthetic domain theory (SDT) [Hyland 1991; Phoa 1991;

Rosolini 1986]. The idea of SDT is to axiomatise ‘domains’, in the general sense of objects that

provide meaning to (recursive) programs, as special ‘sets’ satisfying certain properties in the logic of

toposes or constructive set theory, so that every function between those special sets is automatically

a ‘continuous map’ between domains. In this way, one can give denotational semantics to recursive

programs in a naive set-theoretic way.

Zhixuan Yang and Nicolas Wu

The exact axiomatisation of SDT varies across authors, but there are mainly two kinds of models:

realizability toposes [Longley and Simpson 1997; Phoa 1991] and Grothendieck toposes [Fiore and

Plotkin 1997; Fiore and Rosolini 1997]. Since we are already modelling Fω
ha

using a realizability

model in Section 3, we will stick with the realizability model, following the ideas of SDT concretely

in this model (as opposed to using SDT as an axiomatic language).

The rest of this section is a short introduction to SDT based on Longley and Simpson’s [1997]

approach using well complete objects, adapted to a type-theoretic language. See also Longley’s [1995]

thesis, the more general treatment by Simpson [2004, 1999], and the type-theoretic formalisation

of SDT using well complete Σ-spaces by Reus [1996, 1999] and Reus and Streicher [1999]. With

the machinery of SDT in this section, the interpretation of rFω
ha

will be almost trivial and will be

presented in the next section.

Before going into SDT, let us quickly recall a typical setup of interpreting recursion in classical

domain theory, which we are going to mirror in the SDT.

A predomain (or precisely, an 𝜔-cpo, in this setup) is a partially ordered set ⟨𝐴, ⊑⟩ that has
suprema ⊔𝑖𝑎𝑖 for all 𝜔-chains 𝑎0 ⊑ 𝑎1 ⊑ 𝑎2 ⊑ 𝑎3 ⊑ · · · in 𝐴; a predomain need not have a bottom

element. Morphisms between predomains are monotone functions preserving those suprema of

𝜔-chains.

A (Scott-) open set of a predomain 𝐴 is a subset 𝑂 ⊆ 𝐴 that is (1) upward closed: for all 𝑥,𝑦 ∈ 𝐴,
if 𝑥 ∈ 𝑂 and 𝑥 ⊑ 𝑦 then 𝑦 ∈ 𝑂 , and (2) continuous: for all 𝜔-chains 𝑎𝑖 in 𝐴, ⊔𝑖𝑎𝑖 ∈ 𝑂 iff there exists

some 𝑛 such that 𝑎𝑛 ∈ 𝑂 . Open sets of a predomain 𝐴 are in bijection with morphisms 𝐴 → 𝔖,

where𝔖 is the two-element predomain {⊥ ⊑ ⊤}, sometimes called the Sierpiński space (𝔖 is the

Fraktur letter for S). Namely, every open set𝑂 ⊆ 𝐴 corresponds to the morphism 𝜒 : 𝐴 →𝔖 where

𝜒 (𝑎) = ⊤ if 𝑎 ∈ 𝑂 and 𝜒 (𝑎) = ⊥ if 𝑎 ∉ 𝑂 .

The lifting monad 𝐿𝐴 on predomains adjoins a new bottom element ⊥ to𝐴, with a monad structure

similar to that of the monad 1 + − on sets. Kleisli morphisms of predomains 𝑓 : Γ → 𝐿𝐴 are in

bijection with partial morphisms ⟨𝑂, 𝑓 ⟩ : Γ ⇀ 𝐴, each consisting of an open set𝑂 ⊆ Γ and a (total)

morphism 𝑓 : 𝑂 → 𝐴.

A domain 𝐷 is a predomain with bottom element ⊥𝐷 , which is the same as an Eilenberg-Moore

algebra of the lifting monad 𝐿. Every endo-morphism 𝑓 : 𝐷 → 𝐷 on domains then has a least fixed

point by taking the supremum of the chain ⊥𝐷 ⊑ 𝑓 (⊥𝐷) ⊑ 𝑓 (𝑓 (⊥𝐷)) ⊑ · · · in 𝐷 .
Contexts Γ and types 𝜎 of a call-by-value programming language with recursion are then

interpreted as predomains JΓK, J𝜎K. Terms Γ ⊢ 𝑡 : 𝜎 are interpreted as morphisms JΓK → 𝐿J𝜎K, i.e.
partial morphisms between predomains.

Recall that the internal language of assemblies Asm(A) over a partial combinator algebraA,

which we used to construct a model of Fω
ha

in Section 3.2, is an extensional MLTT with three

cumulative universes 𝑃 : 𝑉1 : 𝑉2 such that

• each closed under the unit type, Σ, Π, and inductive types (𝑊 -types);

• for all types 𝐴 and 𝑎, 𝑏 : 𝐴, the equality type 𝑎 = 𝑏 is in the universe 𝑃 ;

• for all types 𝐴 and 𝑃-valued type families 𝐵 : 𝐴 → 𝑃 , Π 𝐴 𝐵 is in 𝑃 .

The interpretation of 𝑃 is the assembly of modest sets (i.e. PERs), and𝑉𝑖 is the assembly of𝑈𝑖 -small

assemblies, for universe of sets 𝑈𝑖 in the meta-theory. Details of the interpretation can be found in

Reus’s thesis [Reus 1996, §8].

In the following, we will further fix the PCAA to be Kleene’s first algebra K [van Oosten 2008],

whose elements are natural numbers (which intuitively play dual roles as both data and computation

via Gödel codes of Turing machines), and partial application 𝑛 𝑚 is defined to be 𝜙𝑛 (𝑚), the possibly
divergent result of running the Turing machine coded by 𝑛 with input𝑚. We will write 𝑛 𝑚 ↑ and
𝑛 𝑚 ↓ to mean that the partial application diverges and converges respectively.

Handlers of Higher-Order Effectful Operations

Specialising A to K is only for providing more intuition, and interested readers can consult

Longley and Simpson [1997] to see how it can be done more generally with an arbitrary PCA

equipped with a notion of divergence.

A type 𝐴 is said to be a proposition if the type is-prop 𝐴 := (𝑎, 𝑏 : 𝐴) → 𝑥 = 𝑦 is inhabited

[Univalent Foundations Program 2013]. The subuniverse 𝑃−1 ⊆ 𝑃 of propositional modest sets is

then defined by

𝑃−1 : 𝑉1

𝑃−1 = Σ(𝐴 : 𝑃). is-prop 𝐴

whose elements are decoded as types by first projection 𝜋1, which we will left as implicit, as if 𝑃−1

is a Russell-style universe.

It might be useful to see an external description for the universe 𝑃−1, in the sense of universes

in categories. The semantics of the universe (𝑃−1, 𝜋1) is (isomorphic to) an assembly morphism

𝑖 : 𝑃−1 → 𝑃−1, where 𝑃−1 has an underlying set containing all sub-singleton modest sets 𝐴, and

𝑟 |=𝑃−1
𝐴 holds for all 𝑟 and 𝐴. The assembly 𝑃−1 has an underlying set containing all modest sets 𝐴

with exactly one element 𝑎 ∈ |𝐴|, and 𝑟 |=𝑃−1
𝐴 if and only if 𝑟 |=𝐴 𝑎. The morphism 𝑖 : 𝑃−1 → 𝑃−1

is the inclusion morphism.

From the above explicit description, we can see that the universe 𝑃−1 satisfies Voevodsky’s

propositional resizing axiom: in the language of Asm(K), for every propositional type 𝐴, there is

some ⌈𝐴⌉ : 𝑃−1 isomorphic to 𝐴, since a sub-singleton assembly 𝐴 is necessarily a modest set.

The universe 𝑃−1 is similar to the universe Ω of propositions in elementary toposes as axiomatised

in 4.4, and we can define logical connectives ⊤, ⊥, ∧, ∨, ∀, and ∃ on 𝑃−1 in exactly the same way as

we do in elementary toposes.

The crucial difference between 𝑃−1 and the universe Ω in elementary toposes is that 𝑃−1 is

not univalent: given 𝑝, 𝑞 : 𝑃−1 with 𝑝 � 𝑞, it is not always the case that 𝑝 = 𝑞. Indeed, two

singleton modest sets ⟨{∗}, |=𝑝⟩ and ⟨{∗}, |=𝑞⟩ can have different realizing relations even when their

underlying sets are exactly the same.

This seemingly insignificant flaw of 𝑃−1 has an impact bigger than one may expect on doing

mathematics internal to Asm(K); For one thing, we cannot construct quotient types using 𝑃−1 in

the way how it is usually done in elementary toposes.

We can switch to the realizability topos to use the better-behaved universe Ω, but we will stay in

category of assemblies, as it turns out to be good enough for carrying out our development, and

more importantly, the simplicity of Asm(K) allows us to give simple external descriptions of many

constructions of SDT, which I found essential when learning SDT for the first time.

The universe 𝑃−1 has a subuniverse of semi-decidable propositions:

𝑃𝑠−1
:= {𝑝 : 𝑃−1 | ∃𝑓 :N → 2. 𝑝 � (∃𝑛 :N. 𝑓 𝑛 = 0)}. (25)

Roughly speaking, a proposition in 𝑃𝑠−1
is determined by the (semi-decidable) property of the

existence of zero points for a computable function 𝑓 :N → 2.

A simple external description of 𝑃𝑠−1
is available: the assembly 𝑃𝑠−1

is isomorphic, up to bi-

implication in 𝑃−1, to the assembly𝔖 := ⟨{⊥,⊤}, |=𝔖⟩ where
𝑟 |=𝔖 ⊥ iff 𝑟 0 ↑ and 𝑟 |=𝔖 ⊤ iff 𝑟 0 ↓ .

In sketch, the direction𝔖 → 𝑃𝑠−1
sends⊥ and⊤ to the empty and terminal assemblies respectively,

and is realized by the Turing machine accepting 𝑟 and returning the computable function 𝑓 :N → 2

that accepts 𝑛 and returns 0 if and only if running the Turing machine 𝑟 halts in 𝑛 steps. The other

direction 𝑃𝑠−1
→ 𝔖 sends sends an assembly to ⊤ iff it is non-empty, and this is realized by the

Turing machine accepting the code for 𝑓 :N → 2 (and 𝑝 � ∃𝑛. 𝑓 𝑛 = 0) and returns the machine

𝑟 that searches for a zero point of 𝑓 iteratively.

Zhixuan Yang and Nicolas Wu

The type𝔖 can be viewed as a universe directly: every element 𝑝 : 𝔖 is decoded as the equality

type 𝑝 = ⊤. Although 𝑃𝑠−1
and𝔖 are equivalent universes, we will prefer using the universe𝔖 over

𝑃𝑠−1
because𝔖 is univalent:

(𝑝, 𝑞 : 𝔖) → (𝑝 � 𝑞) → (𝑝 = 𝑞).
The universe𝔖 is closed under truth ⊤ : 𝔖 and dependent conjunction Σ(𝑝 : 𝔖). 𝑞(𝑝) : 𝔖 for

all 𝑝 : 𝔖 and 𝑞 : 𝑝 → 𝔖. Therefore, it is a dominance [Rosolini 1986], which is the fundamental

notion in general SDT [Hyland 1991]. In the present situation, the dominance𝔖 is moreover closed

under falsity ⊥ and countable disjunction ∃𝑛 :N. 𝑝 (𝑛) for 𝑝 :N →𝔖.

As suggested by the notation, the universe𝔖 of semi-decidable propositions will play the role of

the Sierpiński space {⊥ ⊑ ⊤} in classical domain theory. In the internal language, a (Scott-) open

of a type 𝐴 is defined as a function 𝑂 : 𝐴 →𝔖, giving rise to a subtype {𝑎 : 𝐴 | 𝑂 𝑎 = ⊤}, which
we shall usually just write as 𝑂 when no confusion. An (𝔖-) partial function Γ ⇀ 𝐴 is again an

open set𝑂 of Γ with a function𝑂 → 𝐴. Externally, an open set of an assembly ⟨|𝐴|, |=𝐴⟩ is a subset
𝑂 ⊆ 𝐴 such that there is a Turing machine 𝑟 satisfying that whenever 𝑛 |=𝐴 𝑎, then 𝑟 𝑛 ↓ iff 𝑎 ∈ 𝑂 .

Analogous to the lifting monad in classical domain theory, we have a lifting monad

𝐿 : 𝑃 → 𝑃

𝐿 𝐴 = Σ(𝑝 : 𝔖). ({𝑝} → 𝐴)
on modest sets in the internal language of Asm(K). We can actually define 𝐿 on all types but we

shall only need it on 𝑃 . The monad structure for 𝐿 is

𝜂 : 𝐴 → 𝐿 𝐴

𝜂 𝑎 = (⊤, 𝑎)
𝜇 : (𝐴 → 𝐿 𝐵) → 𝐿 𝐵

𝜇 (𝑝, 𝑎) 𝑘 = (Σ(_ : 𝑝). 𝜋1 (𝑘 𝑎), 𝜋2 (𝑘 𝑎))
An isomorphic external description of the monad 𝐿 is that it sends every modest set ⟨|𝐴|, |=𝐴⟩

to the modest set ⟨1 + |𝐴|, |=𝐿𝐴⟩ where
𝑟 |=𝐿𝐴 inl ∗ iff 𝑟 0 ↑,
𝑟 |=𝐿𝐴 inr 𝑎 iff 𝑟 0 ↓ ∧ 𝑟 0 |=𝐴 𝑎.

That is to say, if a Turing machine 𝑟 diverges on the input 0 then it realizes the ‘bottom element’

inl ∗, and otherwise 𝑟 realizes inr 𝑎, for elements 𝑎 ∈ |𝐴| that are realized by 𝑟 0. The input 0 here

is completely arbitrary, and the definition will be isomorphic if 0 is replaced by any other fixed

number or 𝑟 itself. The monad structure on 𝐿 is the same as the one on 1 + − : Set → Set; see

Longley and Simpson [1997, §4] for details.

Note that 𝐿𝐴 is not the same as the coproduct 1+𝐴 inAsm(K). The latter has the same underlying

set 1 + |𝐴|, but the existence predicate of 1 +𝐴 is

𝑟 |=1+𝐴 inl ∗ iff 𝜋1 𝑟 = 0

𝑟 |=1+𝐴 inr 𝑎 iff 𝜋1 𝑟 ≠ 0 ∧ 𝜋2 𝑟 |=𝐴 𝑎,
where 𝜋1, 𝜋2, and ⟨−,−⟩ are some Turing machines implementing projections and pairing of natural

numbersN×N � N. The crucial difference between 𝐿𝐴 and 1+𝐴 is that morphisms of assemblies

𝑓 : 𝑋 → 1 + 𝐴 must be realised by Turing machines that can decide whether 𝑓 (𝑥) is inr 𝑎 given

a realizer of 𝑥 , while morphisms 𝑓 : 𝑋 → 𝐿𝐴 need only be realised by Turing machines that

semi-decide whether 𝑓 (𝑥) is inr 𝑎. Thus 𝐿𝐴 is the right choice of the lifting monad capturing the

idea of ‘possibly divergent elements of 𝐴’.

As an endofunctor on the universe 𝑃 , 𝐿 has both a final coalgebra ⟨�̄� : 𝑃, 𝜎 : �̄� → 𝐿�̄�⟩ and an

initial algebra ⟨𝜔 : 𝑃, 𝜏 : 𝐿𝜔 → 𝜔⟩. The following formulae of �̄� and 𝜔 are due to Jibladze [1997]:

�̄� = {𝑓 :N →𝔖 | ∀𝑛. 𝑓 (𝑛 + 1) → 𝑓 𝑛}

Handlers of Higher-Order Effectful Operations

𝜔 = {𝑓 : �̄� | ∀𝑝 : 𝑃−1 .
(
∀(𝑛 :N). (𝑓 𝑛 → 𝑝) → 𝑝

)
→ 𝑝}

which in fact works for any dominance in any elementary topos with a natural number object

(with 𝑃−1 in the formula of 𝜔 replaced by Ω).
Again, we have simple external descriptions for �̄� and 𝜔 in the case of Asm(K). The carrier �̄� is

isomorphic to the assembly ⟨N ∪ {∞}, |=�̄� ⟩ where

𝑟 |=�̄� 𝑛 iff ∀𝑘 ∈ N. (𝑘 < 𝑛) ↔ (𝑟 𝑘 ↓)
𝑟 |=�̄� ∞ iff ∀𝑘 ∈ N. 𝑟 𝑘 ↓

with 𝜎 : �̄� → 𝐿�̄� given by 𝜎 (0) = inl ∗, 𝜎 (𝑛 + 1) = inr 𝑛, and 𝜎 (∞) = inr ∞. The type 𝜔 is given

by the assembly ⟨N, |=𝜔 ⟩ that restricts �̄� to the sub-underlying setN. The algebra 𝜏 : 𝐿𝜔 → 𝜔 is

simply 𝜏 (inl ∗) = 0 and 𝜏 (inr 𝑛) = 𝑛 + 1.

From the explicit description we see that the assembly 𝜔 is a non-standard representation of

natural numbers as an assembly, different from the standard representation ⟨N, {(𝑛, 𝑛) | 𝑛 ∈ N}⟩
that satisfies the universal property of a natural number object in Asm(K). In 𝜔 , every natural

number 𝑛 ∈ N is represented as a Turing machine that halts exactly for inputs 𝑘 smaller than 𝑛.

Since Turing machines are unable to tell whether other machine halts, assembly maps 𝜔 → 𝐴 are

constrained to be ‘continuous’ in a sense.

Let 𝜅 : 𝜔 → �̄� be the canonical inclusion morphism (given as the unique algebra homomorphism

from the initial algebra 𝜏 : 𝐿𝜔 → 𝜔 to the 𝐿-algebra 𝜎−1
: 𝐿�̄� → �̄�). The morphism 𝜅 plays an

important role in synthetic domain theory: a morphism 𝑐 : 𝜔 → 𝑋 of assemblies will play the role

of an 𝜔-chain of elements 𝑐0 ⊑ 𝑐1 ⊑ · · · in a partial order 𝑋 . Similarly, a morphism 𝑐∗ : �̄� → 𝑋 is

analogous to a chain 𝑐𝑖 together with its supremum ⊔𝑖𝑐𝑖 .

Definition E.1. A modest set 𝑋 : 𝑃 is called complete if the function

(− · 𝜅) : (�̄� → 𝑋) → (𝜔 → 𝑋)

is an isomorphism, i.e. the following proposition holds

complete 𝑋 := ∃(−) : (𝜔 → 𝑋) → (�̄� → 𝑋). (∀𝑐. 𝑐 · 𝜅 = 𝑐) ∧ (∀𝑑. 𝑑 · 𝜅 = 𝑑)

internally in Asm(K). A modest set 𝑋 : 𝑃 is called well complete if 𝐿𝑋 is complete.

Well complete types will be our synthetic version of predomains:

PDom : 𝑉1

PDom = Σ(𝐴 : 𝑃). complete (𝐿 𝐴)
They are intuitively modest sets in which an 𝜔-chain of partial elements has a unique (partial)

supremum. Their crucial difference from predomains in classical domain theory is that they are

just ‘sets’ satisfying a property, rather than sets carrying additional data (the partial order).

There are some nuances in the external meaning of (well) completeness. Firstly, we notice

that complete : 𝑃 → 𝑃−1 in Definition E.1 is a proper realizability predicate in the sense that

complete X for a modest set 𝑋 : 𝑃 has non-trivial realizers. Namely, complete X is realized by

machines sending realizers of 𝜔 → 𝑋 to realizers of �̄� → 𝑋 , in a way that is an inverse to − · 𝜅.
Secondly, complete X : 𝑃−1 makes sense in an arbitrary context Γ in the internal language of

Asm(K). Therefore, externally 𝑋 is not one modest set but a family of modest sets Γ → 𝑃 indexed

by an assembly Γ of the context.

If we forget about realizers of completeness and consider only global elements 𝑋 : 𝑃 , then

complete X has a realizer if and only if the morphism𝑋𝜅 : 𝑋 �̄� → 𝑋𝜔 in Asm(K) is an isomorphism.

The latter condition is precisely the definition of completeness for an object in Asm(A) by Longley

Zhixuan Yang and Nicolas Wu

and Simpson [1997]. This further means that for all assemblies Γ and 𝑐 : Γ × 𝜔 → 𝑋 , there is a

unique 𝑐 : Γ × �̄� → 𝑋 making the following diagram commute:

Γ × 𝜔 𝑋

Γ × �̄�

𝑐

𝜅
𝑐

To see this, by Yoneda embedding, 𝑋 is complete if and only if

(𝑋𝜅 · −) : Hom(Γ, 𝑋 �̄�) → Hom(Γ, 𝑋𝜔)
is an isomorphism, natural in Γ. By adjointness, this is equivalent to asking

(− · Γ × 𝜅) : Hom(Γ × �̄�, 𝑋) → Hom(Γ × 𝜔,𝑋)
to be a natural isomorphism. A natural transformation is a natural isomorphism iff every component

of it is an isomorphism, so 𝑋 is complete if and only if for every 𝑐 : Γ × 𝜔 → 𝑋 , there is a unique

𝑐 : Γ × �̄� → 𝑋 such that 𝑐 · Γ × 𝜅 = 𝑐 .

Theorem E.2. The subuniverse PDom ⊆ 𝑃 is closed under liftings 𝐿, the unit type, Σ-types, Π-types,
equality types, coproducts, the natural number typeN in 𝑃 . Moreover, predomains are also complete

(i.e. well completeness implies completeness).

Proof. This is essentially shown by Longley and Simpson [1997, §7] aside from the difference

between Longley and Simpson’s external definition of completeness and our internal definition.

Longley and Simpson defined completeness of an assembly 𝑋 as a proposition in the ambient

logic (𝑋𝜅 : 𝑋 �̄� → 𝑋𝜔 being an isomorphism), while our definition is in internal in the language

of Asm(K), which has non-trivial realizers (Turing machines accepting code of 𝑐 : 𝜔 → 𝑋 and

outputting code of �̄� → 𝑋). Therefore, we have to check that the proofs of the closure properties by

Longley and Simpson are realizable. For example, to show 𝐿 : 𝑃 → 𝑃 restricts to 𝐿 : PDom → PDom,

we need to check that there is a Turing machine sending realizers of 𝑋 being well complete to

realizers of 𝐿𝑋 being well complete. This is indeed the case by observing that the proofs by Longley

and Simpson can be carried internally in the language of Asm(K). □

Definition E.3. Mirroring the setup of classical domain theory, the universe of domains is defined

as the type of Eilenberg-Moore algebras of the monad 𝐿 : PDom → PDom:

record Dom : V1 where

A : PDom

𝛼 : L A → A

_ : (x : A) → 𝛼 (𝜂L
x) = x

_ : (x : L (L A)) → 𝛼 (𝜇L
x) = 𝛼 (L 𝛼 x)

As usual, given 𝐷 : Dom, we usually write the type 𝜋1 (𝐷.𝐴) as just 𝐷 .

The crucial property of domains 𝐷 : Dom is that they admit fixed points for all endofunctions:

fix : {𝐷 : Dom} → (𝑓 : 𝐷 → 𝐷) → 𝐷

which is defined as follows: first we define a function 𝛼 𝑓 : 𝐿 𝐷 → 𝐷 by 𝛼 𝑓 = 𝛼 · 𝐿𝑓 . By the initiality
of 𝜏 : 𝐿𝜔 → 𝜔 , we have a homomorphism 𝑐 : 𝜔 → 𝐷 . Then using the completeness of 𝐷 , we have

𝑐 : �̄� → 𝐷 , and we let fix f := 𝑐 ∞. It is then the case that 𝑓 (fix f) = fix f [Reus and Streicher

1999, Theorem 7.3].

We note that by Longley and Simpson [1997, Theorem 5.6], Eilenberg-Moore 𝐿-algebras on a

predomain are unique if exist, so it makes sense to say ‘a predomain is a domain’ as a proposition.

Handlers of Higher-Order Effectful Operations

E.1 The Interpretation of rFωha

Now we are ready to construct a (𝑉2-small) model of the signature rFω
ha

(Section 2.4) in Asm(K).
Our goal is to define an element 𝑀 of the record type JrFωhaK𝑉2

containing all the declarations of

rFω
ha

with J replaced by the universe 𝑉2.

The non-recursive fragment of rFω
ha
will be interpreted in almost the sameway as Fω

ha
in Section 3.2,

except that all the occurrences of the universe 𝑃 : 𝑉1 will be replaced by the subuniverse PDom : 𝑉1.

For example,𝑀.ty is now PDom instead of 𝑃 , and the computation judgement𝑀.co is now

𝑀.co : 𝑀.RawHFunctor → 𝑀.el 𝑀.ty → PDom

𝑀.co 𝐻 𝐴 = (𝑇 : 𝑀.MonadAlg H) → (𝐵 : PDom) → (𝐴 → 𝑇 𝐵) → 𝑇 𝐵

The constructions in Section 3.2 still work because by Theorem E.2, the universe PDom is closed

under the type formers that we used to interpret Fω
ha
, in particular, impredicative Π-types.

The empty type from (rFω
ha
-4) is as expected interpreted as the empty modest set 0, which is

trivially well complete.

The interesting thing is modelling partial computations pco ((rFω
ha
-1)). In Section 2.4, we had a type

MonadAlgRec of monads supporting recursion (and some effectful operations). However, we cannot

simply define 𝑀.pco by replacing MonadAlg in the definition of 𝑀.co above with MonadAlgRec,

because the definition of MonadAlgRec depends on𝑀.pth and thus𝑀.pco.

The type MonadAlgRec ensures that a monad 𝑇 in rFω
ha

supports recursion by requiring the

monad 𝑇 to be partial thunks syntactically. What we need here is a semantic counterpart of monad

supporting recursion:

record MonadAlgL (H : RawHFunctor) : V2 where

include MonadAlg H as T

dom : (A : PDom) → {D : Dom | D.A = T A}
which requires that T A : PDom is a domain for all A : PDom.

The model of partial computations is then

𝑀.pco : 𝑀.RawHFunctor → 𝑀.el 𝑀.ty → PDom

𝑀.pco 𝐻 𝐴 = (𝑇 : MonadAlgL H) → (𝐵 : PDom) → (𝐴 → 𝑇 𝐵) → 𝑇 𝐵

The models of the declarations val, let-in, pth and op are the same as those for co in Section 3,

which we shall not repeat here.

The model for the fixed-point combinator has type

𝑀.𝑌 : {𝐻,𝐴} → (𝑀.pth 𝐻 𝐴 → 𝑀.pco 𝐻 𝐴) → 𝑀.pco 𝐻 𝐴

In the present model, pth 𝐻 𝐴 is simply equal to pco H A, so by appendix E, it is sufficient to show

that𝑀.pco 𝐻 𝐴 is a domain. We define the algebra by

𝛼 : {𝐻,𝐴} → 𝐿 (𝑀.pco 𝐻 𝐴) → 𝑀.pco 𝐻 𝐴

𝛼 (𝑝, 𝑐) = 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑝, 𝑐 𝑇 𝐵 𝑘)
where 𝛽𝑇𝐵 : 𝐿 (𝑇 𝐵) → 𝑇 𝐵 is 𝛽𝑇𝐵 := (𝑇 .dom 𝐵).𝛼 . The 𝐿-algebra 𝛼 is a product of a family of

𝐿-algebras, so it is easy to check that 𝛼 satisfies the laws:

𝛼 (⊤, 𝑐)
= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (⊤, 𝑐 𝑇 𝑏 𝑘)
= {𝛽𝑇𝐵 is an Eilenberg-Moore algebra}
𝜆𝑇 𝐵 𝑘. 𝑐 𝑇 𝑏 𝑘

= 𝑐

Zhixuan Yang and Nicolas Wu

and similarly for all (𝑝, (𝑞, 𝑐)) : 𝐿 (𝐿 (𝑀.pco 𝐻 𝐴)),
𝛼 (𝐿 𝛼 (𝑝, (𝑞, 𝑐)))

= 𝛼 (𝑝, 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑞, 𝑐 𝑇 𝐵 𝑘))
= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑝, 𝛽𝑇𝐵 (𝑞, 𝑐 𝑇 𝐵 𝑘))
= {𝛽𝑇𝐵 is an Eilenberg-Moore algebra}
𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝜇𝐿 (𝑝, (𝑞, 𝑐 𝑇 𝐵 𝑘)))

= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (Σ(_ : 𝑝). 𝑞, 𝑐 𝑇 𝐵 𝑘)
= 𝛼 (𝜇𝐿 (𝑝, (𝑞, 𝑐)))

We have shown that pco H A is a domain, so we can use fix (appendix E) to define

𝑀.𝑌 𝑓 = fix 𝑓 .

Finally, we need to give an interpretation of eval (rFω
ha
-3):

𝑀.eval : {𝐻 } → (𝑇 : 𝑀.MonadAlgRec 𝐻) → (𝐴 : 𝑀.el ty)
→ 𝑀.pco 𝐻 𝐴 → 𝑀.tm (𝑇 𝐴)

Note that the type of 𝑇 is MonadAlgRec rather than MonadAlgL. By the definition of MonadAlgRec

in Section 2.4, there exists some 𝐹 : 𝑀.el 𝑀.ty → 𝑀.el 𝑀.ty such that the monad 𝑇 maps every

𝐴 : PDom to 𝑀.pth 𝐻 (𝐹 𝐴). By the discussion above in Appendix E.1, 𝑀.pth 𝐻 (𝐹 𝐴), which is

just𝑀.pco 𝐻 (𝐹 𝐴), is always a domain. Therefore we have a conversion function

𝜎 : (𝑇 : 𝑀.MonadAlgRec 𝐻) → {𝑇 ′
: MonadAlgL 𝐻 | 𝑇 .𝑇 = 𝑇 ′ .𝑇 },

and we define the model of eval to be

𝑀.eval 𝑇 𝐴 𝑐 = 𝑐 (𝜎 𝑇) 𝐴 𝑇 .ret

This completes the definition of the model𝑀 : JrFωhaK𝑉2
.

The realizability model𝑀 of rFω
ha

gives a way to compute recursive programs written in rFω
ha

by

program extraction. Since 𝐿 𝐴 is a domain, the monad 𝐿 : PDom → PDom can be extended to

𝐿′ : {𝐿′ : 𝑀.MonadAlgL VoidH | 𝐿′ .𝑇 = 𝐿}
Therefore we have a function

toL : {𝐴 : PDom} → 𝑀.pco VoidH 𝐴 → 𝐿 𝐴

toL 𝑐 = 𝑐 𝐿′ 𝐴 𝜂𝐿

Every closed program p : pco VoidH bool is interpreted as a global element of 𝑀.pco VoidH 2 in

Asm(K). Composing it with toL, we then have a global element of the modest set 𝐿 2. The realizer

of this element is then a possibly divergent Turing machine 𝑟 that yields a Boolean value if it halts.

We conjecture that the realizability model of rFω
ha

in this section is adequate.

Conjecture E.4. For all closed program 𝑐 : pco VoidH bool in rFω
ha
, if the morphism toL · J𝑐K :

1 → 𝐿 2 in Asm(K) is inr tt (or inr ff), then 𝑐 = val tt (or c = val ff) in the theory of rFω
ha
.

This implies that if toL · J𝑐K = inl ∗, then 𝑐 does not equal to val tt or val ff , otherwise toL · J𝑐K
would not be inl ∗.

We expect adequacy can be proved using synthetic Tait computability (STC) internally in the

effective topos Eff, in which we glue the (internal) category 𝑃 with the category of 𝑃-valued

presheaves over the category of judgements of rFω
ha

(constructed internally in Eff). Such an in-

ternal STC argument has been attempted by Sterling and Harper [2022] to prove adequacy for a

language with security levels and general recursion but without impredicative polymorphism, whose

Handlers of Higher-Order Effectful Operations

denotational semantics is a sheaf-model of SDT, although there is a currently unfixed problem in

their proof [Sterling 2023].

	Abstract
	1 Introduction
	1.1 What Are Higher-Order Effects and Handlers?
	1.2 Interaction of Effect Handlers and Sequential Composition
	1.3 Contributions of This Paper

	2 A Core Calculus for Higher-Order Effect Handlers
	2.1 A Logical Framework
	2.2 The Signature of System F
	2.3 Computation Judgements
	2.4 An Extension of General Recursion
	2.5 Semantic Models and the Category of Judgements

	3 The Realizability Model
	3.1 Assemblies and Their Language
	3.2 The Realizability Model of Ftoha

	4 The Synthetic Logical Relation Model
	4.1 The Language of STC for Ftoha
	4.2 Constructing the Logical Relation Model
	4.3 External Closed Term Canonicity

	5 Related Work
	6 Future Prospects
	References
	A Complete Signatures of the Languages
	A.1 Signature of System Ftoha
	A.2 Effect Families in Ftoha

	B Equations of Computations for the Realizability Model
	C The Synthetic Logical Relation Model of Ftoha
	C.1 Base Types
	C.2 Function Types
	C.3 Computation Judgements
	C.4 Computation Terms

	D Parametricity and Free Theorems
	E The Realizability Model for General Recursion
	E.1 The Interpretation of rFtoha

