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1 INTRODUCTION
Programs in practice usually produce computational effects, such as I/O, mutable memory, nondeter-

minism, and probabilistic choice. Pioneered by Moggi [1989, 1991], such computational effects can

be categorically represented as monads. This view is further refined by Plotkin and Power [2002]

who pointed out that almost all the monads modelling computational effects can be presented as

algebraic theories specifying the primitive operations of an effect and its equational laws.

Based on the algebraic view, Plotkin and Pretnar [2009, 2013] proposed a programming language

feature, called an effect handler, which allows the programmer to introduce and eliminate effects

conveniently in a program. Due to their flexibility, effect handlers have been quickly adopted by

the programming language community, and implemented in many programming languages, e.g.

Brachthäuser et al. [2018]; Ghica et al. [2022]; Leijen [2014, 2017]; Sivaramakrishnan et al. [2021].

Besides these implementations, there are formalisations of algebraic theories [Abel 2021; Gunther

et al. 2018] and computational effects [Li and Weirich 2022; Xia et al. 2020; Yoon et al. 2022], which

facilitate verification of effectful programs. Notwithstanding, the existing formalisations in the

literature fail to provide complete satisfaction for program verification for two reasons:

Setoids. In these formalisations, programs modulo equational laws do not form types but rather

setoids, which are commonly deemed tedious to work with.
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2 Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu

data Op where
`fail : Op
`‹|› : Op

ND = Op ◁ Arity

Arity : Op→ Type
Arity `fail = ⊥
Arity `‹|› = Bool

data Op S where
`get : Op S
`put : S→ Op S

SS = Op S ◁ Arity

Arity : Op S→ Type
Arity `get = S
Arity (`put _) = ⊤

Fig. 1. Signature of nondeterminism (left) and mutable state (right). The operator ◁ is given in (3).

Hoare Logic. In these formalisations, reasoning about effectful programs in the equational
style [Gibbons and Hinze 2011; Plotkin and Pretnar 2008] is well supported, but reasoning in

the style of Hoare logic [Hoare 1969] does not have good support.

The main contribution of this paper is a new formalisation of algebraic effects which addresses

these two shortcomings as follows:

Quotients. Our formalisation of algebraic effects and theories includes equations, but avoids

setoids and instead uses quotients. This is facilitated by the recent development of Homotopy

Type Theory [Univalent Foundations Program 2013] and its computational realisation—Cubical

Type Theory [Angiuli et al. 2021; Cohen et al. 2018], which supports quotient types natively. The

particular implementation we use is Cubical Agda [Vezzosi et al. 2019].

Hoare Logic. The library contains an effect-generic Hoare logic, that is inspired by Schröder and

Mossakowski [2003] and Goncharov and Schröder [2013]. The idea is that pre- and post-conditions

𝜙 and𝜓 of a Hoare triple {𝜙 } p {𝜓 } are encoded as effectful programs that return a (not necessarily

decidable) proposition, and the validity of a Hoare triple is encoded as an equality of programs:

(do a← 𝜙 ; x ← p; b←𝜓 x; return (x , a |→| b))
≡ (do a← 𝜙 ; x ← p; b←𝜓 x; return (x , True))

This encoding is explained in full in Section 6. The usual inference rules of Hoare logic are derivable

based on this encoding. Moreover, we prove a novel elimination principle for Hoare logic that

connects equational reasoning and Hoare-style reasoning pleasantly: whenever the return value of

a program 𝑝 is shown to satisfy a predicate 𝜙 using Hoare logic, and 𝜙 x implies that f x ≡ g x, then
(do x← p; f x) ≡ (do x← p; g x). This principle is simple to state, but surprisingly difficult to prove

constructively. Its proof is a significant novel contribution of this paper, presented in Section 7.

A Quick Taste. To be concrete, we sketch here an example of formalising and verifying a stateful

and nondeterministic parser in our framework, which will also be our running example in later

sections. The parser will be built in the style of monadic parser combinators [Hutton and Meijer

1998]: the stream of tokens is kept in a mutable state that the parser can inspect and consume, and

the parser can make nondeterministic choices to parse the expression in possibly different ways.

To formalise the parser, the first step is to define the algebraic theory of its computational

effects. Instead of defining a monolithic theory of all the effectful operations that the parser needs,

an appealing feature of algebraic effects is that algebraic theories can be defined modularly and

then combined into bigger ones. Wu et al. [2014] showed that parsers can be described by the

combination of two separate algebraic theories: mutable state and nondeterminism.

Each algebraic theory consists of (i) a signature specifying the name of the operations and their

arities and (ii) a collection of equational laws. To formalise a signature in our framework, we need to

define a type, typically called Op, whose elements correspond to the operations, as well as a function,
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Algebraic Effects Meet Hoare Logic in Cubical Agda 3

typically called Arity, which maps elements of Op to a type. The signatures of nondeterminism and

state are shown in Figure 1. Nondeterminism, ND, has two operations: ‹|› for choices and fail for
failures. State, S𝑆 , is parameterised by the type of the mutable state 𝑆 , and it has operations get and
put for reading and writing that state respectively.

To complete the definition of the theory of nondeterminism and state, we also need to specify their

equational laws. Our formalisation provides combinators for specifying equations conveniently.

For example, associativity of nondeterministic choice is programmed as

assoc = ∀n 𝜆 x y z→ (x ‹|› y) ‹|› z � x ‹|› (y ‹|› z)

Additionally, the theory of nondeterministic choice has equations stipulating that ‹|› is idempotent

and commutative, and that fail is an identity element of ‹|›. The theory of state has equations (12)

stipulating the interaction of reading and writing the state, for example:

put-put 𝑠 = (do put s; get) � (do put s; return s)

With theories S and ND in place, we can combine them into the algebraic theory P for parsing.
The combination that is desirable for parsing is tensoring [Hyland et al. 2006], P = ND ⊗ SString ,

which takes the disjoint union of the operations and equations of S andND and adds new equations

saying that every operation in S commutes with every operation in ND.
The algebraic theory P then automatically defines a monad Term P of P-computations. The

monad is equipped with the operations from P and satisfies all the equational laws. With this

monad, we can write programs with nondeterminism and state.

Now suppose that we are interested in parsing expressions built from a binary operator * and
two constants ♦ and ♠. A parser is shown in Figure 2, in which the program any-char consumes an

arbitrary character from the state, and the program char c consumes a character c from the state,

and if the next character is not c, the operation fail is called. The result of parse-tree n is to return a

binary tree in the monad Term; it simply uses nondeterministic choices to try different ways of

parsing the input, and the argument 𝑛 is fuel which limits the depth of recursion.

To demonstrate the correctness of the parser, we would like to show that for any t : Tree, if t is
pushed to the input stream, the parser always parses the tree t back:

(do push (print t); parse-tree n) ≡ return t (1)

Here, push prepends a string to the input stream (push s = do r ← get; put (s ++ r)). Note that this
equality is stronger than merely proving the input-output behaviour of the parser using e.g. Hoare

logic, since this equality ensures that each side of the equation can be substituted by the other side

in any context without changing the semantics, which can be used in program transformation.

Although it is possible to prove this solely using the equational laws of P, such a proof is

miserably tedious because of the many bureaucratic equational rewriting steps needed in the

proof. For example, when showing that the first character c printed to the input is consumed by a

corresponding any-char c by the parser, we will have to invoke the commutativity laws of P to
swap any-char c with all operations in between:

(do push-char c; . . .; any-char c) = · · · = (do push-char c; any-char c; . . .)

so that push-char and any-char can cancel out using equations of P. In this example, the operations

getting in the way between push-char and any-char are for printing the rest of the tree t, so we

further need an induction on the tree t to do all the swapping. Through such attempts, it does not

take too long to realise purely equational reasoning is too low-level for verifying programs with

algebraic effects, and higher-level reasoning techniques are needed.
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4 Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu

any-char = do c :: cs← get
where [] → fail

put cs
return c

char c1 = do c2 ← any-char
if (does (c1

?

= c2))

then return ⟨⟩
else fail

data Tree : Type where
♦ ♠ : Tree
_⊛_ : Tree→ Tree→ Tree

parse-tree : N→ Term Tree
parse-tree zero = fail

parse-tree (suc n) = (do char '♦'; return ♦)
‹|› (do char '♠'; return ♠)
‹|› (do char '('; l← parse-tree n

char '*'; r ← parse-tree n
char ')'; return (l ⊛ r))

Fig. 2. A simple parser of expressions using nondeterminism and state.

The solution offered by our framework is an effect-generic Hoare-logic: for every algebraic theory,

there is automatically a notion of Hoare triples satisfying the usual inference rules of Hoare logic.

In the parser example, we can prove the following Hoare triple (explained in full later (27)):

∀r → {remaining (print t ++ r)} t′← parse-tree n {return (t′ ≡ t) ∧ remaining r} (2)

where remaining s is a predicate saying that the remaining input stream is equal to s.
Hoare triples and program equivalences are related by an “elimination principle” (Section 7) for

Hoare triples: let 𝜙 :A→Ω be a predicate on a type𝐴, and let f and g be two functions A→Term B
such that for all x : A, 𝜙 x implies f x ≡ g x, then the following holds:

H -elim : {} x ← p { return (𝜙 x) } → (p >>= f ) ≡ (p >>= g)

Using H -elim one can derive the desired equality (1) from the Hoare triple (2) in a few easy steps.

The constructive proof of this elimination principle, one of the major technical contributions of this

paper, is highly non-trivial and requires that the arities of the operations of the algebraic theory be

finite, so the strings in the parser example in fact have to be bounded by a finite length. However,

there is also a non-constructive proof of H -elim without this restriction.

We would like to emphasise that the role of Hoare logic here is not the verification goal per

se, but a high-level proof technique for showing the desired equivalence (1). Such way of using

Hoare-style logic has been proposed for specific effects and Hoare-style logics before [Song et al.

2023; Turon et al. 2013], but to our knowledge our framework is the first one to implement this

technique for generic algebraic effects in a constructive setting.

Paper Organisation. The contribution of this paper is a library for formalising and verifying

effectful programs based on algebraic effects. The library consists of the following components:

• algebraic theories and their free algebras,

• common computational effects and their combinations,

• an equational logic and Hoare logic for reasoning about effectful programs,

which amount to about 9000 lines of code. It is implemented in Cubical Agda 2.6.2.

The rest of this paper presents the main constructions of our formalisation. We will assume basic

familiarity with Agda. No prior knowledge about algebraic effects is assumed, so this paper may

be read as a tutorial for algebraic effects. The structure of our exposition on algebraic effects in

Sections 2–5 is influenced by Bauer [2019]. The material is organised as follows:

• Section 2 defines signatures, algebras, and free algebras.
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• Section 3 defines equations over algebraic signatures and algebraic theories.
• Section 4 defines an equational logic for reasoning about terms of an algebraic theory, and

uses quotient types to construct term algebras of algebraic theories.

• Section 5 goes into some detail of the parser example that we have seen above to demonstrate

how to program with algebraic effects in our formalisation.

• Section 6 shows how Hoare logic can be defined for algebraic effects in a generic way.

• Section 7 shows an elimination principle of Hoare logic which relates equational reasoning

and Hoare-style reasoning.

• Section 8 discusses related work and we conclude in Section 9.

2 ALGEBRAIC SIGNATURES AND ALGEBRAS
To warm up, we begin with formalising algebraic theories without any equational laws, including

their signatures, which specify the arities of operations of an algebraic theory; algebras of a signature,
which are types equipped with operations specified by the signature; and free algebras, which
are syntactic terms built from variables and operations. These concepts are standard ones from

universal algebra [Birkhoff 1935; Cohn 1981], except that our formalisation is type-theoretic rather

than set-theoretic, and that we will mainly use examples from computational effects.

Foundation. Our formalisation is based on intensional Martin-Löf type theory with universes

and inductive types [Martin-Löf 1982], supplemented with function extensionality and effective set
quotients. We use Cubical Agda [Vezzosi et al. 2019] to carry out our formalisation, but we will not

rely on features of Cubical Type Theory apart from those mentioned above.

Using Cubical Agda gives our formalisation computational meaning—the formalised proofs

are runnable programs, but in principle our formalisation also has semantics in any category

that have the aforementioned constructs, in particular, all topoi. For example, by interpreting our

formalisation in the presheaf topos over a cartesian closed category C, the formalisation can be

read as a formalisation of C-enriched algebraic theories [Kelly and Power 1993], but we will not

make use of this additional semantic generality in this paper.

2.1 Algebraic Signatures
An algebraic signature, or simply a signature, is a type Op of operation symbols paired with a type

family Arity giving the arity of each operation:

record Signature : Type1 where
constructor _◁_
field Op : Type

Arity : Op→ Type

(3)

In the literature, signatures are sometimes also called containers [Abbott et al. 2005].

Examples. In our running example of parsers, the nondeterminism effect facilitates the expression

of computations that can return multiple results. We have seen its signature ND in Figure 1. The

`fail operator represents a program with no results, and `‹|› is a binary operator combining the

results from two sub-computations. Instead of a natural number, here the Arity function returns a

type, where the cardinality of Arity 𝑜 corresponds to the arity of the operation 𝑜 . The arity of a

nullary operator like `fail is ⊥, the empty type, and a binary operator like `‹|› has arity Bool. In
general, a natural-number arity n is represented by Fin n:

Fin : N→ Type Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ Fin n

where⊤ is the singleton type, and ⊎ is disjoint union. As a result Fin 𝑛 has exactly 𝑛 closed elements.
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6 Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu

The generalisation of arity from numbers to types allows for infinitary arities. For instance,

given any type 𝑆 , the theory of mutable 𝑆-state has two operations: `get for reading the state and
`put for writing the state. Its signature S𝑆 is in Figure 1. The arity of `get is type 𝑆 , which may

have infinitely many elements. Conceptually, the operation `get takes 𝑆-many computations as

arguments, and results in a computation that reads the state and then continues as the argument

corresponding to the current state. In contrast, `put 𝑠 for each 𝑠 : 𝑆 is a unary operation, whose

only argument stands for the way to continue after writing 𝑠 into the state.

However, while it is possible to express infinite arities syntactically, to define the free model over

a theory these arities need to preserve quotients (Definition 4.2), a condition we will explain in

more detail in Section 4.4. All finite types preserve quotients, but there is strong evidence [Coquand

et al. 2017] that infinitary types do not, at least in Cubical Agda.

2.2 Algebras of Signatures
Where a signature F describes an abstract collection of operations, an F-algebra captures the notion
of a type supporting or “implementing” those operations. F-algebras are defined in terms of the

functor J F K : Type→ Type, which corresponds to one level of application of an operation in F:

J_K : Signature→ Type→ Type J Op ◁ Arity K X = 𝛴 [ o : Op ] × (Arity o→ X )

An F-algebra on a type C, referred to as the carrier of the algebra, is a function J F K C → C:
_-Alg[_] : Signature→ Type→ Type F -Alg[ C ] = J F K C → C

Here J_K and _-Alg[_] are syntactically mixfix operators, where the underscores mark the places

for arguments. We will use mixfix operators frequently in this paper to aid readability.

Agda uses hierarchical universes to handle large sets, so Type : Type1, Type1 : Type2 , and so on.

Agda also supports universe polymorphism, so functions can be generic over what universe level

they work with. The technical intricacies of this system are not relevant to understanding our

contributions, so we have simplified the presentation of some types, like J F K, by giving a universe

monomorphic version in the text, where there is a polymorphic version in the formalisation.

Examples. Lists of 𝐴-elements for an arbitrary type 𝐴 (in this paper, variables 𝐴, 𝐵, 𝐶 , always

mean arbitrary types) implement nondeterminism by the following algebra:

list-int : ND -Alg[ List A ]
list-int (`‹|› , k) = k false ++ k true
list-int (`fail , k) = []

(4)

The algebra maps each operation in nondeterminism to an operation on lists: the ‹|› operation goes

to concatenation of lists, and fail constructs an empty list. A signature can have multiple algebras,

even with the same carrier. The following are two ways that booleans implement nondeterminism:

all-int : ND -Alg[ Bool ]
all-int (`fail , k) = true
all-int (`‹|› , k) = k false && k true

any-int : ND -Alg[ Bool ]
any-int (`fail , k) = false
any-int (`‹|› , k) = k false || k true

(5)

As another example, the signature S has an algebra over functions S → A × S:

state-alg : SS -Alg[ (S→ A × S) ]
state-alg (`get , k) s1 = k s1 s1

state-alg (`put s2 , k) s1 = k ⟨⟩ s2

(6)

This interprets mutable state into the state monad [Moggi 1991], a function 𝑆 → 𝐴 × 𝑆 taking an

initial state as input and produces a value of type A along with the final state. In this algebra, the
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argument k : 𝑆 → (𝑆 → 𝐴 × 𝑆) to the operation get is thought of as the continuation after reading

the state. Therefore the result of get continues with s1 and keeps the state unchanged, where s1 is
the initial state. Similarly, the result of put s2 on k : ⊤ → (S → A × S) is the computation that

ignores its initial state and continues as k ⟨⟩ with the new state s2.

2.3 Syntax Trees
Let F be a signature and 𝜈 be any type. Syntax trees of terms built out of variables from 𝜈 and

operations from F are represented by the following Syntax type:

data Syntax (F : Signature) (𝜈 : Type) : Type where
var : 𝜈 → Syntax F 𝜈
op : J F K (Syntax F 𝜈)→ Syntax F 𝜈

(7)

The constructor var introduces a variable, and op builds a term by applying an operation from F to
some existing terms. The parameter F will often be omitted: when F is clear from the context, we

will write Syntax A rather than Syntax F A.

Examples. Consider the following pair of programs:

up-to : N→ Syntax ND N
up-to zero = fail
up-to (suc n) = up-to n ‹|› return n

odds : N→ Syntax ND N
odds n = do m← up-to n

guard (odd m)

return m

(8)

These programs use the nondeterminism effect. up-to n computes all the natural numbers smaller

than n, and odds n computes the odd numbers smaller than n. The guard function takes a condition

and causes the computation to fail when the condition is false.

Let us build the value of type Syntax ND N that represents the syntax tree for the odds program.

First, the do-notation in (8) can be desugared in the usual way:

odds n = up-to n >>= 𝜆 m→ guard (odd m) >>= 𝜆 _→ return m

The do-bindings have been replaced by the monadic bind, which is defined as follows on Syntax:

_>>= _ : Syntax ND A→ (A→ Syntax ND B)→ Syntax ND B
var x >>= 𝜌 = 𝜌 x
op (o , k) >>= 𝜌 = op (o , 𝜆 i→ k i >>= 𝜌)

This performs variable substitution. The term xs >>= 𝜌 takes a syntax tree xs and returns the tree

with all variables replaced according to the continuation 𝜌 .

Next, the operators from the signature must be defined as functions on Syntax.

_‹|›_ : Syntax ND A→
Syntax ND A→
Syntax ND A

x ‹|› y = op (`‹|› , 𝜆 i→ if i then y else x)

fail : Syntax ND A
fail = op (`fail , absurd)

absurd : {A : Type}→⊥→ A

The definition for ‹|› here enshrines false as corresponding to the left branch of ‹|›.
Finally, the remaining symbols in the program must be defined in terms of Syntax.

return : A→ Syntax ND A
return = var

guard : Bool→ Syntax ND ⊤
guard c = if c then return ⟨⟩ else fail

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article . Publication date: January 2024.



8 Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu

2.4 Interpreting the Syntax Tree
Syntax trees of a signature F can be interpreted into an F-algebra:

interp : F -Alg[ C ]→ (𝜈 → C)→ Syntax 𝜈 → C
interp 𝜙 𝜌 (var x) = 𝜌 x
interp 𝜙 𝜌 (op (Oi , k)) = 𝜙 (Oi , 𝜆 i→ interp 𝜙 𝜌 (k i))

(9)

This function takes an algebra 𝜙 : F -Alg and a mapping 𝜌 from the variables 𝜈 to the algebra C,
and interprets syntactic programs with operations of the algebra accordingly.

A more computational reading of this function is that the argument of type Syntax 𝜈 is a program

invoking operations from F and returning a value of type 𝜈 . The algebra 𝜙 handles the operation
calls in the program. The function 𝜌 turns the 𝜈-value returned by the program into the type 𝜙

operates on. Therefore the function interp is called a (deep) effect handler [Plotkin and Pretnar 2013;

Pretnar and Bauer 2014] when it is implemented as a programming language construct.

For an example of interpretation, the syntactic program odds of signature ND can be interpreted

using the algebra over lists: interp list-int (𝜆 v → [ v ]) (odds 7) computes to [1, 3, 5]. What makes

effect handlers a powerful language feature is that different interpretations can be given to the

same syntactic program: interp all-int is-odd (odds 7) computes to true.
Another example of an interpretation is the monadic bind on Syntax 𝜈 :

_>>= _ : Syntax A→ (A→ Syntax B)→ Syntax B
xs >>= 𝜌 = interp op 𝜌 xs

This follows from the fact that the Syntax type is itself an algebra of F, via op:

syntax-alg : F -Alg[ Syntax 𝜈 ]
syntax-alg = op

There are some useful properties we can prove about interpretation. First, if the algebra supplied

is op, and the variable assignment is var , the interpretation is an identity:

(xs : Syntax 𝜈)→ interp op var xs ≡ xs

Moreover, the interpretation supports the fusion laws, a powerful tool in reasoning about combi-

nations of interpretations. One such law states that for an F-algebra 𝜙 , a variable assignment 𝜌 , a

continuation k, and a syntax tree xs, the following holds:

interp 𝜙 𝜌 (xs >>= k) ≡ interp 𝜙 (interp 𝜙 𝜌 ◦ k) xs (10)

This says that an interp after a bind can be fused with the continuation supplied to the bind.

2.5 Freeness of Syntax
We saw above that the Syntax type is itself an algebra of the signature F (syntax-alg); as it happens
it is the free algebra. To define freeness formally first we need to define F-homomorphisms.

Homomorphisms. An F-homomorphism between two F-algebras is a function h between the

two carriers C and D such that the function commutes with the operations of the signature:

_→ℎ_ : F -Alg→ F -Alg→ Type
( C , c )→ℎ ( D , d ) =

𝛴 [ h : (C → D) ] × h ◦ c ≡ d ◦ cmap h

cmap : (A→ B)→ J F K A→ J F K B
cmap f (o , k) = o , 𝜆 i→ f (k i)

This definition of a homomorphism is the same as the usual definition of, for instance, a monoid

homomorphism, stated in slightly more general language. On the signature for monoids, the above
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code for a homomorphism translates to a function ℎ between two carrier sets for two monoids,

along with a pair of proofs that ℎ 𝑥 · ℎ 𝑦 = ℎ (𝑥 · 𝑦) and ℎ 𝜖 = 𝜖 .

Freeness. Let 𝜈 be any type. A (homotopic-) free F-algebra over 𝜈 is an algebra 𝛼 : F -Alg[ A ] over
some type 𝐴 with a function 𝜂 : 𝜈 → A such that for any algebra 𝛽 : F -Alg[ 𝐶 ] and function

𝜃 : 𝜈 → 𝐶 there is a unique F-homomorphism ℎ : A→ 𝐶 with ℎ ◦ 𝜂 = 𝜃 :

𝜈 𝐴 J F K 𝐴 𝐴

𝐶 J F K 𝐶 𝐶

𝜃

𝜂

h

𝛼

∃!h
𝛽

cmap ℎ (11)

This definition is a little dense: in simpler terms, it amounts to saying that if we inject some

variable into the free algebra, and then use the operators of the signature on the free algebra to

build a syntax tree, and then interpret that syntax tree into another algebra, it’s the same as directly

using the same operations in the latter algebra.

Theorem 2.1. Syntax F 𝜈 with var is a free F-algebra over 𝜈 .

Proof Sketch. We have already seen that Syntax F 𝜈 is an algebra of F, via op. Given another

algebra 𝜙 : J F K → 𝐶 , and a function 𝑓 : 𝜈 → 𝐶 , the homomorphism is given by ℎ = interp 𝜙 𝑓 .

This satisfies the cancellative property by definition: ℎ ◦ 𝜂 = interp 𝜙 𝑓 ◦ var = 𝑓 . Finally, given

any other homomorphism 𝑔 : Syntax F→ 𝐶 with this cancellative property, it can be shown to be

equal to ℎ as functions Syntax F→ 𝐶 by induction on Syntax F. To show that they are equal as

homomorphisms (Syntax F, op) →ℎ (𝐶,𝜙), we also need to show that the equalities witnessing

their commutation with operations are equal. We have formalised this proof of homotopic freeness

using a similar proof idea to Awodey et al. [2017] (which proved homotopic initiality). □

3 ALGEBRAIC THEORIES AND MODELS
Algebraic theories are a combination of operations (the signature) and equations (the laws). The

previous section dealt only with the signature; this section will introduce laws to the discussion.

Mirroring the development in the previous section, we will first define equations and algebraic

theories, and then we will definemodels: algebras of the underlying signature of a theory that satisfy
all the equations. The free models of algebraic theories, which mirror free algebras of signatures in

Section 2, are slightly more involved, and will be treated in the next section.

Equations. The laws for an algebraic theory are a collection of formal equations between syntactic

terms. Thus the type Equation F 𝜈 is a pair of syntax trees, one for each side of the equation, in the

signature F with free variables 𝜈 :

record Equation F 𝜈 where
constructor _�_
field lhs rhs : Syntax F 𝜈

Here, for instance, is the equation for associativity of ‹|›:
assoc : Equation ND (Fin 3)

assoc = (var 0 ‹|› var 1) ‹|› var 2 � var 0 ‹|› (var 1 ‹|› var 2)

This equation has three variables, hence 𝜈 = Fin 3. The helper function ∀n makes the statement of

the equation a little more readable:

assoc = ∀n 𝜆 x y z→ (x ‹|› y) ‹|› z � x ‹|› (y ‹|› z)
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Contexts. To state some equations succinctly it is useful to use variables drawn from a context:
the following statement of the “put-put” law, for instance, uses the variables 𝑠1 and 𝑠2.

(do put 𝑠1; put 𝑠2) � (do put 𝑠2)
This law says that a put immediately following another put overwrites the first one. It would be

possible to encode this law as 𝑆 × 𝑆 individual laws—one for each choice of 𝑠1 and 𝑠2—but it is more

reasonable to define a law as having a context Γ, which can contain parameters like 𝑠1 and 𝑠2.

record Law F where
field 𝛤 : Type

𝜈 : 𝛤 → Type
eqn : (𝛾 : 𝛤 )→ Equation F (𝜈 𝛾 )

put-put-law : Law SS

put-put-law .𝛤 = S × S
put-put-law .𝜈 _ = ⊤
put-put-law .eqn (s1 , s2) =

(do put s1 ; put s2) � (do put s2)

A Law F is a law for signature F. The law is under context Γ and free variables 𝜈 . The free variables

can depend on the context: this is necessary, for example, to construct the tensoring law (21).

Theories. Finally, an algebraic theory over a signature F is a collection of laws over a signature F:

record Theory F where
field Laws : Type

Eqns : Laws→ Law F

The theory of mutable state, for instance, has three laws:

data Laws where put-put put-get get-put : Laws

The Eqns field then returns the corresponding law for each index:

Eqns : Laws→ Law SS

Eqns put-put .𝛤 = S × S
Eqns put-put .𝜈 _ = ⊤

Eqns put-get .𝛤 = S
Eqns put-get .𝜈 _ = S

Eqns get-put .𝛤 = ⊤
Eqns get-put .𝜈 _ = ⊤

Eqns put-put .eqn (s1 , s2) = (do put s1; put s2) � (do put s2)

Eqns put-get .eqn s = (do put s; get) � (do put s; return s)
Eqns get-put .eqn _ = (do s← get; put s) � (do return ⟨⟩)

(12)

The equation (do s1← get ; s2← get ; return (s1 , s2)) ¤= (do s← get; return (s , s)) is sometimes also

required as the “get-get” law of mutable state, but in fact follows from the equations above.

Models. Given an equation lhs � rhs over a signature F, an F-algebra 𝜙 : J F K C → C over some

type C is said to respect this equation if the following proposition holds:

𝜙 Respects (lhs � rhs) = ∀ (𝜌 : 𝜈 → C)→ interp F 𝜙 𝜌 lhs ≡ interp F 𝜙 𝜌 rhs

which says that interpreting both sides of the equation using the algebra 𝜙 under any variable

assignment 𝜌 results in the same value. Note that _Respects_ is syntactically an infix operator, so

it is in the sans serif font to distinguish from an ordinary function.

Moreover, if an algebra respects all the equations in a theory, we say that it models the theory:

𝜙 Models T = ∀ i 𝛾 → 𝜙 Respects T .Eqns i .eqn 𝛾

A T -model, then, where T is a theory with signature F, is an F-algebra over some carrier type C
that respects the laws of T :

T -Model[ C ] = 𝛴 [ 𝜙 : F -Alg[ C ] ] × 𝜙 Models T
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For example, the algebra state-alg (6) can be shown to be a model for the theory of mutable state,

since state-alg respects the state laws (12).

4 FREE MODELS OF ALGEBRAIC THEORIES
The core construction of this paper is the free model of an algebraic theory, which is similar to

the free algebras of signatures in Section 2.5 but with equations taken into consideration. Free

models are important as they give us a formal construction which represents the structure present

in all models of a theory. Thus they may be seen as encoding the structure in the theory itself. In
particular, if an algebraic theory describes a computational effect adequately, the free models of the

theory may be seen as the computations with the effect.

Some algebraic theories have direct descriptions of their free models; for instance, free monoids

are precisely lists, and free commutative monoids are N-valued functions with finitely many

non-zero values. However, such concrete descriptions do not always exist for algebraic theories.

In general, free models are constructed by quotienting syntax trees Syntax F (7) with a suitable

equivalence relation defined by the equational laws of T .
Section 4.1 will first quickly recap quotient types in Cubical Agda, and Section 4.2 will define the

equivalence relation. Finally, the type for the free model itself, Term, will be presented in Section 4.3

and its properties expanded upon. Section 4.4 will show that Term is the free model for T .

4.1 Quotient Types
Given a type A and a type family _~_ : A→A→ Type, their (set) quotient A / _~_ can be expressed

as a higher inductive type [Univalent Foundations Program 2013] in Cubical Agda:

data _/_ (A : Type) (_~_ : A→ A→ Type) : Type where
[_] : A→ A / _~_
eq/ : (x y : A)→ x ~ y→ [ x ] ≡ [ y ]
squash/ : isSet (A / _~_)

(13)

The first constructor injects every element x of type A into the quotient; the second constructor

identifies [ x ] and [ y ] whenever 𝑥 ~𝑦 is inhabited; the final constructor makes the type A / _~_
always a set in HoTT (also known as an h-set):

isSet B = (x y : B)→ (p q : x ≡ y)→ p ≡ q (14)

An alternative way to phrase (14) is that a type B is a set if for all pairs of elements x, y : B, the
identity types 𝑥 = 𝑦 are propositions, which are types whose elements are all identified:

isProp P = (x y : P)→ x ≡ y

Quotient types can be consumed by pattern-matching as usual, but in practice it tends to be

easier to use the recursion principle below, which extends a function f : A→ B to the quotient type

provided that B is a set and f respects the relation:

rec/ : isSet B
→ (f : A→ B)
→ (∀ x y→ x ~ y→ f x ≡ f y)
→ A / _~_→ B

rec/ set f resp = 𝜙 where

𝜙 : A / _~_→ B
𝜙 [ x ] = f x
𝜙 (eq/ x y x~y i) = resp x y x~y i
𝜙 (squash/ x y p q i j) =

set (𝜙 x) (𝜙 y) (cong 𝜙 p) (cong 𝜙 q) i j

(15)

Example. One way to construct unordered lists, or bags, is quotienting the type List A of lists by

adjacent-element swaps: Bag A = List A / _⟲_ where
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data _⟲_ : List A→ List A→ Type where
swap : x :: y :: ys ⟲ y :: x :: ys
cons : ∀ x → xs ⟲ ys→ x :: xs ⟲ x :: ys

The size of bags can be computed using the recursion principle:

size : Bag A→ N
size = rec/ isSetNat length 𝜙 where
𝜙 : (xs ys : List A)→ xs ⟲ ys→ length xs ≡ length ys
𝜙 _ _ swap = refl
𝜙 _ _ (cons _ xs⟲ys) = cong suc (𝜙 _ _ xs⟲ys)

The function 𝜙 witnesses that the length function on lists respects element swaps xs ⟲ ys, so
length : List A→N can be extended to bags.

Remark. In Cubical Agda, not all types are sets, i.e. satisfying the proposition (14). In particular,

if we leave out squash/ in the definition of A / _~_, the reflexive equality refl : [a] ≡ [a] for some

element a : A and the equality constructed by eq/ 𝑎 𝑎 𝑟 for any r : a ~ a will be different elements of

the equality type [a] ≡ [a], even if A is a set and _~_ is a proposition valued type family. This is

certainly very different from quotient sets in the usual set-theoretic maths, and thus we need the

additional constructor squash/ to “force” the quotient type to be a set.

4.2 Program Equivalence
Given an algebraic theory T over a signature F, the free models are obtained by quotienting syntax

trees of F with what we call the program equivalence, which is the congruence relation generated by

the equational axioms of T . It can be given as an inductive datatype in Cubical Agda:

data _~𝑡_ : Syntax A→ Syntax A→ Type where
eqt : ∀ i 𝛾 𝜌 → let lhs � rhs = Eqns i .eqn 𝛾 in lhs >>= 𝜌 ~

𝑡 rhs >>= 𝜌

reflt : x ≡ y→ x ~
𝑡 y

symt : x ~
𝑡 y→ y ~

𝑡 x
transt : x ~

𝑡 y→ y ~
𝑡 z→ x ~

𝑡 z
congt : ∀ Oi (kl kr : Arity Oi → Syntax A)→ (∀ i→ kl i ~

𝑡 kr i)
→ op (Oi , kl) ~

𝑡 op (Oi , kr )

trunct : (eq1 eq2 : x ~
𝑡 y)→ eq1 ≡ eq2

(1) The first constructor eqt says if two syntax trees can be obtained by instantiating an equation

of T , they are equivalent. Its declaration has three parameters: i, the index of the particular
law; 𝛾 , the context for that law; and 𝜌 , the variable assignment to the variables in the law.

(2) The next three constructors reflt , symt and transt extend the relation to an equivalence.

(3) The congt constructor makes the relation a congruence relation on op: an operation acting on

equivalent arguments 𝑘𝑙 and kr leads to equivalent result.

(4) The final constructor trunct is a higher inductive constructor. It identifies any two elements

of the type x ~t y, thus squashing x ~t y from the type of derivation trees of equivalence of x
and y to a proof-irrelevant proposition of x being equivalent to y.

This datatype encodes precisely Birkhoff [1935]’s inference rules for the equational logic of
universal algebra, deducing which syntactic terms are regarded as equivalent in an algebraic theory.
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4.3 Terms up to Program Equivalence
With the program equivalence x ~t y for an algebraic theory T , we can define the type of T -terms
up to program equivalence as the quotient type:

Term : Type→ Type Term A = Syntax A / _~𝑡_

where the argument 𝐴 is the type of variables in terms. For clarity, we also define a specialised

constructor [_]𝑡 : Syntax A→ Term A by [_]𝑡 = [_]. The rest of this section will be dedicated to

proving properties about this type, culminating in a proof that it is indeed the free model and a

program equivalence x ~t y holds iff the interpretations of x and y are equal in all models.

Interpretation. Like syntax trees, terms can be interpreted into models of T :

interpt : (𝜙 : F -Alg[ C ]) (𝜌 : 𝜈 → C)→ 𝜙 Models T → isSet C → Term 𝜈 → C

Given an 𝜙 : F -Alg that models T , a generator 𝜌 , and a proof that the carrier is a set, this function

interprets into the carrier set from Term.

The definition of interpt is as follows:

interpt 𝜙 𝜌 resp set = rec/ set (interp 𝜙 𝜌) (𝜆 _ _→ interpt-cong 𝜙 𝜌 resp set)

The definition works by extending interp : Syntax A→C to Term A using rec/. Thus we need the

following lemma that interp respects the program equivalence ~
𝑡 .

Lemma 4.1. Let 𝜙 : F -Alg[ C ] be a model of a theory T : Theory F ℓ such that C is a set, and let
𝜌 be a function 𝜈 → C for any 𝜈 . Then interp 𝜙 𝜌 : Syntax 𝜈→C respects program equivalence ~

𝑡 :

interpt-cong : ∀ {x y : Syntax A}→ x ~
𝑡 y→ interp 𝜙 𝜌 x ≡ interp 𝜙 𝜌 y

Proof. This proof goes by induction on x ~
𝑡 y. The cases for the four constructors for congruence

follow from the fact that the propositional equality is also a congruence relation:

interpt-cong (reflt p) = cong (interp 𝜙 𝜌) p
interpt-cong (symt p) = sym (interpt-cong p)
interpt-cong (transt x~z z~y) = interpt-cong x~z # interpt-cong z~y
interpt-cong (congt Oi k k′ p) = cong 𝜙 (cong (Oi ,_) (funExt (𝜆 i→ interpt-cong (p i))))

A more interesting case is the constructor eqt i𝛾 k, which instantiates the 𝑖-th law with a variable

substitution k : 𝜈 𝛾 → Syntax A. We need to show

interp 𝜙 𝜌 (interp op 𝑘 lhs) ≡ interp 𝜙 𝜌 (interp op 𝑘 rhs)

To show this we apply the fusion law interp-comp (10), converting both sides of the goal to the

shape interp 𝜙 (interp 𝜙 𝜌 ◦ 𝑘). Then by the assumption m : 𝜙 Models T , both sides are equal.

Using some equational reasoning combinators, the proof goes by

interpt-cong (eqt i 𝛾 k) = let lhs � rhs = Eqns i .eqn 𝛾 in
interp 𝜙 𝜌 (interp op k lhs) ≡⟨ interp-comp 𝜙 𝜌 k lhs ⟩
interp 𝜙 (interp 𝜙 𝜌 ◦ k) lhs ≡⟨ m i 𝛾 (interp 𝜙 𝜌 ◦ k) ⟩
interp 𝜙 (interp 𝜙 𝜌 ◦ k) rhs ≡̆ ⟨ interp-comp 𝜙 𝜌 k rhs ⟩
interp 𝜙 𝜌 (interp op k rhs) ■

The final case is trunct . We need to show that the equality being produced is a proposition. This

follows from the assumption of C being a set, since equalities on sets are propositions. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article . Publication date: January 2024.



14 Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu

4.4 Term Models
The first step in showing that Term is the free model of a theory T is showing that it is an algebra

of the underlying signature F of T , which amounts to constructing an element

opt : F -Alg[ Term A ]

Perhaps surprisingly, defining this is not entirely straightforward in a constructive setting. The

problem becomes clear when the type F -Alg[ Term 𝐴 ] is expanded:

opt : (∃ o × (Arity o→ Syntax A / _~𝑡_)→ Syntax A / _~𝑡_) (16)

The only relevant functions available are the following two:

[_] : Syntax A→ Syntax A / _~𝑡_ op : ∃ o × (Arity o→ Syntax A)→ Syntax A

If we were in a classical foundation, we could define opt by choosing a family of representative

elements Arity 𝑜→ Syntax 𝐴 from the input family of quotients Arity 𝑜→ Syntax 𝐴 / _~_, and
then applying op and [_]. But in a constructive setting, we cannot make such a choice for all Arity 𝑜

in general. Therefore we need to make an additional assumption on the arities’ types. In particular,

we need arities to support a choice principle: we will call this principle quotient preserving.

Definition 4.2 (Quotient Preserving). From a high level, the missing piece in implementing opt is

a way to commute a function arrow around a quotient, turning a function into a quotient into a

quotiented function. ((𝐴→ (𝐵 / 𝑅)) → (𝐴→ 𝐵) / 𝑅′). First, notice that the inverse always exists:

dist : (A→ B) / Pointwise R→ (A→ B / R)
dist = rec/ (isSet𝛱 𝜆 _→ squash/) (𝜆 f → [_] ◦ f ) (𝜆 _ _→ funExt)

(17)

for all A, B : Type and R : B→ B→ Type, where Pointwise lifts a type family on B to one on A→B:

Pointwise R f g = ∀ x → [ f x ] ≡ ([ g x ] : B / R)

The function needed to implement opt is actually the inverse of dist, where 𝐴 is the arity of the

operator in question. Therefore, we say a type A is quotient preserving if for all types B and type

families R : B→ B→ Type, the function dist is an isomorphism:

𝛴 [ trav : ((A→ B / R)→ (A→ B) / Pointwise R) ] ×
(trav ◦ dist ≡ id) × (dist ◦ trav ≡ id)

(18)

All simple finite types are quotient-preserving: it is not difficult to construct the trav function

when 𝐴 = Bool, for example. Infinitary types, however, might not preserve quotients without

additional axioms. Admitting the axiom of choice allows all types to preserve quotients; the axiom

of countable choice (AC𝜔 , a weakened form of the axiom of choice that holds in many constructive

systems), on the other hand, is precisely equivalent to the condition of N preserving quotients. The

choice of foundation, in other words, influences which arities are permitted in term models. In the

most general setting this means arities must be finite, so the parser example Figure 2 can only be

applied to strings bounded by some arbitrary length.

Now we assume a theory T whose arity types Arity o all preserve quotients and return to

defining the algebra opt (16). The implementation of opt uses the recursion principle (15):

opt (o , k~) = rec/ squash/ (𝜆 k→ [ op (o , k) ]) cong-point (trav k~)

This function takes k~ : Arity 𝑜 → Syntax 𝐴 / _~𝑡_, and applies trav to it, pulling the quotient

outside the function arrow. Then, rec/ is used to apply a lambda function which re-wraps the

subtree 𝑘 in op, and cong-point proves that this re-wrapping respects the quotient.
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Finally, for Term to be a model of T , opt must respect the laws of T , but this is straightforward
since the eqt case of ~t precisely says that any two programs that are instances of equations of T
are related, and Term is a quotient of ~t .

Since opt respects the laws of T , Term can now implement the monadic bind, via interpt :

_>>= _ : Term A→ (A→ Term B)→ Term B
xs >>= k = interpt opt k opt-resp squash/ xs

This, along with proofs of the monad laws, shows that Term is in fact a monad.

Analogously to the freeness of Syntax (Theorem 2.1), the Term type is the free model for T .

Theorem 4.3. Let A be a set. The algebra (Term A, opt) is the free T -model over 𝐴.

The proof of this theorem follows the structure of Theorem 2.1 closely. The theorem immediately

implies the following corollary known as Birkhoff’s completeness theorem [Birkhoff 1935].

Corollary 4.4. Let x and y : Syntax A be two syntactic trees. The proposition x ~t y holds if and
only if interpt 𝜙 𝜌 x ≡ interpt 𝜙 𝜌 y for all T -models 𝜙 : J F K C→ C and functions 𝜌 : A→C.

5 PROGRAMMINGWITH EFFECTS
In this section we revisit the parsing example in Figure 2 and flesh out some details that we omitted

in the introduction. Recall that we are interested in parsing expressions with a binary operation

* and constants ♦ and ♠, and for simplicity, we only consider strings generated by the following

function from some tree t : Tree, where Tree is the AST for expressions defined in Figure 2:

print : Tree→ String
print ♦ = "♦"
print ♠ = "♠"
print (l ⊛ r) = "(" ++ print l ++ "*" ++ print r ++ ")"

(19)

Combining Signatures. Three operations are used in parse-tree in Figure 2: ‹|›, fail, and char .
These operations come from a combination, namely the tensor, of nondeterminism and mutable

state. The signature of a tensor F ⊗ G is the coproduct ⊞ of the signatures of F and G:
_⊞_ : Signature→ Signature→ Signature
(F ⊞ G) .Op = F .Op ⊎ G .Op
(F ⊞ G) .Arity (inl Of

) = F .Arity Of

(F ⊞ G) .Arity (inr Og
) = G .Arity Og

Syntax trees generated from the signature P = ND⊞S have operations from both nondetermin-

ism and state. Here, for instance, are the syntactic representations of fail, put, and get:

fail : Syntax A
fail = op (inl `fail , absurd)

put : String→ Syntax ⊤
put s = op (inr (`put s) , var)

get : Syntax String
get = op (inr `get , var)

The remaining operation to define is char . This is a composite operation, defined using operations

from both ND and S. Conceptually, the mutable state effect is being used here to refer to the string

being parsed: the get operation returns the “rest of the string, yet to be parsed”. The parser eof , for
instance, parses the empty string:

eof : Syntax ⊤
eof = do s← get; guard (null s)
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where null tests if a string is empty, meaning that this parser will fail if the remaining string is

anything other than the empty string. The parsers any-char and char from Figure 2 are defined in

a similar way. As a reminder, here are their signatures:

any-char : Syntax Char char : Char → Syntax ⊤
any-char parses and consumes any single character: it first inspects the remaining string with get,
failing if it is empty, then it sets the remaining string to the tail of what it was, finally returning the

consumed character. This parser is used by char to parse a specific character using an equality test.

To convert a Syntax value to a Term, it is usually sufficient to wrap it in the set-quotient con-

structor (13). Sometimes slightly more complex functions, like opt , are needed.

put : String→ Term ⊤
put s = [ op (inr (`put s) , var) ]

_‹|›_ : Term A→ Term A→ Term A
x ‹|› y = opt (inl `‹|› , 𝜆 i→ if i then y else x)

Combining Laws. Just like the signatures, the laws of nondeterminism and state are combined to

yield the laws of parsing. Any law that holds in either constituent theory holds in the theory of

parsing. We have already seen the state laws (12), the laws of nondeterminism are as follows:

Eqns idl
.eqn _ = ∀n 𝜆 xs → fail ‹|› xs � xs

Eqns assoc .eqn _ = ∀n 𝜆 xs ys zs→ (xs ‹|› ys) ‹|› zs � xs ‹|› (ys ‹|› zs)
Eqns comm .eqn _ = ∀n 𝜆 xs ys → xs ‹|› ys � ys ‹|› xs
Eqns idem .eqn _ = ∀n 𝜆 xs → xs ‹|› xs � xs

(20)

These are the laws of a semilattice: this means the parser is also a semilattice, under ‹|› and fail.
On the Term type, these laws are upgraded to a full equalities.

‹|›-assoc : (x y z : Term A)→ (x ‹|› y) ‹|› z ≡ x ‹|› (y ‹|› z)

However, the simple sum of the laws yields an unsatisfactory semantics for the parser. Identities

which involve the interaction of the two theories can run into trouble, for instance:

∀ (c : Char) (p q : Term A)→ (do char c; p) ‹|› (do char c; q) ≡ (do char c; p ‹|› q)

This simple equation says that the nondeterministic choice of parsers that start with the same

character is equal to a parser for that character followed by the choice of the rest of the parsers.

Unfortunately, though, this equation does not hold by default: the equation reorders state

operations and nondeterminism operations, and it is not correct to assume that this yields an

equivalent result. The solution is to have an additional law which insists this is the case. For a pair

of signatures F and G, the commutativity law is as follows, for any operators fs ∈ F and gs ∈ G:

(do f ← OpJ inl fs K ; g← OpJ inr gs K ; return (f , g))
�

(do g← OpJ inr gs K ; f ← OpJ inl fs K ; return (f , g))
(21)

OpJ_K : ∀ o→ Syntax (Arity o)
OpJ o K = op (o , var)

This law states that operations from the constituent theories commute around each other. The tensor
of theories T1 and T2, denoted T1 ⊗ T2, takes the sum of their signatures and laws with additionally

laws of commutativity. The parsing effect is the tensor of nondeterminism and mutable state.
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Interpreting into Models. The Term monad for the algebraic theory P is only syntactic terms

modulo equations, so programs like parse-tree written with Term cannot run yet. To actually run

them, we need to find more concrete models for the theory P.
We have already seen a model for one of the constituent theories of the parsing effect: state-

passing functions (6). In fact, this model is isomorphic to the free model of state. The two sides of

this isomorphism are given by the following:

toState : (S→ A × S)→ Term A
toState k = do s1← get

let x , s2 = k s1

put s2

return x

runState : Term A→ (S→ A × S)
runState = interpt state-alg

(𝜆 x s→ x , s)
runState-resp
· · ·

This isomorphism actually goes further: the state monad transformer is in fact isomorphic to

tensoring with theory of state [Hyland et al. 2006]. To be precise, for the theory of mutable state S
(over some state type 𝑆) and some other theory T , the term monad of their tensor is isomorphic to

the state monad transformer:

Term (S ⊗ T ) 𝐴⇔ 𝑆 → Term T (𝐴 × 𝑆) (22)

The other effect of parsing is nondeterminism. A suitable model for nondeterminism—considering

the laws in (20)—is the finite set K , where K 𝐴 is a finite, enumerable subsets of 𝐴. The imple-

mentation of this type is not relevant here: see [Frumin et al. 2018] for an explanation of the

type, or [Kidney 2020] for an implementation in Cubical Agda. It turns out that this model is also

isomorphic to the free model of nondeterminism. Thus by (22), the term monad for parsing is

isomorphic to String→K (A × String), with which we can actually run the parsers.

Recursion. Since elements of the term monad are inductively generated trees modulo the program

equivalence, programs defined with general recursion cannot always be defined as elements of

the term monad, since they may be infinite trees. One way to work around this problem is to use

explicit step indexing as we did in the parser example (Figure 2): a recursive effectful program is

represented as a sequence of finite approximations 𝑝 : N→ Term, where p 0 always triggers a

failure and p (suc n) expands the recursion suc n times. Consequently, when stating a property

about a recursive program, the step indices must be dealt with appropriately.

An alternative approach is to use the coinductive-version of Syntax to represent programs, which

is the approach taken by Xia et al. [2020] in their framework of interaction trees; then infinite

programs can be directly defined. However, it is not clear in this setting what the appropriate

notion of models of an equational theory should be, let alone constructing free models.

Therefore the equational approach taken in this paper trades off direct support of recursion for

the ability to define program equivalence by a set of equations directly. Consequently, program

equalities proved on free models automatically hold in any other semantic models (Corollary 4.4).

In contrast, the program equivalence of interaction trees is a bisimilarity induced by a specific
operational semantics [Xia et al. 2020]. Thus program equalities proven for the bisimilarity do not

automatically hold for other models. It is worthwhile to reconcile these two approaches in the

future, possibly by using guarded dependent type theory [Baunsgaard Kristensen et al. 2022; Bizjak

et al. 2016; Sterling and Harper 2018] or constructive domain theory [de Jong and Escardó 2021].

6 AN EFFECT-GENERIC HOARE LOGIC
We have presented a full formalisation of algebraic effects which accounts for their equations. We

will now demonstrate the power of this formalisation, in allowing for sophisticated reasoning about
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programs, culminating in a generic Hoare logic for algebraic effects. This logic is a constructive
version of Schröder and Mossakowski [2003]’s monad-independent Hoare logic; what is novel is an
elimination principle that connects Hoare-style reasoning and equational reasoning.

The Hoare logic of Schröder and Mossakowski [2003] is flexible: usually, Hoare logic is specific

to stateful assertions; the logic we will develop here allows for assertions over any effect that can be

encoded in our framework. As long as the assertion can be encoded as a term of type Term 𝛺 (23)

that is SEF and DET (25) it can be manipulated and expressed using Hoare logic.

Truth Values. In Homotopy Type Theory, truth values are represented by the following type:

record 𝛺 : Type1 where
field ProofOf : Type

IsProp : isProp ProofOf
(23)

This is the type of propositions: true and false statements like “7 is a prime number” or “3 is even”.

A value of type 𝛺 is a pair of a type ProofOf , representing the type of proofs of the proposition,
and a constraint IsProp that ProofOf is a proposition in the HoTT sense. For example, the 𝛺 value

corresponding to “three is even” is as follows:

3-is-even : 𝛺

ProofOf 3-is-even = 3 mod 2 ≡ 0

IsProp 3-is-even = isSetNat _ _
(24)

The type of proofs of the (false) statement “3 is even” is an equality type 3 mod 2 ≡ 0, and it is a

proposition since N is a set—equalities between any two natural numbers are propositions.

In a classical setting, the booleans are a suitable type for truth values. Constructively, however,

Bool represents only the decidable propositions. The 𝛺 type above represents both true and false

propositions, even if we do not necessarily know which a particular proposition belongs to.

The presence of the IsProp field means that the ProofOf type can have at most one inhabitant.

This has the corollary that any biconditional propositions are equal:

_iff_ : (ProofOf X → ProofOf Y )→ (ProofOf Y → ProofOf X )→ X ≡ Y

This means that all true propositions are equal, as are all false propositions. In fact, there is no
proposition that is not equal to one of the following values (∄𝑝. 𝑝 . True × 𝑝 . False):

False : 𝛺
ProofOf False = ⊥
IsProp False ()

True : 𝛺
ProofOf True = ⊤
IsProp True _ _ = refl

For instance, 3-is-even (24) is equal to False:

3-is-not-even : 3-is-even ≡ False
3-is-not-even = 1.0 iff absurd

1.0 : 1 ≡ 0→⊥

The usual logical connectives can be defined on 𝛺 :

ProofOf (X |∧| Y ) = ProofOf X × ProofOf Y
ProofOf (X |→| Y ) = ProofOf X → ProofOf Y
ProofOf (X |∨| Y ) = ∥ ProofOf X ⊎ ProofOf Y ∥

The odd one out here is |∨|: its definition uses propositional truncation, ∥_∥, which makes the

ProofOf type a proposition. Without it, ProofOf (𝑋 |∨| 𝑌 ) could have multiple inhabitants (consider,

for instance, ⊤ ⊎ ⊤). Propositional truncation is a special case of a quotient type:
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∥_∥ : Type→ Type
∥ A ∥ = A / 𝜆 _ _→⊤

Propositional truncation is also useful for defining the truth value corresponding to the equality of

two arbitrary values of some type 𝐴, which is not necessarily a set in the HoTT sense:

_|≡|_ : A→ A→ 𝛺

ProofOf (x |≡| y) = ∥ x ≡ y ∥
IsProp (x |≡| y) = squash

This allows us to talk about equality of values without always having to prove they are a set.

Assertions. It is often convenient to be able to state properties about an effectful program from

within the program, with an assertion. For instance, with the parser effect, we might want to

construct a predicate for parsers that do not consume any input:

no-input : Term A→ Term 𝛺

no-input p = do s1← get; p; s2 ← get; return (s1 |≡| s2)

This program returns true when the state is the same before and after executing p. However, it
constructs a computation full of truth values, rather than a truth value itself.

To convert from Term 𝛺 to a proposition we will use G from Schröder and Mossakowski [2003].

G : Term (A × 𝛺)→ Type _
G p = p ≡ (do x , _← p; return (x , True))

The proposition G 𝑡 corresponds to the statement that every truth value in 𝑡 is True. 𝑡 here is

allowed to have a return value, as well: this can be useful for chaining together predicates. The

assertion no-input, then, can be encoded as:

no-input p = G do s1← get; x ← p; s2 ← get; return (x , s1 |≡| s2)

Pure Assertions. Usually, it is sensible to insist that assertions themselves do not produce effects.
They can of course depend on effects: for instance, an assertion in the parsing effect probably

shouldn’t modify the string being parsed, but it should be able to observe the string. The following
pair of conditions capture this notion of semi-purity.

SEF p = (do p; return ⟨⟩) ≡ return ⟨⟩
DET p = (do x ← p; y← p; return (x , y)) ≡ (do x ← p; p; return (x , x))

(25)

SEF (side-effect free) encodes that a program doesn’t modify the ambient environment with some

effect. This outlaws, for instance, programs like put x.DET (deterministic) encodes that the assertion

itself can’t be nondeterministic; this outlaws things like True ‹|› False. A “pure” assertion is an

assertion that is both SEF and DET .
Note that these notions of semi-purity instantiate to different notions of semi-purity depending

on the underlying monad. In the case of state, SEF encodes a term that does not modify the state;

on a monad for exceptions, SEF 𝑡 is a statement that 𝑡 does not throw an exception.

Pure assertions are still quite expressive because they can return any semantic propositions. For

example, for the effect of state with the state type Loc→Maybe (Loc ⊎ Val) modelling a finite heap

of some location type Loc and each allocated location stores either a pointer to another location or

a value of type Val, separating conjunction in separation logic [Reynolds 2002a] can be expressed as

do mem← get; return (∃s1 . ∃s2 . (is-disj-union mem s1 s2) |∧| p s1 |∧| q s2)
which returns the proposition that the current allocated memory cells are the disjoint union of two

heaps satisfying predicates 𝑝 and 𝑞 respectively.
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Hoare Triples. We now have all of the components necessary to define Hoare triples.

Definition 6.1 (Hoare Triple). A Hoare triple {𝜙} 𝑥 ← 𝑝 {𝜓 𝑥} is a predicate over a program
𝑝 : Term 𝐴, and a pair of pure assertions 𝜙 : Term 𝛺 and 𝜓 : 𝐴 → Term 𝛺 . The predicate holds

when 𝜙 “implies”𝜓 , when 𝜙 , 𝑝 , and𝜓 are executed in sequence:

Hoare 𝜙 p 𝜓 = G do a← 𝜙 ; x ← p; b←𝜓 x; return (x , a |→| b)

We do not require the pre- and post-conditions be SEF or DET in the definition of Hoare triples,

but instead take them as arguments to the inference rules or connectives where needed. For instance,

the conjunction rule (26) requires SEF 𝜙 , DET 𝜙 , and SEF 𝜓 .

As a small example, the no-input property can be encoded as a Hoare triple as follows:

remaining : String→ Term 𝛺

remaining s1 = do s2 ← get
return (s1 |≡| s2)

no-input : Term A→ Type
no-input p =

∀ s→ { remaining s } _← p { remaining s }
The combinator remaining asserts that the remaining string is equal to a supplied string. no-input p
states that, for all strings s, if s remains before t’s execution, then it will remain after t’s execution.

Connectives on Assertions. Assertions can be combined using the standard logical connectives,

giving a calculus for Hoare logic. We have, for instance, conjunction between two Hoare clauses:

({ 𝜙 } x ← p { 𝜓 x })→ ({ 𝜙 } x ← p { 𝜒 x })→ ({ 𝜙 } x ← p { 𝜓 x ⟨∧⟩ 𝜒 x }) (26)

This says that if two assertions𝜓 and 𝜒 hold after the precondition 𝜙 and the program 𝑝 , then their

conjunction also holds. Inference rules for other logical connectives exist as well.

Using Hoare Logic. Now that the fundamental components of Hoare logic have been defined,

let’s use it to verify the (partial) correctness of a simple program: the tree parser in Figure 2. We will

not present the full proof here, just some highlights to demonstrate the power of the framework.

First, let’s construct a predicate for a parser returning a particular value.

s ∈ p ↦→ v = ∀ r → { remaining (s ++ r) } v′← p { return (v |≡| v′) ⟨∧⟩ remaining r } (27)

The predicate 𝑠 ∈ 𝑝 ↦→ v states that the parser 𝑝 parses the string 𝑠 and returns the value v. It does
so by asserting that the string 𝑠 is the prefix of the input (remaining(𝑠 ++ 𝑟 )), running the parser p,
and asserting that the value returned is equal to v and the rest of the string has not been altered.

The parser we are interested in verifying is the tree parser Figure 2:

round-trip : ∀ n t → print t ∈ parse-tree n ↦→ t (28)

This simple property asserts that, for any tree t, parsing the printed representation of t returns
something equal to t. Note that this is a specification of partial correctness: as is the norm for

Hoare logic, this specification only applies if the underlying program terminates successfully. Put

another way, when the parser fails, any property holds.

(𝜓 : Term 𝛺)→ {} fail { 𝜓 } (29)

This proof is built from small components, by pattern-matching on n and t. For instance, in the

first case, when n = 0, the proof goal is:

{ remaining (print t ++ s) } v← parse-tree zero { return (t |≡| v) ⟨∧⟩ remaining s }

Since parse-tree zero = fail, this goal follows from (29).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article . Publication date: January 2024.



Algebraic Effects Meet Hoare Logic in Cubical Agda 21

We will look at one other case. When t = ♠ and n > 0, the parser should re-parse the result

of printing the tree ♠. In Figure 2, notice that when n > 0, the parse-tree function produces three

alternative parsers, combined using ‹|›. Parsers that use ‹|› can be verified with the following lemma:

({ 𝜙 } x ← p { 𝜓 x })→ ({ 𝜙 } x ← q { 𝜓 x })→ ({ 𝜙 } x ← p ‹|› q { 𝜓 x })

If a Hoare triple holds on p and q, then it holds on p ‹|› q. So, to verify this case of the proof we

need to verify each of the alternative parsers.

Let’s look at the two alternatives which parse ♠ and ♦. The proof obligations are:

{ remaining ('♠' :: s) } v← (do char '♠'; return ♠) { return (♠ |≡| v) ⟨∧⟩ remaining s }
{ remaining ('♠' :: s) } v← (do char '♦'; return ♦) { return (♠ |≡| v) ⟨∧⟩ remaining s }

Both of these alternatives can be verified using the following lemma:

∀ c1 c2 s→ { remaining (c1 :: s) } char c2 { return (c1 |≡| c2) ⟨∧⟩ remaining s } (30)

This states that, if the remaining string starts with a character 𝑐1, and char 𝑐2 succeeds, then 𝑐1 ≡ 𝑐2
and the tail of the string remains. Notice that the postcondition here can be false: 𝑐1 need not equal

𝑐2. The lemma is still valid, however, because if 𝑐1 . 𝑐2 then char 𝑐2 fails, so (29) applies.

Returning to the two alternatives, in both branches '♠' prefixes the remaining string. This means

the first alternative succeeds, since it parses the character '♠', and returns the leaf ♠.
The second alternative, however, returns ♦, which makes the postcondition of the obligation

return (♠ |≡| ♦) ⟨∧⟩ remaining s, which is clearly false. Luckily, applying (30) gives the following:

{ remaining ('♠' :: s) } char '♦' { return ('♠' |≡| '♦') ⟨∧⟩ remaining s }

The postcondition here contains '♠' |≡| '♦', itself a false assertion, from which we can derive any

other assertion, including the obligation for this case.

7 RELATING HOARE-STYLE AND EQUATIONAL REASONING
Apart from being generic for the underlying computational effect, another appealing feature of the

Hoare logic in Section 6 is that it is defined solely in terms of equations of programs. Therefore

the two common ways for reasoning about programs—equational reasoning, which is traditionally

more popular in functional programming, and Hoare-style reasoning, which is traditionally more

popular in imperative programming—pleasantly meld together: a Hoare triple { 𝜙 } x←p {𝜓 x } is
valid if and only if the following program equivalence holds:

(do a← 𝜙 ; x ← p; b←𝜓 x; return (x , a |→| b))
≡ (do a← 𝜙 ; x ← p; b←𝜓 x; return (x , True))

(31)

However, one might wonder if equation (31) is really “useful” for program reasoning, or is it just

an arbitrary equality that encodes Hoare logic. For a minimal example, if we can use Hoare logic to

show {} x← p { return (x ≡ 0) }, does (31) imply that (do x← p ; put x) ≡ (do p ; put 0)? To address
this question, in this section we show the following “elimination principle” for Hoare logic that

allows useful program equivalences to be extracted from valid Hoare triples.

Theorem 7.1 (H -elim). Given a theory with finite (Definition 7.2) variables and arities, let 𝜙 :A→Ω
be a predicate on some type 𝐴, and let f and g be two functions A→ Term B such that for all x : A,
ProofOf (𝜙 x) implies f x ≡ g x. Then the following implication holds:

H -elim : {} x ← p { return (𝜙 x) } → (p >>= f ) ≡ (p >>= g)
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At first glance, it might not be obvious why this theorem is difficult to prove, or what its

significance is. It seems related to a simple congruence law, like:

∀ 𝑝, 𝑓 , 𝑔. (∀𝑥 . 𝑓 𝑥 ≡ 𝑔 𝑥) → 𝑝 >>= 𝑓 ≡ 𝑝 >>= 𝑔 (32)

Indeed, this law holds straightforwardly: by function extensionality, since 𝑓 and 𝑔 are equal at

every input (∀𝑥 . 𝑓 𝑥 ≡ 𝑔 𝑥) then they are equal as functions (𝑓 ≡ 𝑔), and by congruence 𝑓 ≡ 𝑔

implies 𝑝 >>= 𝑓 ≡ 𝑝 >>= 𝑔.

In the case of H -elim, however, the continuations 𝑓 and 𝑔 are not equal everywhere: they are only
equal where the proposition 𝜙 holds on their input. This makes the job of H -elim more difficult: it

must take a proof {} 𝑥 ← 𝑝 {return (𝜙 𝑥)} that 𝜙 holds on the result of some term 𝑝 , and use that

to prove that 𝑓 and 𝑔 are equal when executed after 𝑝 .
In the following, we first show that when the law of excluded middle (LEM) is assumed, H -elim

can be proved fairly easily by a case split of whether 𝜙 holds for each return value of 𝑝 .

Proof (with LEM). By definition the Hoare triple {} 𝑥 ← 𝑝 {return (𝜙 𝑥)} is the equality
(do 𝑥 ← 𝑝; return (𝑥, 𝜙 𝑥)) ≡ (do 𝑥 ← 𝑝; return (𝑥, True)) (33)

One formulation of LEM is𝛺 ≡ Bool, allowing us to change the type of the predicate to𝜙 : 𝐴→ Bool.
We then construct a continuation

𝑘 = 𝜆(𝑥, 𝑏) → if 𝑏 then 𝑔 𝑥 else 𝑓 𝑥

Applying >>= 𝑘 to each side of (33) yields

(do 𝑥 ← 𝑝; if 𝜙 𝑥 then 𝑔 𝑥 else 𝑓 𝑥) ≡ (do 𝑥 ← 𝑝;𝑔 𝑥) ≡ 𝑝 >>= 𝑔

Recall that the goal is 𝑝 >>= 𝑓 ≡ 𝑝 >>= 𝑔. The remaining obligation, therefore, is:

𝑓 𝑥 ≡ if 𝜙 𝑥 then 𝑔 𝑥 else 𝑓 𝑥

By cases on 𝜙 𝑥 , when 𝜙 𝑥 = False, 𝑓 𝑥 is returned and 𝑓 𝑥 ≡ 𝑓 𝑥 . When 𝜙 𝑥 = True, then 𝑔 𝑥 is

returned, but recall that ProofOf (𝜙 𝑥) implies 𝑓 𝑥 ≡ 𝑔 𝑥 , so the obligation is discharged. □

Of course relying on LEM means that constructivity is sacrificed—there may be no way to

demonstrate a concrete derivation of a program equality produced by H -elim. If a fully constructive

formalisation is desired, we have to take another route. Rather than inspecting the return value of

𝜙 we will inspect the program equivalence (31) underlying the given Hoare triple derived using the

rules of ~t (Section 4.2); this will give us the concrete structure allowing us to map a value 𝑥 : 𝐴

back to its position in its term, and from this derive the proof of 𝜙 𝑥 . Finally, this derivation will be

modified to be the required program equivalence p >>= f ≡ p >>= g.
In order to map a value back to its position we will need to be able to search terms exhaustively

for particular variables. This is only possible when the arity types of the algebraic theory are finite.
The formal definition of finiteness we use here is Bishop finiteness [Bishop and Bridges 1985; Frumin

et al. 2018; Kidney 2020; Yorgey 2014].

Definition 7.2 (Bishop Finiteness). A type 𝐴 is bishop finite, E 𝐴, if it is merely isomorphic to

some finite prefix of the natural numbers.

E A = ∃ n × ∥ Fin n ≃ A ∥
Bishop finite types are searchable, meaning that for any decidable predicate 𝑃 on a Bishop-finite

type 𝐴 we can decide if the predicate holds on any value of the type.

E A→ (P? : ∀ (x : A)→ Dec (P x))→ Dec ∥ ∃ x × P x ∥
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This last predicate can be lifted and applied to syntax trees, meaning that any syntax tree with

bishop-finite arities can itself be searched with a decidable predicate.

To modify the program equality encoding the Hoare triple to the goal p >>= f ≡ p >>= g, we will
crucially rely on the fact that we can track the provenance in a derivation d : s ~t t. By provenance,

what we mean is the correspondence between the leaf nodes of s and t if we view d : s ~t t as a
process rewriting s to t. For example, suppose d : t1 ~t t2 uses an equation 𝑥 = 𝑥 ⊗ 𝑦 to rewrite a

term 𝑡1 to another term 𝑡2 in one step, then the left subtree of 𝑡2 is necessarily 𝑡1. Moreover, no

matter how we modify the right subtree of 𝑡2, the equivalence t1 ~t t2 still holds, since 𝑦 can be

taken to be anything when rewriting with the equation 𝑥 = 𝑥 ⊗ 𝑦.
More precisely, the provenance of a derivation d : s ~

𝑡 𝑡 for 𝑠, 𝑡 : Syntax A is a pair of terms

sp, tp : Syntax Ip for a discrete type Ip , i.e. having decidable equality (while the type 𝐴 may not have

decidable equality) such that sp and tp are equivalent under ~
𝑡 , and that there exists a function

kp : Ip → A which mapped to sp and tp : Syntax Ip resulting in exactly 𝑠 and 𝑡 : Syntax A (that is to

say, 𝑠 and 𝑡 have the same shape as sp and tp respectively). Provenance information is encoded in

these data because the decidable equality of Ip allows us to test if a leaf node of sp and a leaf node

of tp is the same; if they are different, then we know that the corresponding leaf nodes at the same

position of 𝑠 and 𝑡 can be different for the derivation s ~t t to go through.

Formally, the data for provenance are collected as the following record:

record Provenance (s t : Syntax A) : Type where
field

Ip : Type a
I ?

= : Discrete Ip
sp : Index s→ Ip
tp : Index t → Ip

kp : Ip → A
s-k : ∀ i→ lookup s i ≡ kp (sp i)
t-k : ∀ i→ lookup t i ≡ kp (tp i)
eqvp : fill _ sp ~

𝑡 fill _ tp

In this record, the two terms sp and tp are represented as two functions sp : Index s → Ip and

tp : Index t → Ip from indices into each respective tree, since they necessarily have the same shape

as 𝑠 and 𝑡 , differing only in leaf nodes. Terms can be reconstructed from such functions using fill.
At first, it may seem that there is an alternative design for the Provenance structure that is simpler

and more intuitive. Instead of tracking every variable in the tree, we could instead track subtrees.

In concrete terms, this would change the type of the kp field from Ip → A to Ip → Syntax 𝐴, where

kp returns the subtree at a particular index. This approach seems more natural in the context of

equations like x ⊗ y = x, where clearly the succinct way to represent this rewriting step is as the

removal of the whole subtree y. Our approach would instead represent this step as the field sp
having a larger image than tp, which is much more indirect.

As is often the case with mechanised proofs, what is simple for humans is complex for computers.

In this case, using indices that point to every value in the tree allows for a much more uniform
representation that would not be possible with a subtree-based representation. In particular, this

representation lets us construct an actual signature that corresponds to syntax trees, where the

interpretation of that signature is isomorphic to Syntax.

Position : Syntax A→ Type
Position (var _) = ⊤
Position (op (Oi , k)) =
𝛴 [ i : Arity Oi ] × Position (k i)

★ : Signature
★ = Syntax ⊤ ◁ Position

Indexed : Syntax A⇔ J ★ K A

This representation means that the fields sp and tp can be easily converted to and from Syntax types,

via the Indexed isomorphism. This isomorphism is witnessed by the lookup and fill functions.
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The key lemma for showing Theorem 7.1 is the following.

Lemma 7.3. Given a pair of syntax trees 𝑠 and 𝑡 with 𝑠 ~
𝑡 𝑡 , in a theory with finite arities and

variables, the type ∥Provenance 𝑠 𝑡 ∥ is inhabited.

Proof. The proof proceeds via induction on the relation 𝑠 ~
𝑡 𝑡 .

reflt Given 𝑠 : Syntax 𝐴, we want to construct an element of Provenance 𝑠 𝑠 . The index for this
case is Ip = Index s. In other words an index into the original tree. And we let kp = lookup s. The
other fields follow trivially since the copies of the trees are exact copies of 𝑠 .

symt The case for symmetry is even simpler than reflt : given a Provenance 𝑠 𝑡 , we need to

produce a Provenance 𝑡 𝑠 . Since the datatype is itself symmetric, we can simply switch around all

the chiral fields, i.e. sp (symt 𝑝) = tp 𝑝; tp (symt 𝑝) = sp 𝑝 .

congt Given an operator𝑂𝑖 , a pair of continuations 𝑘𝑙 , 𝑘𝑟 : Arity 𝑂𝑖 → Syntax 𝐴, and provenance

D at every point of Arity 𝑂𝑖 , the task for the case of congruence is to construct an element of

Provenance (op (𝑂𝑖 , 𝑘𝑙 )) (op (𝑂𝑖 , 𝑘𝑟 )). The index that we will construct for this case is:
Ip = 𝛴 [ i : Arity Oi ] × D . Ip i

Again, the rest of the coherence proofs follow in a relatively trivial way.

eqt The eqt case is the most important of the proof: in the relation, this case is what can

allow the shape of the equivalent trees to change, and it is where variables can be introduced or

removed. Given an equation with left-hand-side lhs, right-hand-side rhs, and continuation 𝑘 , this

case constructs Provenance (lhs >>= 𝑘) (rhs >>= 𝑘). The index here is a variable in the equations

paired with an index into the continuation applied at that variable:

Ip = 𝛴 [ v : Eqns i .𝜈 𝛤 ] × Index (k v)

The rest of the fields follow by applying the continuation and looking up in the result.

transt Perhaps surprisingly, this is the most difficult case of the proof. Given 𝑠, 𝑡, 𝑢 : Syntax 𝐴,

𝑙ℎ𝑠 : Provenance 𝑠 𝑡 , and 𝑟ℎ𝑠 : Provenance 𝑡 𝑢, the task is to construct an element of Provenance 𝑠 𝑢.
We need to pick an index here that can be remapped to every variable in either of the trees. We

will use a (set) pushout: a pushout of two functions 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝐶 is a disjoint union of

𝐵 and 𝐶 , with the added quotient that alternate injections inl 𝑥 and inr 𝑦 are equal if there is some

𝑖 that points to both (𝑓 𝑖 ≡ 𝑥 ∧ 𝑔 𝑖 ≡ 𝑦):
data Pushout (f : A→ B) (g : A→ C) : Type where

inl : B → Pushout f g
inr : C→ Pushout f g
push : ∀ i→ inl (f i) ≡ inr (g i)
trunc : isSet (Pushout f g)

Note that the trunc constructor makes this a set pushout, rather than a fully-general pushout type.

The new index is the following pushout, i.e. a sum of the indices from both sides, with the

quotient that if they point to the same variable in the middle (𝑢) they are equal:

Ip = Pushout {A = Index u} {B = lhs. Ip} {C = rhs. Ip} lhs. tp rhs. sp (34)

To reconstruct the original variable we will pattern match on the pushout, and apply kp from the

left-hand-side or right-hand-side respectively:

kp : Ip → A
kp (inl x) = lhs. kp x
kp (inr x) = rhs. kp x

kp (push i j) = (sym (lhs. t-k i) # rhs. s-k i) j
kp (trunc x y p q i j) =

setA (kp x) (kp y) (cong kp p) (cong kp q) i j

This function is then proved coherent by applying the combination of t-k and s-k from the left-

hand-side and right-hand-side respectively; these proofs show that an index pointing into the same

place in the middle tree 𝑢 is equal.
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The trees sp and tp are given by:

sp : Index s→ Ip
sp = inl ◦ lhs. sp

tp : Index t→ Ip
tp = inr ◦ rhs. tp

By the definition of the quotient, we have fill (shape 𝑢) sp ≡ fill (shape 𝑢) tp, which satisfies the

eqvp coherence property. What remains is to show the index type (34) has decidable equality, i.e.

being discrete, and it is a consequence of the following lemma. □

Lemma 7.4. A Pushout (𝑓 : 𝐴→ 𝐵) (𝑔 : 𝐴→ 𝐶) is discrete if 𝐵 and 𝐶 are discrete and 𝐴 is finite.

Proof. Given two values 𝑥,𝑦 : Pushout 𝑓 𝑔, we need to decide if they are equal. This is com-

plicated by the presence of the pushout paths available: inl 𝑥 ≡ inl 𝑥 obviously holds, as does

inr 𝑥 ≡ inr 𝑥 , but pushout values can be equal in other ways. For instance, inl (𝑓 𝑖) ≡ inr (𝑔 𝑖)
and, by extension, inl 𝑥 ≡ inl 𝑥 ′ if there is an 𝑖 and 𝑗 such that 𝑥 ≡ 𝑓 𝑖 ∧ 𝑔 𝑖 ≡ 𝑔 𝑗 ∧ 𝑓 𝑗 ≡ 𝑥 ′. In
fact, there can be a chain of 𝐴s representing a path between two pushout variables. Deciding if two

pushout values are equal amounts to determining if such a chain exists. Since 𝐴 is finite, we can

enumerate all possible chains, and check each for coherence, yielding a terminating algorithm.

First, we characterise the type of paths in a pushout:

x ≈* y = ∃ p × Push p x y
Push : List A→ B ⊎ C→ B ⊎ C→ Type
Push [] x y = x ≡ y
Push (i :: is) (inl x) y = x ≡ f i × Push is (inr (g i)) y
Push (i :: is) (inr x) y = x ≡ g i × Push is (inl (f i)) y

A path is represented by a (possibly empty) list of 𝐴s; the Push predicate returns if a list forms a

coherent path between two sums.

Every path between two sums is represented by at least one such chain: we can prove this by

showing the relation ≈ * is reflexive, transitive, and symmetric, and supports the push relation.

Notice, however, that a chain can have loops, where the same 𝐴 is passed through multiple times.

A loopless path is one with no duplicate 𝐴s:

Loopless = NoDup ◦ fst

Any such chain can be shortened yielding an equivalent path simply by cutting out the loop:

deloop : ∀ {x y}→ x ≈* y→ 𝛴 [ p : x ≈* y ] × Loopless p

As a result, any path between two sums must be represented by at least one loopless chain.
Finally, we know that there are only finitely many lists of 𝐴s without duplicates (if 𝐴 is finite).

As a result, there are only finitely many “loopless” paths between two sums; since 𝐵 and 𝐶 are

discrete we can test all of these for coherence, meaning we can exhaustively search for all such

paths, yielding an algorithm for decidable equality. □

Finally, we are ready to prove H -elim (Theorem 7.1) assuming that all arity types of the algebraic

theory are finite (Definition 7.2) but not LEM.

Proof Sketch. The first step of this proof is to dispense with the Term and equality, and replace

them with Syntax trees and ~
𝑡 . The two are equivalent by the effectiveness of quotients, although

we had to be careful to preserve coherence when translating between the two representations.

Concretely, this means that our goal has changed to the following for some [𝑠] = 𝑝:

(𝜙? ‹$› 𝑠 ~
𝑡 𝜙T ‹$› 𝑠) → (𝑠 >>= 𝑓 ~

𝑡 𝑠 >>= 𝑔)
where f ‹$› s = do x← s ; return (f s), and 𝜙? = 𝜆x→(x , 𝜙 x), and 𝜙T= 𝜆x→(x ,True).
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First, we will apply Lemma 7.3 to build Provenance (𝜙? ‹$› 𝑠) (𝜙T ‹$› 𝑠), from which we will

extract eqvp. We will then apply a continuation 𝑘 ′ to each side of eqvp, and finally we will show

that the result is equal to 𝑠 >>= 𝑓 ~
𝑡 𝑠 >>= 𝑔. The continuation 𝑘 ′ is

k′ i = let v = kp i .fst in if does (∈s? i) then f v else g v

This takes an index 𝑖 : Ip and finds the variable it points to with kp, and then if the index is in the

left-hand-side tree it applies 𝑓 , otherwise it applies 𝑔.

The expression does (∈s? i) returns a Boolean indicating whether or not the index i is present in
the tree s. To search a tree for a particular value the tree must be finite; this is the case since all
trees are well founded and we have assumed that all the arities are finite.

Next we will prove this continuation is coherent. For the left-hand-side we have:

∈sp⇒f : (i : Index (𝜙? ‹$› s))→ k′ (sp i) ≡ f (fst (kp (sp i)))

This says that, for a position in the left-hand-side tree, applying 𝑘 ′ to the index at that position in

the copy is the same as applying 𝑓 to the variable at that position. Similarly for the right-hand-side,

∈tp⇒g : (i : Index (𝜙T ‹$› s))→ k′ (tp i) ≡ g (fst (kp (tp i)))

We will not go into the details of these respective proofs (they involve 𝑘 and the fields s-k and t-k).
However, they can be used to construct the following proofs:

ts1 : f ‹$› s ≡ k′ ‹$› fill _ sp ts2 : g ‹$› s ≡ k′ ‹$› fill _ tp

These combined with eqvp give the final goal 𝑠 >>= 𝑓 ~
𝑡 𝑠 >>= 𝑔. □

Remark. The constructive proof of H -elim above requires that all arities be finite. This means

that, for instance, the constructive proof of H -elim applies to the parser example of this paper only

when strings stored in the mutable state are finitely bounded. This is a reasonable constraint: after

all, computers in the real world have finite memory. However, note that the nonconstructive proof

of H -elim does not need finiteness, so constructivity can be traded off for infinite arities.

Applying H -elim to the Parser. Finally we demonstrate how to apply Theorem 7.1 to the parser

example (Figure 2), to derive the program equality (1) from the round-trip lemma (28). First, recall

the definition of s ∈ p ↦→ v, given in (27). Expanding some definitions yields the following:

∀𝑟 →
{r′ ← get; return (r′ |≡| s ++ r)} v′ ← p; r′′ ← get {return ((r |≡| r′′) |∧| (v |≡| v′))}

Using some of the standard Hoare combinators we convert the above to:

{} r ← get; put (s ++ r); v′ ← p; r′ ← get {return ((r |≡| r′) |∧| (v |≡| v′))}

This is essentially a rephrasing of (27): “when s ∈ p ↦→ v holds, prepending s to the input stream

and then running the parser p returns the value v and leaves the input stream in its original state”.

From here, we can apply H -elim to turn the equalities in the postcondition to program equalities:

(do s← get; put (print t ++ s); t′← parse-tree n; s′← get; put s′; return t′)
≡

(do s← get; put (print t ++ s); _← parse-tree n; s′← get; put s ; return t)

This equality states that the value returned by parse-tree will indeed be the correct tree. By the

state and monad laws, the equation above simplifies to

(do push (print t); parse-tree n) ≡ (do push (print t); parse-tree n; put 𝑠; return 𝑡) (35)
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This equation and the goal (1) already have the same left-hand side. To simplify the right-hand

side, we use the following lemma.

Lemma 7.5. For the effect of parsing, if a term 𝑝 : Term 𝐴 is total, in the sense that there exists some
syntax tree 𝑠 : Syntax 𝐴 such that [ 𝑠 ] = 𝑝 and 𝑠 does not contain the operation fail in its all subtrees,

(do 𝑝; put 𝑠) = put 𝑠

Using this lemma, if we assume that the program do {push (print t); parse-tree n} is total, which
is in fact true for sufficiently large step-index 𝑛, then (35) immediately implies our goal:

(do push (print t); parse-tree n) ≡ return t

8 RELATEDWORK
Algebraic Effects. This paper is basically a formalisation of universal algebra [Birkhoff 1935; Cohn

1981], whose connection to computational effects was first developed by Plotkin and Power [2002,

2004] and Hyland et al. [2007, 2006]. Plotkin and Pretnar [2008] also introduced an equational

first-order logic tailored for reasoning about programs using algebraic effects. In contrast, our

formalisation is embedded in Cubical Agda. The expressiveness of Cubical Agda makes it possible

to implement all the logic connectives and inference rules in [Plotkin and Pretnar 2008] as just

functions over the datatype Term and the universe Ω of propositions. For example, their principle
of induction over computations is subsumed by the usual induction principles of Term and Syntax.
Plotkin and Pretnar [2009, 2013] internalised homomorphisms out of the free model of an

algebraic theory as a programming language feature—effect handlers. Since then, many researchers

have developed the theory and implementation of effect handlers, to name a few, CPS translations

[Schuster et al. 2022, 2020], effect systems [Bauer and Pretnar 2013; Leijen 2014], parametricity

[Biernacki et al. 2017; Zhang and Myers 2019], type dependency [Ahman 2017]. Our paper is not

about effect handlers qua language construct, but future work may use our library to build upon.

Formalisations. Our paper is certainly not the first formalisation of universal algebras in type

theory. Previous formalisations include the work by Gunther et al. [2018], Abel [2021], and DeMeo

and Carette [2022] in Agda and Capretta [1999]’s formalisation in Coq. These formalisations use

setoids to deal with quotients, while our formalisation uses higher inductive types, which is typically

regarded as easier to work with. A more important difference of our formalisation from these works

is that we focus on the applications of universal algebras in computational effects.

There is a very rich literature on frameworks of formalising effects in proof assistants, especially

Coq, that we cannot provide a full survey here. Xia et al. [2020] used interaction trees, also known

as free completely iterative algebras [Aczel et al. 2003] in category theory, which is a coinductive

version of the Syntax monad to formalise effectful programs with recursion in Coq. In comparison,

in our library recursive programs have to be formalised with a fuel argument. However, the strength

of our library is that it avoids setoids, and it provides a generic Hoare logic for reasoning about

effects more intuitively. Li and Weirich [2022] introduced and formalised Tlön embeddings and
program adverbs which are a generalisation of free monads that encompass non-monadic notions

of computational effects such as applicative functors. Saito and Affeldt [2022] formalised in Coq a

hierarchy of monad classes and many applications of monadic equational reasoning.

Fiore et al. [2022] show that quotient-inductive types can be constructed in the type theory of

toposes with natural numbers and universes satisfying the “Weakly Initial Set of Covers” axiom. In

this setting, it would be unnecessary to require the arities type in Term to be quotient preserving.

However, sets in HoTT do not form a topos but only a Π𝑊 -pretopos so their construction does not

apply. It is worth investigating whether their construction can be adapted to HoTT.
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The agda-unimath library [Rijke et al. 2021] recently added a formalisation of universal algebra

in HoTT independently of ours (and we would like to thank the reviewers for bringing it to our

attention). Presently it is a relatively small formalisation and features a proof that the quotient

of a model by a congruence relation is again a model, whereas our formalisation aims to be a

full-fledged framework for verifying programs with algebraic effects.

Generic Hoare Logics. The Hoare logic in our library is based on Schröder and Mossakowski

[2003]’s monad-independent Hoare logic formalised in the HasCasl specification language [Schröder

and Mossakowski 2002]. Our new development is the fully constructive proof of the elimination

principle of Hoare logic that we saw in Section 7.

A variation of the idea of encoding Hoare logic as program equations is proposed by Goncharov

and Schröder [2013]. Under the assumption that there is a certain kind of CPO structure on the

Kleisli arrows of a monad 𝑇 , they devise a relatively complete Hoare logic for 𝑇 -computations. In

this Hoare logic, assertions are encoded as programs returning a unit value instead of a proposition;

if the assertion is not met, the corresponding program should fail. The advantage of this framework

is that this construction can be carried out on categories that do not have a universe of propositions.

Hasuo [2015] generalised Goncharov and Schröder [2013]’s construction by allowing weakest

precondition transformation to be specified by any Eilenberg-Moore algebras satisfying certain

conditions. This flexibility makes this framework expressive enough to cover both total correctness

and partial correctness for various kinds of effects.

Aguirre and Katsumata [2020]’s fibrational framework seems to be the most general form of

generic Hoare logic so far. In this framework, assertions no longer need to be programs, as long as

there is a way to do weakest precondition transformation along Kleisli arrows—captured as the

categorical concept Grothendieck fibrations. For example, “assertions” of the effect of probabilistic

choice can be the remaining running time of a program, which is just a number, and the weakest

precondition transformation computes the expectation of the running time.

Logic and Refinement. The idea of unifying Hoare-style reasoning and (in)equational reasoning

has been proposed before, especially for separation logic [Frumin et al. 2021; Gäher et al. 2022;

Liang and Feng 2016; Song et al. 2023; Turon et al. 2013]. Turon et al. [2013] introduce an expressive

concurrent separation logic, CaReSL, with which program refinement can be encoded as certain

Hoare triples. In contrast, our framework works with program equivalence rather than program

refinement, and more importantly we take program equivalence as the primitive concept and Hoare

logic as the derived concept. In this aspect, our framework is closer to Song et al. [2023]’s conditional
contextual refinement, which takes program refinement as the basic concept and on which a notion

𝑆 ⊢ 𝑒1 ⊑ 𝑒2 of a program 𝑒1 refining 𝑒2 under the pre-condition 𝑆 is defined, where 𝑆 is a separation

logic formula. Such conditional refinement can be used to define Hoare triples. The main difference

between Song et al. [2023]’s framework and ours is that Song et al. [2023] have fixed the effects (IO,

mutable state, nondeterminism, function calls), and use a specific trace semantics of these effects to

define the basic notion of program refinements, whereas our framework is completely generic to

the effects, whose semantics is specified by an algebraic theory.

Dijkstra monads [Maillard et al. 2019; Silver and Zdancewic 2021; Swamy et al. 2016, 2013] are

another approach to specifying and verifying monadic computations, using a separate monadic

construction—the Dijkstra monad itself—to build and compose specifications over some base monad.

Specification using Dijkstra monads allows the specification of arbitrary computations of type

𝑀 𝐴, but expects the specifier to define a bespoke “specification monad” for the particular effect in

question. Our work, on the other hand, requires computations to be defined as algebraic effects,

but provides a generic specification framework automatically. That said, it is possible to define a

Dijkstra monad over an arbitrary Term monad, which would be worth exploring in future work.
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9 CONCLUSION
This paper presents a formalisation of algebraic effects in Cubical Agda that is then extended with

a Hoare logic. We hope that this library can be a useful building block for future programming

language designers seeking to formalise the semantics of their languages with effects in Agda, as

well as programmers who would like to verify their effectful programs.

Future work abounds. One direction is to improve the support for recursive programs. A promis-

ing approach is to adopt Clocked Cubical Type Theory [Baunsgaard Kristensen et al. 2022], which

provides guarded recursion and coinductive counterparts of higher-inductive types.

Another direction is to support more general forms of algebraic effects such as parameterised
algebraic effects [Staton 2013, 2015] for dynamically created instances of effects, scoped effects for
operations that delimit scopes [Piróg et al. 2018; Wu et al. 2014; Yang et al. 2022], latent effects for
effects which incorporate advanced control flow mechanisms, [van den Berg et al. 2021], and their

generalisations into monoids with operations [Yang and Wu 2023].

Also, it is worthwhile to extend the effect-generic Hoare logic. Currently the logic is only for

partial correctness, but it should be relatively easy to adapt the Hoare logic to account for total

correctness. Also, we would like to investigate separation logic [Reynolds 2002b] in the effect-generic
setting and look for an axiomatisation of algebraic effects that admit reasoning by separation logic.

Finally, there is still a lot of room for improvement regarding the user experience of program

verification with our library. The speed of type checking in Agda 2.6.2 can sometimes be quite slow

when the definitions get complicated, which can probably be mitigated using controlled unfolding
[Gratzer et al. 2022] that is already available in Agda 2.6.4. Moreover, many simple equational

rewriting steps are still needed when verifying a program in our framework. In the future we plan

to resolve this by incorporating solvers for decidable algebraic theories into our framework.

With these future prospects in mind, we anticipate that our work can be the starting point

of a powerful and easy to use program verification framework that reaps the rewards of the

advancements in modern type theory and denotational semantics.
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