
September 5th, 2023

Modular Models
of

Monoids with Operations
Zhixuan Yang and Nicolas Wu

ICFP 2023 @ Seattle





This Paper 1/20

A new perspective on algebraic effects:

1. allows more expressive forms of operations
▶ catch, parallel composition, lock etc

2. allows non-monadic effects
▶ applicative functors, graded monads, etc



1. This talk is about mathematical models of computational effects in programming
languages.

2. The goal is to develop a new perspective on algebraic effects, such that more general
forms of operations can be expressed, including exception catching, parallel composition
of concurrent programs, acquiring a lock.



This Paper 1/20

A new perspective on algebraic effects:

1. allows more expressive forms of operations
▶ catch, parallel composition, lock etc

2. allows non-monadic effects
▶ applicative functors, graded monads, etc



1. And the new perspective also encompasses effects that are not monads, but are
applicative functors, graded monads, arrows, and so on.

2. Before I explain what all these things mean, I will spend the first half of the talk on a brief
recap on the history of modelling effects, so hopefully all these things will make sense
later if they don’t make sense to you now.



Computational Effects as Monads 2/20

Following Moggi (1991), a unary type theory (O,H,E) has
τ ∈ O
⊢ τ type x : τ ⊢ x : τ

x : τ ⊢ e : τ1 f ∈ H(τ1, τ2)

x : τ ⊢ f(e) : τ2

E is a set of judgemental equalities of terms.

For example the category ∗id f is presented by

O = {∗} H(∗, ∗) = {f} E = {x : ∗ ⊢ f(f(x)) ≡ x}



1. 35 years ago, Eugenio Moggi pioneered using the concept of monads from category theory
to give semantics to non-pure features of programming languages, which are usually
called computational effects nowadays. This is our starting point today.

2. Let’s first review what a monad is. Some of you may instinctively say, ”a monad is a
monoid in the monoidal category of endofunctors and composition”. That’s exactly right,
but today I’m gonna use internal languages to present category theory as much as
possible, as I figured most of the audience here are more familiar with type theory.

3. The internal language of categories is what may be called unary type theory. Moggi called
it ‘monadic multi-sorted algebraic theory’, but I like the name unary type theory better. A
category, sorry, a unary type theory has three things, a set of base types O, a set of
primitive terms H and a set of equations E.

4. The type theory is extremely simple: the only type former is using a base type, and the
only term formers are using variables and primitive terms.

5. Additionally a unary type theory is parameterised by a set of judgemental equalities of
terms.

6. Some unary type theories may have some additional structures, such as product types or
function types, but in general we only these three simple rules.



Computational Effects as Monads 2/20

Following Moggi (1991), a unary type theory (O,H,E) has
τ ∈ O
⊢ τ type x : τ ⊢ x : τ

x : τ ⊢ e : τ1 f ∈ H(τ1, τ2)

x : τ ⊢ f(e) : τ2

E is a set of judgemental equalities of terms.

For example the category ∗id f is presented by

O = {∗} H(∗, ∗) = {f} E = {x : ∗ ⊢ f(f(x)) ≡ x}



1. For a small example, consider a small category with just one object ∗ and two morphisms,
the identity morphism and a morphism called f , where the composition of f after f is the
identity.

2. This little category is presented by a unary type theory with exactly one base type ∗, one
primitive term f , and the equation saying that f of f of x is judgementally equal to x.



Computational Effects as Monads 3/20

A monad (T, ret , let · in · ) is
⊢ τ type
⊢ Tτ type

x : τ ⊢ e : τ ′

x : τ ⊢ ret e : Tτ ′

x : τ ⊢ e1 : Tτ1 y : τ1 ⊢ e2 : Tτ2

x : τ ⊢ let y = e1 in e2 : Tτ2

satisfying certain judgemental equalities.



1. In this setting, a monad is a type constructor T . The intuition is that for every type τ , the
type Tτ is the type of computations returning values of type τ .

2. The monad T also comes with other two things: for every term e of type τ ′, a term ret e of
type Tτ ′ that is supposed to be the pure computation that just returns e.

3. Additionally, for a computation e1 that computes τ1 values, and another computation e2 in
the context of a τ1-value, there’s a sequential composition of them, which we write as the
let-binding on the slide

4. These two term constructors are also required to satisfy some equational laws, which I will
omit here.

5. The connection between the type theory here and the standard definition of monads in
category theory is that, if we interpret this type theory in category, by interpreting types as
objects, terms as morphisms, then the interpretation of T , ret , let is precisely a monad
over that category.



Computational Effects as Monads 4/20

Some effects and monads:
▶ Mutable state
▶ Exception
▶ Nondeterminism

Tτ ≡ S ⇒ (τ × S)

Tτ ≡ τ + 1

Tτ ≡ List τ

Question
Where do these monads come from?



1. Here are some well known examples: the effect of mutable state is modelled by the state
monad S ⇒ (τ × S), where S is the type of state. Of course, this monad only makes sense
when the type theory has function types and product types.

2. Exceptions are modeled by the maybe monad. Nondeterminism is modelled by the list
monad. On the slide, only the type constructor part is shown, but the returns and bindings
are also a part of the monads.

3. The monads shown are the simplest ones, but there are more sophisticated ones that
model more complex effects, such as higher-order store and parallel computation.



Computational Effects as Monads 4/20

Some effects and monads:
▶ Mutable state
▶ Exception
▶ Nondeterminism

Tτ ≡ S ⇒ (τ × S)

Tτ ≡ τ + 1

Tτ ≡ List τ

Question
Where do these monads come from?



1. One question is, where do these monads come from? We shouldn’t expect ourselves to
just spell out a monad whenever we have a new computational effect, right? They should
logically come from somewhere.



Plotkin and Power’s Answer 5/20
Algebraic theories of effectful operations.

Theory of Nondeterminism
Operations: or : 2 and fail : 0
Equations: or(x, or(y, z)) = or(or(x, y), z), etc

Theory of State
Operations: get : S and puts : 1 for each s : S
Equations: puts1(puts2(x)) = puts2(x), etc



1. One answer, given by Plotkin and Power, is that these monads come from the algebraic
theories of effectful operations.

2. An algebraic theory is just a bunch of operation symbols and a set of equational laws, for
example you might know the theory of monoids, which consists of a binary operation and
a nullary operation, and the equations are associativity and left and right identities.

3. Here, Plotkin and Power’s perspective is that we should understand an effect by thinking
about the algebraic theory of some primitive effectful operations.

4. For example, the computational effect of nondeterminism has a binary operation or for
nondeterministic choice and fail for failure. The equations kind of depend on what we
mean by nondeterminism, but we usually have at least associativity of or and
left-and-right identity of fail.



Plotkin and Power’s Answer 5/20
Algebraic theories of effectful operations.

Theory of Nondeterminism
Operations: or : 2 and fail : 0
Equations: or(x, or(y, z)) = or(or(x, y), z), etc

Theory of State
Operations: get : S and puts : 1 for each s : S
Equations: puts1(puts2(x)) = puts2(x), etc



1. Another standard example is the theory of state, where the operations are get and put. Get
is an S-ary operation, where S is the type of state. Each of the S-arguments to get is a
computation, the result of get is intuitively a computation that first reads the state, and
the continues as one of the argument to get based on the state.

2. Correspondingly, there is a unary operation puts for each s : S, which updates the state to
s and continues as its only argument.

3. The equations of the theory of state characterise the interaction between put and get. I’m
just gonna show one of them here, saying one put directly following another put
overwrites the first one.



Effects Determine Monads 6/20

An algebraic theory have models.

Example
A model of state (A, p, g) is a type A with

s : S, k : A ⊢ p : A k : S ⇒ A ⊢ g : A

where p and g implement put and get and satisfy the equations.



1. Algebraic theories are for talking about models. A model of an algebraic theory is a type
equipped with the operations of the theory, satisfying the equations.

2. For example, a model of the theory of state is a type A together two terms p and g that
implement put and get on the type A.



Effects Determine Monads 7/20

Free models of a theory Σ determine a monad Σ∗.

Example
The free model of state over τ is

(µX. τ + S ×X + (S ⇒ X))/ ≈state

which is isomorphic to S ⇒ (τ × S).



1. Moreover, when the unary type theory satisfies some conditions, every algebraic theory
has free models, which can be concretely constructed by first inductively building syntactic
terms of operations from the theory and variables from a type τ , and then quotienting
these terms by the equations of the theory.

2. For example, the free model of the theory of state, over a type τ is the inductive type here:
µX is the binder for recursion, τ is the base case, S× is a syntactic put, S ⇒ is a syntactic
get, and we quotient this inductive type with the equations from the theory of state.

3. It turns out the resulting type is isomorphic to the state monad. And indeed many monads
that we use to model computational effects can be obtained in this way. Thus Plotkin and
Power’s paper was titled ‘notions of computations determine monads’.



Freeness 8/20

Freeness means there is a term
(A, ops) models Σ x : τ ⊢ r : A

c : Σ∗τ ⊢ handle c with {r; ops} : A

satisfying certain judgemental equalities.

Effect Handlers (Plotkin and Pretnar 2013)
Internalising the above as a language feature.



1. Since the free models are basically syntax trees of operations, given any other model A of
the theory Σ, and a mapping r that sends the variables τ to the model A, we can fold the
syntax tree with the algebra A.

2. Here I’m calling this fold handle , because the computational intuition is that an element c
of the free model is a computation that calls Σ-operations, and the model A handles the
these operation calls like an operation system handles system calls.



Freeness 8/20

Freeness means there is a term
(A, ops) models Σ x : τ ⊢ r : A

c : Σ∗τ ⊢ handle c with {r; ops} : A

satisfying certain judgemental equalities.

Effect Handlers (Plotkin and Pretnar 2013)
Internalising the above as a language feature.



1. This construction is turned into a programming language feature by Gordon Plotkin and
Matija Pretnar, called effect handlers, allowing the programmer to define elements of free
models and handle them with customised models easily.



Two Modularities 9/20

Effect handlers have two nice properties:
▶ Syntactic modularity: effects can be combined

▶ Two theories Σ1 and Σ2 can be combined by coproduct Σ1 + Σ2

▶ Semantic modularity: effects can be handled one by one
▶ Every model of Σ1 on Σ∗

2A can be extended to a model of Σ1 + Σ2



1. Effect handlers are a very nice language feature.
2. It not only allows the programmer to interpret a syntactic computation with different

semantic models. It has some extraordinarily nice properties.
3. One thing is what I call syntactic modularity here, which means that we can combine two

effects easily by taking the disjoint union of their operations and equations, and possibly
adding more equation to characterise the interaction of these two effects.



Two Modularities 9/20

Effect handlers have two nice properties:
▶ Syntactic modularity: effects can be combined

▶ Two theories Σ1 and Σ2 can be combined by coproduct Σ1 + Σ2

▶ Semantic modularity: effects can be handled one by one
▶ Every model of Σ1 on Σ∗

2A can be extended to a model of Σ1 + Σ2



1. Another thing is what I call semantic modularity, which means that if a computation uses
two kinds of effects Σ1 and Σ2, we can just handle Σ1, leaving Σ2 unhandled, so effects
can be modularly handled.

2. This is possible because a model of Σ1 on Σ2-computations can be extended to a model
of Σ1 +Σ2 in a unique and an almost trivial way.

3. These nice features make effect handlers a very powerful language feature.



Some Issues 10/20

1. Sequential composition >>= is only a meta-level operation on
free models:

▶ Impossible to state equations about >>=, e.g. x >> fail = fail *

▶ Algebraicity op(x)>>= k = op(x >>= k) is forced to be true

2. Not all computational effects are monads: graded monads,
applicatives, arrows, …



1. So far I’ve been talking about things many of you already now. But what’s new?
2. The new things in our papers are motived by two issues in algebraic effects.
3. The first thing is that sequential composition isn’t really an operation in the algebraic

theory of an effect. Instead, it is an emergent operation that happen to exist on the free
models. But for other models in general, there isn’t a notion of sequential composition for
them.

4. Consequently, we cannot use equations to state the interaction of some effectful
operations and sequential compositions.

5. For example, sometimes we may want to state the property that every nondetministic
computation x followed by a failure is equal to just a failure. But in algebraic effects, we
cannot state this as an equation meaningfully because the the models don’t have
sequential composition in general.



Some Issues 10/20

1. Sequential composition >>= is only a meta-level operation on
free models:

▶ Impossible to state equations about >>=, e.g. x >> fail = fail *
▶ Algebraicity op(x)>>= k = op(x >>= k) is forced to be true

2. Not all computational effects are monads: graded monads,
applicatives, arrows, …



1. Moreover, the sequential composition on the free model necessarily satisfy a property
called algebraicity, which says that every operation commutes with sequential
composition. But some effectful operations in practice just don’t satisfy this property, so
they cannot be modelled by algebraic effects.



Some Issues 10/20

1. Sequential composition >>= is only a meta-level operation on
free models:

▶ Impossible to state equations about >>=, e.g. x >> fail = fail *
▶ Algebraicity op(x)>>= k = op(x >>= k) is forced to be true

2. Not all computational effects are monads: graded monads,
applicatives, arrows, …



1. Another problem is that the framework of algebraic effects is only about monads, but
there are quite a few other concepts that are also used for modelling computational
effects, such graded monads, applicative functors, etc.



Our Work 11/20

We should consider

1. algebraic theories of monads with operations rather than
types/objects with operations,

2. monoids in monoidal categories rather than monads.

We’d like to preserve both modularities.



1. These issues are the motivation of our work. Firstly, to make sequential composition a real
operation in the algebraic theory, we shift our perspective from algebraic theories on
types or objects to algebraic theories on monads.



Our Work 11/20

We should consider

1. algebraic theories of monads with operations rather than
types/objects with operations,

2. monoids in monoidal categories rather than monads.

We’d like to preserve both modularities.



1. Secondly, we generalise from monads to the more general concept of monoids in monoidal
categories, so that other notions of computational effects such as applicatives can be
modelled.



Our Work 11/20

We should consider

1. algebraic theories of monads with operations rather than
types/objects with operations,

2. monoids in monoidal categories rather than monads.

We’d like to preserve both modularities.



1. And when doing so, we’d like to preserve the two kinds of modularities that effect
handlers have, since these nice properties are what make effect handlers so convenient.



Monoidal Categories 12/20

A new type former □ with rules:
Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B

Γ1,Γ2 ⊢ (t1 , t2) : A□ B

Γ ⊢ t1 : A1 □ A2 Γl, x1 : A1, x2 : A2,Γr ⊢ t2 : B

Γl,Γ,Γr ⊢ match (x1, x2) = t1 in t2 : B

and a similar monoidal unit type I .



1. Let me first recap what a monoidal category is in a type theoretic setting.
2. Compared to unary type theory, the internal language for monoidal category has a new

type former□. It is a linear product type, and it has a term former that allows two terms to
be paired together. Note that this rule also introduce contexts that have more than one
variables.

3. The contexts in this type theory is linear: we cannot duplicate, throw away, or even swap
the variables in the context.

4. The elimination rule for this monoidal product allows us to unpack a monoidal product to
two variables in the context. This is the only way to use the monoidal product; we don’t
have projections for this monoidal product.

5. The two term formers satisfy beta and eta equalities, which are not shown on the slide.
6. Moreover, there is a similar nullary monoidal unit type I , which has similar rules except

that it has zero components instead of two components.



Monoids 13/20
The theory Mon of monoids has operations:

x : τ, y : τ ⊢ µ : τ ⊢ η : τ

and equations:
x : τ ⊢ µ(η, x) = x x : τ ⊢ x = µ(x, η)

x : τ, y : τ, z : τ ⊢ µ(x, µ(y, z)) = µ(µ(x, y), z)

Monads, applicatives, graded monads, arrows are all monoids.



1. Using this type theory, the theory of monoids is exactly what you may expect.
2. There are two operations µ and η. η is the left and right identities of µ, and µ is

associative.
3. So syntactically, it looks exactly the same as the usual theory of monoids, but this type

theory can be interpreted in any monoidal category. For example, if this type theory is
interpreted in the category of endofunctors where the monoidal product is interpreted as
composition, then monoids become monads.



Monoids with Operations 14/20

A theory (Σ, E) of monoids with operations is
▶ the theory Mon of monoids plus
▶ an operation x : Στ ⊢ op : τ for a functor Σ
▶ some more equations E

Old Things Recovered
Theory of throw: Στ ≡ 1.
Theory of state: Στ ≡ (

⨿
S τ) + (

∏
S τ) and algebraicity equation

µ(op(x), k) = op(µ(x, k)), etc.



1. What we are interested in is really monoids equipped with operations. A theory of
monoids with operations is just the theory Mon of monoids equipped with a new
operation op of signature Σ, where Σ is an arbitrary functor.

2. Additionally, the theory can have some equations that state the properties of the
operation and the monoid structure.



Monoids with Operations 14/20

A theory (Σ, E) of monoids with operations is
▶ the theory Mon of monoids plus
▶ an operation x : Στ ⊢ op : τ for a functor Σ
▶ some more equations E

Old Things Recovered
Theory of throw: Στ ≡ 1.
Theory of state: Στ ≡ (

⨿
S τ) + (

∏
S τ) and algebraicity equation

µ(op(x), k) = op(µ(x, k)), etc.



1. We can easily recover the old things. The theory of exception throwing is the theory of
monoids with an operation whose signature functor is the unit type. The theory of state is
the theory of monoids with an operation whose signature is the coproduct of a put
operation and a get operation. And the equations include algebraicity, saying get and put
commute with monoidal multiplication, and some other equations on get and put.

2. This is all very similar to the algebraic theories of exception and state that we saw earlier,
except that now the operations are on a monoid rather than on a type.



Monoids with Operations 15/20

New Things

1. Algebraicity is optional now: catch, parallel composition can
be modelled as operations

2. Equations can mention the monadic bind, e.g.
x >> fail = fail

3. Theories of operations on applicatives, graded monads,
substitution monoids etc.



1. OK, so old things can be recovered, what are the new things. The first thing is that now we
can talk about operations of more complex forms. In particular, we can talk about
operations that do not satisfy algebraicity, such as exception catching and parallel
composition. Now they can be real operations in the theory, so can be given different
semantic models like algebraic operations.



Monoids with Operations 15/20

New Things

1. Algebraicity is optional now: catch, parallel composition can
be modelled as operations

2. Equations can mention the monadic bind, e.g.
x >> fail = fail

3. Theories of operations on applicatives, graded monads,
substitution monoids etc.



1. Another benefit is that now equations can talk about both the operations and the monoid
structure. For example, now we can have the equation saying that a computation x
followed by fail is equal to fail. This equation wasn’t possible before because the variable
x didn’t have a monad structure, but it has one now, so this equation can be stated.



Monoids with Operations 15/20

New Things

1. Algebraicity is optional now: catch, parallel composition can
be modelled as operations

2. Equations can mention the monadic bind, e.g.
x >> fail = fail

3. Theories of operations on applicatives, graded monads,
substitution monoids etc.



1. Lastly, we have generalised from monads to monoids, so now we can talk about theories of
operations of other kinds of monoids, such as applicative functors and graded monads.



Initial Algebras 16/20

Such a theory (Σ, E) determines a monoid, its initial algebra:
(µX. I + (ΣX)□X)/ ≈E

A Special Case for Monads in Haskell
data Prog (sig :: (* -> *) -> (* -> *)) a
= Ret a
| Op (sig (Prog sig) (Prog sig a))



1. What I’d like to say in the remaining time is that this new way of doing algebraic effects
does preserve the nice properties of algebraic effects.

2. First of all, each algebraic theory of monoids with operations has an initial algebra when
the underlying category is nice enough. Concretely, this initial algebra is a tree structure,
and quotiented by the equations from the theory.

3. Since the theory extends the theory of monoids, the initial algebra is of course a monoid.
So it is still computational effects determine monoids as before, but in a slightly different
and more general way.

4. If we do not have equations on operation, the initial algebra for the special case of
monads can be readily implemented in Haskell, which is quite like the free monads, except
that the signature functor can now be a higher-order functor. My coauthor Nick will have a
talk in the Haskell Symposium going into more details of this monad, so if you are
interested in hearing more about concrete implementations of what I’ve been talking
about, don’t miss his talk.



Families of Theories 17/20

Theories are sorted into theory families based on the shape of
operations Σ:

▶ Algebraic operations:
▶ Scoped operations:
▶ Variable-binding operations:

Στ ≡ A□ τ

Στ ≡ A□ τ □ τ

Στ ≡ τV



1. There are also a few theoretically interesting things that we can say. First of all, we can
organize all theories of monoids with operation into subcategories based on the shape of
their operations. We call these subcategories theory families here.

2. For example we have the theory family of algebraic operations, which contains all theories
whose signature functor is of the shape A□ τ .

3. And we also have the family of scoped operations, which are operations that delimit
scopes, such as exception catching, and there’s also the family of variable-binding
operations, such as lambda abstraction.



Some Results 18/20

Theorem (Theory-Monoid Correspondence)
The theory family ALG(E) of algebraic operations is equivalent to
the category of monoids in E .

Theorem
ALG(E) is a coreflective subcategory of a wide class of theories,
and the coreflector preserves initial algebras.



1. It turns out the theory family of algebraic operations plays a special role among others.
First of all, it can be shown to be equivalent to the category of monoids, resulting in a
generalisation of the classical monad-theory correspondence at the generality of monoids.



Some Results 18/20

Theorem (Theory-Monoid Correspondence)
The theory family ALG(E) of algebraic operations is equivalent to
the category of monoids in E .

Theorem
ALG(E) is a coreflective subcategory of a wide class of theories,
and the coreflector preserves initial algebras.



1. And it can be further shown that the category of theories of algebraic operations is a
coreflective subcategory of a wide class of theories, and the coreflector preserves initial
algebras. This mean that the syntax of more complex forms of operations can be simulated
by algebraic operations.



Modular Models 19/20

Semantic modularity is recovered using

Modular Models
A strict modular modelM of Γ among a theory family F is a
collection of functors natural in Σ ∈ F :

MΣ : Σ-Alg → (Σ + Γ)-Alg

Examples: monad transformers, free modular models, etc



1. The last thing I want to say is that semantic modularity is not automatic in our setting.
Therefore we formulate a notion of modular models of a theory. A modular model is pretty
much like a monad transformer, it basically takes in a monoid equipped with some
operations Σ, and transforms it into a new monoid with both Σ and Γ operations. And this
transformation should be natural in Σ in a certain sense.

2. So modular models are a glorified version of monad transformers. A monad transformer
sends a monad to a new monad, while a modular model sends a monoid with some
operation to a new monoid with more operation.

3. Such modular models can be obtained by a nubmer of ways, such as from monad
transformers, and there are a few other constructions in the paper.



Summary 20/20

A shift of perspective

theories on objects
to

theories on monads, or better, monoids

and we gain a lot moregenerality !




