
Revisiting the Logical Framework for Locally
Cartesian Closed Categories

Zhixuan Yang

Abstract—In categorical logic, the construction of classifying
categories for various notions of algebraic theories bridges
syntactic presentations of algebraic theories and semantic cat-
egorical structures. In this paper, we give a detailed proof of
the construction of classifying locally cartesian closed categories
for syntactic theories defined in a logical framework that has
been previously used to study meta-theoretic properties of type
theories and programming languages.

Index Terms—logical frameworks, categorical logic, type theory,
locally cartesian closed categories

I. INTRODUCTION

A. Presentations of Locally Cartesian Closed Categories

A well known result in categorical logic due to Seely and
Hofmann is that extensional Martin-Löf type theory can be
interpreted in any locally cartesian closed categories (LCCCs)
[58, 30, 14], similar to how finitary algebraic theories can be
interpreted in any finitely complete categories, and how simply
typed λ-calculus can be interpreted in any cartesian closed
categories. Moreover, Clairambault and Dybjer showed that
there is a biequivalence

LCCC CWFIextΣΠ
dem

∼= (1)

between LCCCs and democratic categories with families with
Σ, Π and extensional equality types, which can be seen as an
algebraic formulation of type theories extending extensional
Martin-Löf type theory with type and term constants [11]. The
main practical consequence of this biequivalence is that if we
have an LCCC C , then we can manipulate constructions in C
using the convenient type-theoretic language afforded by its
corresponding CwF, i.e. the internal language of C .

However, if our task is to define an LCCC, the biequivalence
between LCCCs and CWFIextΣΠ

dem ’s (1) cannot help us much:
to define a CwF, we need to specify its contexts, substitution,
types, terms, etc, which are not easier to present than the data of
an LCCC. Instead, what we usually want is to present a LCCC
or a CwF using some generators and equations, similarly to,
for example, how we can present the Abelian group ⟨Z,+, 0⟩
with one generator 1, or how we present the tensor A⊗B of
two Abelian groups by generators (a, b) ∈ A×B and equations

(a1, b) + (a2, b) = (a1 + a2, b)

(a, b1) + (a, b2) = (a, b1 + b2).

Unsurprisingly, there are already general frameworks to
present LCCCs. One of them is LCC-sketches, a special case of
Kinoshita et al.’s general framework of T -sketches for finitary
(enriched) monads T : C → C on a locally finitely presentable

enriched category C [41]. LCC-sketches are the case where T
is the free-LCCC monad over the (groupoid-enriched) category
CAT∼= of small categories, functors, and natural isomorphisms.
An exposition of LCC-sketches and their application in the
study of type theories are given by Gratzer and Sterling [24].

Another approach to present LCCCs/CwFs is using syntactic
logical frameworks (LFs) [28, 51, 67, 54, 9], which are type
theories designed for presenting logics/theories. In particular,
Sterling introduced a logical framework in his thesis [60,
Chapter 1]. Sterling did not name this LF, and for convenience
we will refer to it by LCCLF in this paper. Roughly, LCCLF
is a dependent type theory with

• a universe J closed under the type connectives of exten-
sional Martin-Löf type theory (the unit type, Σ, Π, and
extensional equality types), and

• type connectives outside J are restricted so that log-
ics/theories definable in this LF present LCCCs.

To define a theory using LCCLF is exactly to define a context
(or equivalently a closed type) in LCCLF. For example,

• the context A : J is the theory with one generating object;
• the context (A : J, µ : A×A → A) is the last theory with

additionally a generating binary operation µ;
• the context (A : J, µ : A × A → A,α : (a, b, c : A) →
(µ a (µ b c)) = µ (µ a b) c) is the last theory with
additionally the associativity law. The equality sign here
denotes the extensional equality type on A.

Syntactic LFs (such as LCCLF) have two advantages over
categorical frameworks (such as sketches). Firstly, they are
especially intuitive for presenting the syntactic category of
logics or programming languages following Harper et al.’s
judgements-as-types principle [28], of which we will see a
number of examples later. Secondly, they work seamlessly
with internal languages – if C is an LCCC with a universe
U [7, 47, 64], to construct a model of the theory S in C , it is
sufficient to define each variable of S in the internal language
of C with J replaced by U . In this way, both defining theories
and constructing models are done in a type-theoretic language.
For the reasons, LCCLF has been used by several authors to
study the meta-theoretic properties of a number of type theories
and programming languages [63, 61, 26, 49, 62].

B. Contributions
However, the status of LCCLF in the literature is still a

‘ghost’: the syntax of LCCLF is given in Sterling’s thesis; there
is a consensus on how it is supposed to work, and people
have built useful work on top of it, but the actual mathematics
‘implementing’ LCCLF is still missing in the literature.



The purpose of the present paper is to fill the gap. In
particular, for every theory S in LCCLF and LCCC C , we
will define a groupoid S-MOD(C ) of models of S in C
and isomorphisms of models. We will then prove the raison
d’être theorem of LCCLF: there is an LCCC JDG S and an
equivalence of groupoids

S-MOD(C ) ∼= LCCC∼=(JDG S,C ) (2)

between the groupoid of S-models in C and the groupoid
of LCC-functors from JDG S to C and natural isomorphisms
between those functors. In other words, JDG S is the classifying
locally cartesian closed category for the theory S.

In the course of this paper, we will also show a number of
examples from programming language theory, so this paper
may also serve as a tutorial of how to use logical frameworks
similar to LCCLF to study programming languages.

C. Related Work

Beside the work on sketches [41, 24, 71], the most related
work is other ‘semantic logical frameworks’ in the terminology
of Harper [27] that permit (not necessarily decidable) equations
in the user-defined theories and highlight semantic models of
the theories. Examples of such semantic LFs are (first-order)
algebraic theories (in the sense of universal algebra) [12, 1],
second-order algebraic theories [18, 19, 20], generalised alge-
braic theories [9], second-order generalised algebraic theories
(SOGATs) [67, 68, 36].

Among them, Uemura’s framework for SOGATs is the
closest to LCCLF that we study in this paper. There are two
crucial differences between SOGATs and LCCLF. Firstly, in an
SOGAT, only a set of distinguished judgements (e.g. x being a
term of type A) can be hypothesised by other judgements (i.e.
in the context of other judgements), whereas LCCLF allows
unrestricted hypothesising. Categorically, SOGATs correspond
to categories with representable maps, or CwRs, which are
finitely-complete categories equipped with a (pullback-stable)
family of morphisms along which Π-types exist, whereas in an
LCCC, Π-types along every morphism exist. Secondly, Uemura
essentially gave two notions of models of an SOGAT: maps
between CwRs (called second-order models by Kaposi and
Xie [36]) and CwF-style models (called first-order models by
Kaposi and Xie and just models by Uemura himself). The
models for LCCLF that we consider in this paper correspond
to second-order models of SOGATs.

D. Outline

In Section II, we introduce the syntax of LCCLF and
explain how a programming language can be defined as a
theory/signature in LCCLF (which is formally a context in
LCCLF) following the motto of judgements as types [28].

In Section III, we describe the category of judgements JDG S
of a signature S. Functors M : JDG S → C into an LCCC C
preserving the locally cartesian closed structure then provide
functorial models of S in C in the tradition of functorial
semantics pioneered by Lawvere [44].

In Section IV, we define a notion of (diagrammatic)
models of an LCCLF-signature S. Unlike a functorial model
M : JDG S → C , which specifies the interpretation of all the
judgements generated by the signature S in a coherent way, a
diagrammatic model only needs to specify the interpretation of
the generating operations in the signature S, so diagrammatic
models are the notion that we actually want to work with
when concretely defining a model of a signature. Due to type
dependency in LCCLF, the definition of diagrammatic models
is much more involved than that of, e.g. finitary algebraic
theories. The main technical tool that we will need is the
concept of universes in categories, and the theorem that for
every LCCC C , there is a universe in PR C that classifies the
Yoneda embedding of objects and morphisms of C .

In Section V, we the desired equivalence of groupoids
S-MOD(C ) ∼= LCCC∼=(JDG S,C ), where S-MOD(C ) con-
tains diagrammatic models of a signature S and isomorphisms
between them, and LCCC∼=(JDG S,C ) is the groupoid of
functorial models and natural isomorphisms. To define the
groupoid S-MOD(C ), a technique similar to, but at one
dimensional higher than, Altenkirch et al.’s [4] syntactic
translation for setoid type theory is used. The reason that
only isomorphisms instead of homomorphisms are considered
that LCCLF has dependent function types so type expressions
are not necessarily covariant with respect to variables in it.

In Section VI, we discuss the related work and conclude.

Assumption. In this paper, we will assume familiarity with
(extensional) dependent type theory and its categorical seman-
tics in the form of category with families [10, 16]. An excellent
exposition on dependent type theory is Angiuli and Gratzer’s
book [5]; an elementary account of the categorical semantics is
Hofmann [31], which is sufficient for our needs in this paper;
a comprehensive textbook account is Jacobs [35].

II. SYNTAX OF THE LOGICAL FRAMEWORK

In brief, the logical framework LCCLF is a dependent type
theory with the unit type 1, Σ-types, and a Tarski-style universe
type J such that

1) the universe J is closed under the unit type and Σ-types;
2) the universe J is closed under extensional equality types;
3) there are Π-types Π A B provided that A is in the universe
J. If the codomain B is a type family valued in J, the
Π-type Π A B is also in J.

In other words, J is a universe having all the connectives
of extensional Martin-Löf type theory (MLTT), while types
outside J have only the unit type, Σ-types, and restricted Π-
types whose domain must be in J.

The precise type formation rules of the logical framework
are in Figure 1, and the term formation rules for the universe J
are in Figure 2. All other rules, including the rules for contexts,
substitutions, term formations, and judgemental equalities (β
and η equalities for all type formers) are the same as the usual
extensional MLTT [31, 51, 46, 5] and thus omitted here.

Remark 1. There is a subtle difference between the logical
framework defined here and the one in Sterling’s thesis [60]: op.



Γ ⊢ 1 type

Γ ⊢ A type Γ, a : A ⊢ B type

Γ ⊢ Σ A B type

Γ ⊢ J type
Γ ⊢ A : J

Γ ⊢ El A type

Γ ⊢ A : J Γ ⊢ a : El A Γ ⊢ b : El A

Γ ⊢ Eq(a, b) type

Γ ⊢ A : J Γ, a : El A ⊢ B type

Γ ⊢ Π A B type

Fig. 1. Type formation rules for the logical framework

Γ ⊢ 1̂ : J

Γ ⊢ A : J Γ, a : El A ⊢ B : J

Γ ⊢ Σ̂ A B : J

Γ ⊢ A : J Γ ⊢ a : El A Γ ⊢ b : El B

Γ ⊢ Êq(a, b) : J

Γ ⊢ A : J Γ, a : El A ⊢ B : J

Γ ⊢ Π̂ A B : J

Fig. 2. Codes of types in the universe J

cit. all types have extensional equality types, not just those in J.
Those extensional equality types play the role of sort equations
in Cartmell’s generalised algebraic theories [9]. Although they
are sometimes handy when specifying type theories in the
LF, they necessitate considerations of strict equalities between
objects in a category when considering categorical models of
theories specified in the LF, making the notion of models not
invariant under equivalences of categories. They also complicate
the definition of isomorphisms of models. For these reasons,
they are left out in the LF here.

Notation 2. To make working with type theories as natural
as working with ordinary maths, we impose the following
conventions, which resemble the concrete syntax of Agda [52].

• Dependent function types, i.e. Π-types, are written as
(a : A) → B, or A → B when B does not depend on A. We
will use implicit function types {a : A} → B, whose function
application and abstraction are elided when they can be inferred
or have a unique choice.

• Dependent pair types, i.e. Σ-types, are written as usual as
Σ(a : A). B, or A × B if B does not depend on A. Pairing
is (a, b) and projections are π1 p and π2 p. We also use the
record syntax for iterative Σ-types.

• We will use the same notation for type formers and their
codes in universes. The decoding operator El of universes will
be elided, as if we are working with Russell-style universes.

• The extensional equality type Eq(a, b) will be written as

simply a = b, and its only constructor is refl : a = a.
• An identifier that contains underscores ‘_’ is used as an

operator. For example, if _+_ : A → A → A, we can write
a+b for a, b : A. However, a single underscore ‘_’ that appears
alone just means a ‘wildcard’ that take the place of something
inferable or irrelevant.

A type theory is defined in the logical framework as a
context, or equivalently a closed type since an LF-context
(a1 : A1, . . . , an : An) can be packed into a record type with
fields ai : Ai. The idea is the judgements-as-types principle
of the Edinburgh Logical Framework [28]: judgements of the
object type theory (e.g. something being a type) are declared
as types in the universe J in the logical framework; inference
rules are declared as functions between judgements; deductions
are then terms of judgements that make use of the previously
declared judgements and inference rules.

To avoid confusion with concepts in object type theories,
we will call LF contexts signatures or theories. In the study
of algebra theories, typically a signature means the type of
the operations, and a theory means a signature plus equations,
but in LCCLF equations are declared using equality types, so
‘theories’ and ‘signatures’ can be used interchangeably. The
variables of an LF context are referred to as declarations of the
signature. LF types in the universe J will be called judgements.

Example 3. The signature of barebone type theory,

ty : J tm : ty → J

has two declarations which are respectively the judgement
for something being a type and the family of judgements for
something being a term of a type. This signature alone is not
very interesting but it serves as a basic building block for more
complex type theories.

In the traditional turnstile-and-gamma presentation, elements
a : ty and t : tm a of these judgements would be written as

Γ ⊢ a type Γ ⊢ t : a

Note that the LF presentation of ty and tm does not have
explicit contexts Γ because contexts can be handled using
function abstraction in the LF – the so-called higher-order
abstract syntax (HOAS). If a : ty , the judgement x : a ⊢ x : a
in the traditional presentation would be represented as the
function λ(x : tm a). x of type tm a → tm a in the LF.

Example 4. The signature of simply typed λ-calculus (STLC)
extends barebone type theory (Example 3) with the following:

ι : ty _⇒_ : ty → ty → ty

abs : {a, b : ty } → (tm a → tm b) → tm (a ⇒ b)

app : {a, b : ty } → tm (a ⇒ b) → (tm a → tm b)

_ : {a, b : ty } → {f : tm a → tm b} → app (abs f ) = f

_ : {a, b : ty } → {g : tm (a ⇒ b)} → abs (app g) = g

The declaration ι : ty corresponds to the inference rule of a
base type in STLC, and the declaration _⇒_ corresponds to
the inference rule of (non-dependent) function types. Terms of



function types are specified using HOAS via an isomorphism
with the function space in the logical framework. With these
declarations, we can define STLC terms such as

abs (λf . abs (λx . app f (app f x ))):tm ((ι ⇒ ι) ⇒ (ι ⇒ ι)).

Let us compare the LF presentation of a type theory and
the traditional gamma-and-turnstile presentation.

(1) Σ-types in the LF can be used to pack two judgements
together. This is implicit in traditional presentations. For
example, an LF-function (Σ(a : ty). tm a) → J is just

a type t : a

J

(2) Equality types of the LF are used to specify the equational
theory of the object type theory, and since equality types are
respected by all constructions of the LF, there is no need to
manually specify any congruence rules.

(3) A more noticeable difference is that dependent function
types in the universe J (which may be called higher-order
judgements as we call elements of J judgements) uniformly
handles two different things in traditional presentations: con-
texts of hypotheses Γ ⊢ J and schematic inference rules J

K .
Taking the rule of function abstraction in STLC for example,
the traditional presentation is

Γ, x : a ⊢ t : b

Γ ⊢ λx. t : a ⇒ b

while in the LF presentation (Example 4), this rule is

abs : {a, b : ty } → (tm a → tm b) → tm (a ⇒ b)

The higher-order judgement tm a → tm b corresponds to a
deduction of t : b with a new hypothesis x : a in the context,
and (tm a → tm b) → tm (a ⇒ b) corresponds to the
inference rule. In the traditional presentation, contexts Γ can
only contain certain basic judgements, such as x : a, but not

Γ, x : (a type) ⊢ · · · or Γ, x : (Γ, x : a ⊢ t : b) ⊢ · · · ,

so there need to be two layers of entailment, Γ ⊢ J and J
K . In

contrast, both of them are handled as higher-order judgements
in the logical framework.

However, unless we take the LF presentation of a type theory
as the definitive formulation of the type theory, the existence
of the higher-order judgements in the LF raises the question
that whether a type theory defined in the LF is the same as its
traditional presentation, since higher-order judgements a priori
may introduce new terms to base judgements. This question is
called the adequacy of LF presentations [28]. Gratzer and
Sterling [24] showed the adequacy of LCC-sketches with
respect to Uemura’s logical framework [67, 68], which can be
seen as a faithful formulation of the traditional presentations
of type theories. Their gluing argument should be able to be
adapted to LCCLF but we will not go into this in this paper.

Example 5. It is a common pattern that a type former in
the object type theory is specified by internalising an LF
judgement via an isomorphism, which is precisely the purpose

of introducing logical frameworks. Thus for convenience we
define the judgement of isomorphisms given A,B : J as

R E C O R D A ∼= B : J W H E R E
fwd :A → B
bwd : B → A
_ : (a :A) → bwd (fwd a) = a
_ : (b : B) → fwd (bwd b) = b

Using isomorphisms to LF types to specify object type
theories does not entail that object type theories are restricted
to sublanguages of the logical framework. The following two
examples shows how general recursion and impredicative
polymorphism can be specified in this way, although LCCLF
does not have general recursion or any impredicativity.

Example 6. The signature of PCF [56] extends STLC in
Example 4 with a fixed-point combinator at every type

Y : {a : ty } → (tm a → tm a) → tm a

as well as some new base types and terms

0 : tm ι succ, pred : tm ι → tm ι

o : ty tt ,ff : tm o iszero : tm ι → tm o

⊃ : {a : ty } → tm o → tm a → tm a

and also the following equational declarations (whose names
are irrelevant and omitted):

{n : tm ι} → pred (succ n) = n

pred 0 = 0 iszero 0 = tt

{n : tm ι} → iszero (succ n) = ff

{a : ty } {x , y : tm a } → (⊃ tt x y = x ) × (⊃ ff x y = y)

{a : ty } → {f : tm a → tm a } → f (Y f ) = Y f

Within the logical framework, in the context of this signature,
we can write programs such as addition of numbers:

_+_ : tm (ι ⇒ ι ⇒ ι)
_+_ = abs (λn. Y (λrec. abs (λm.

⊃ (iszero m) n (succ (app rec (pred m))))))

The equational axioms in the signature implies, for example,
that 0+ succ 0 is judgementally equal to succ 0 in the logical
framework. Note that in this way PCF is formulated as an
equational theory rather than a reduction system of terms, viz
a small-step operational semantics.

Example 7. The signature of System F [21, 57] extends the
one of STLC in Example 4 with the following declarations:

∀ : (ty → ty) → ty

∀-iso : {A : ty → ty } → tm (∀ A) ∼= ((α : ty) → tm (A α))

where _∼=_ is the judgement of isomorphisms (Example 5).
Since polymorphic (and ordinary) functions in this signature
are specified by function types of the logical framework, they
inherit the β and η equalities of LF function types. As an
example of terms of System F, letting Abs = ∀-iso.bwd , we
can define Church numerals:



CNum : ty
CNum = ∀ (λa. (a ⇒ a) ⇒ a ⇒ a)

C2 : tm CNum
C2 = Abs (λa. abs (λf . abs (λx . app f (app f x ))))

Remark 8. Because of extensional equality types in J,
LCCLF does not enjoy decidable type checking, this is not
a problem for using LCCLF as a paper-and-pencil logical
framework. However, if we are after mechanically checking the
signatures and terms defined in LCCLF, we can ‘approximate’
LCCLF using existing proof assistants implementing intensional
equality types, such as Agda, with the axioms of uniqueness of
identity proofs (UIP) and function extensionality (FUNEXT)
as postulates, since extensional Martin-Löf type theory is
conservative with respect to intensional Martin-Löf type theory
augmented with UIP and FUNEXT [29, 39]. The (unavoidable)
cost of this is that some extra transportations along intensional
equalities must be inserted manually.

III. FUNCTORIAL SEMANTICS OF SIGNATURES

Type theories, like other flavours of algebraic theories, or
languages in general, are invented for talking about things,
either mathematical objects or intuitive objects in ‘the physical
world’. Therefore a logical framework ought to provide a notion
of models of theories defined in it. In this section, we show
how this is done for LCCLF by means of functorial semantics
à la Lawvere theories [44], except that categories with finite
products are replaced by locally cartesian closed categories.

A. CwFs with the LF Connectives

The syntax of LCCLF, quotiented by judgemental equalities,
forms a category with families (CwF) with the extra structures
in Figure 1, henceforth called an LF-CwF. It can further be
proven to be initial among all LF-CwFs, similarly to the
initiality results of many other dependent type theories in
the literature [15, 65, 38, 55]. In outline, we first define a
partial interpretation of the raw syntax for every LF-CwF by
induction on the raw syntax, and then we show that the partial
interpretation is defined on well typed terms by induction on
the typing derivation, and finally we show that the interpretation
respects judgemental equalities.

Alternatively, from a more abstract point of view, we can
view the typing rules of LCCLF as a generalised algebraic
theory (GAT) [9, 59] or the signature of a quotient inductive-
inductive type (QIIT) [37, 42, 3]. Then we can directly take
the initial model of this GAT or this QIIT as the definition
of the syntax of LCCLF. The existence of initial models of
GATs is shown by Cartmell [9] in a set-theoretic metatheory,
and the existence of QIITs is shown by Kaposi et al. [37] in a
type-theoretic metatheory assuming the existence of a specific
QIIT of QIIT-signatures; see also Kovács’s thesis [42]. In this
way, there is no need to prove initiality manually, since we
are essentially using existing logical frameworks (GATs or
QIITs) to define our logical framework. In fact, it is folklore
that every elementary topos with a natural number object has

finitary quotient inductive-inductive types [42, §4.6], although
I am not aware of a complete proof in the literature.

Either (i) by constructing the abstract syntax of LCCLF from
raw syntax and proving the initiality manually or (ii) by taking
the initial model as the definition of the abstract syntax of
the LF, in what follows we write LFSIG for the category of
LF-contexts and substitutions between contexts, i.e.,

OBJ LFSIG = {⊢ Γ ctx}
HOMLFSIG(∆,Γ) = {∆ ⊢ γ : Γ},

and TyLF for the presheaf of LF-types over contexts,

TyLF : LFSIGop → SET, TyLF (Γ) = {Γ ⊢ A type},

and TmLF for the presheaf of terms over the category of
elements of TyLF , i.e. for every context Γ and A ∈ TmLF (Γ),

TmLF : (∫TyLF )op → SET, TmLF (Γ;A) = {Γ ⊢ a : A}.

The context extension of Γ ∈ LFSIG with A ∈ TyLF (Γ) is
written as just Γ.A ∈ LFSIG, together with the projection
substitution p : Γ.A → Γ.

B. Categories of Judgements and Functorial Models

The classifying LCCC of a signature S is actually very
concrete to describe – it is the category of judgements of S.

Definition 9. For every signature S, i.e. a context, of LCCLF,
its category of judgements JDG S is the full subcategory of
the slice category LFSIG/S spanned by projection maps p :
S.A → S of context extensions for S ⊢ A : J.

The objects of JDG S can be identified with judgements
S ⊢ A : J in the context of S; the morphisms t : A → B
from S ⊢ A : J to S ⊢ B : J can be identified with functions
S ⊢ f : A → B. Since the universe J is closed under precisely
the connectives of extensional MLTT (1, Σ, Π, and extensional
equality types), the category JDG S is the category of types
for extensional MLTT with the additional constants from S.

Consequently, JDG S is locally cartesian closed. For every
S ⊢ A : J, in the slice category JDG S/A,

• the terminal object is (λa. a) : A → A, where we omit
S ⊢ for clarity;

• the product of f : B → A and g : C → A is λp. f (π1 p) :
P → A where

P := Σ(b : B). Σ(c : C). (f b = g c);

• the exponential of f : B → A and g : C → A is
π1 : E → A where

E := Σ(a : A). Ba → Ca,

Ba := Σ(b : B). f b = a,

Ca := Σ(c : C). g c = a.



Example 10. Consider the signature of PCF in Example 6.
Some examples of objects and morphisms of the category of
judgements for PCF are

tm ι× tm o

(tm ι → tm ι) tm ι Σ(t : ty). tm t

1 ty

π1

succ
0

ι

succ

This category is not the same as the usual category of contexts
for PCF, since it contains higher-order judgements such as
tm ι → tm ι or (tm ι → tm ι) → tm ι that do not correspond
to any PCF-contexts. However, the adequacy of the LF encoding
of PCF implies that the category of PCF-contexts can be fully
faithfully embedded in the category of judgements. Namely, it
is the full subcategory spanned by finite products of objects
of the form PCF ⊢ tm a : J for some PCF ⊢ a : ty .

Definition 11. Let S be a signature in LCCLF and C a locally
cartesian closed category (LCCC). A (functorial) model of S
in C is a functor M : JDG S → C that preserves the locally
cartesian closed structure (up to isomorphisms).

Because the objects of the category of judgements JDG S are
generated by a quite intricate induction, it is not straightforward
to construct functorial models manually. We will solve this
by using internal languages later, but for now let us sketch a
partial example for some intuition.

The following lemma about presheaf categories is well
known (see e.g. [50]) and will be used in the example.

Lemma 12. For every small category C and presheaf A :
C op → SET, there is an equivalence (PR C )/A ∼= PR (∫A)
between the slice category (PR C )/A and the presheaf category
PR (∫A) over the category of elements of A.

Example 13. Consider the signature of STLC in Example 4.
Let C be a small cartesian closed category. The category C
has enough structure for interpreting the category of contexts
of STLC [43] but not enough for interpreting the category of
judgements of STLC, since C may not be locally cartesian
closed. However, we can interpret all judgements in the presheaf
category PR C , which is always locally cartesian closed.

Firstly, we define Ty ∈ PR C to be the constant presheaf

Ty(Γ) = OBJ C Ty(γ) = id ,

and Tm ∈ PR C to be the presheaf defined by

Tm(Γ) = {(A, f) | A ∈ OBJ C , f : Γ → A}

Tm(γ) = (A, f) 7→ (A,∆
γ−→ Γ

f−→ A)

for all Γ,∆ ∈ C and γ : ∆ → Γ. As the names suggest, the
projection map p : Tm → Ty is going to be the interpretation
of the family of judgements tm : ty → J.

The interpretation of the declaration ι : ty can be any global
element 1 → Ty , i.e. any object of C . The interpretation of

the declaration _⇒_ : ty → ty → ty in PR C is given by the
adjunct of the natural transformation F : Ty × Ty → Ty :

FΓ (A,B) = BA for all (A,B) ∈ (Ty × Ty) (Γ).

To interpret the isomorphism pair abs and app, following
the interpretation of MLTT in LCCCs [31, 58], we need to
construct in the slice category PR C /(Ty×Ty) an isomorphism
between the object F ∗p : F ∗Tm → Ty × Ty , obtained by
pulling back p along F ,

F ∗Tm Tm

Ty × Ty Ty

F∗p p

F

and the object π∗
1p ⇒ π∗

2p, obtained by taking the exponential
of π∗

1p and π∗
2p in PR C /(Ty×Ty), where π∗

i p is respectively
obtained by the pullback of p along πi : Ty × Ty → Ty .
We can construct this isomorphism pointwise for each object
Γ ∈ C . An element of (Ty × Ty)(Γ) is a pair (A,B) of
C -objects, so the presheaf F ∗Tm at Γ is the set

{(A,B, f) | A,B ∈ C , f : Γ → BA}. (3)

The object π∗
1p ⇒ π∗

2p is harder to compute, but by using
Lemma 12 and the end formula of exponentials in presheaf
categories, we can compute that the fiber of π∗

1p ⇒ π∗
2p over

(A,B) ∈ (Ty × Ty)(Γ) is the set∫
∆∈C

∏
C (∆,Γ) C (∆, A) ⇒ C (∆, B)

∼= {powering in SET is the same as exponentiating}∫
∆∈C C (∆,Γ) ⇒ C (∆, A) ⇒ C (∆, B)

∼= {by uncurrying}∫
∆∈C C (∆,Γ)× C (∆, A) ⇒ C (∆, B)

∼= {by the universal property of products}∫
∆∈C C (∆,Γ×A) ⇒ C (∆, B)

∼= {by Yoneda embedding}
C (Γ×A, B)

which is indeed isomorphic to the fiber of F ∗Tm (3) over
(A,B) in a canonical way.

We have given the interpretation of the generating judge-
ments of STLC in PR C , but this is still not a complete
definition of an LCC-functor M : JDG STLC → PR C because
M has to map all the judgements to PR C (preserving the
LCC structure), not just the generating ones. Because of type
dependency in LCCLF, extending the interpretation from the
generating judgements to all the judgements is not trivial, and
we will study the general situation in the next section.

IV. DIAGRAMMATIC SEMANTICS OF SIGNATURES

Since the category of judgement JDG S is comprised of
syntactic entities that are inductively generated, it is natural
to expect that as soon as we give the interpretation of the
generating judgements of S in a category C , the interpretation
can be extended to all the derivable judgements under S. The



situation should generalise that of Lawvere theories – if L
is the Lawvere theory generated by a signature S of some
operations, as soon as we provide an object in C equipped
with the operations in S, the interpretation can be extended to
a product-preserving functor L → C .

Taking the example of STLC (Example 4) again, it is natural
to expect that LCCC-functors JDG STLC → C correspond to
diagrams in C of the shape

π∗
1p ⇒ π∗

2p Tm

Ty × Ty Ty 1

p

F ι

where π∗
1p ⇒ π∗

2p is the exponential of π∗
1p and π∗

2p in the
slice C /(Ty × Ty), and the square must be a pullback. The
goal of this section is to define a notion of diagrammatic
models like this for all signatures S in LCCLF.

To define diagrammatic models for all signatures S, we
need to perform an induction on the syntax of LCCLF, since a
signature S is nothing other than an LF context. An induction
on the LF is the same as constructing a CwF with the type
connectives of the LF. However, we cannot directly use the
LCCC C as the (underlying category of) the CwF, since C
does not have the structure for interpreting the universe J. The
solution is passing to the presheaf category PR C , in which we
can construct a universe containing (the Yoneda embedding
of) objects of C .

A. Universes in Categories

The concept of universes in toposes dates back to Bénabou
[7] and Maurer [47], and was developed later by Streicher [64].
A more general account of universes in categories is developed
by Voevodsky [69, 70] and Kapulkin and Lumsdaine [40] in the
study of homotopy type theory; see also Gratzer’s thesis [23,
§3.2, 3.3] for an exposition.

In this subsection, we will have a brief digression on
universes without going into much technical detail, ending with
the theorem that a universe of C -objects can be constructed
in the presheaf category PR C (Theorem 18).

Definition 14. A universe in a category C is simply a
morphism p : Ũ → U equipped with chosen pullbacks
A∗p : Γ.A → Γ along every morphism A : Γ → U . A
morphism ∆ → Γ in C is said to be classified by a universe
p : Ũ → U if it is a pullback of p along some (not necessarily
unique) morphism Γ → U .

A universe may additionally be equipped with logical
structures such as Π-types and Σ-types; see [40, §1.4] or [23,
§3.2] for details. For example, binary product on a universe
p : Ũ → U is a pair of morphisms prod : U × U → U and
pair : Ũ × Ũ → Ũ forming a pullback:

Ũ × Ũ Ũ

U × U U

pair

p×p p

prod

(4)

Example 15. Universes abound in logic and type theory.
1) In the category of sets, every Grothendieck universe U

determines a universe π1 : Ũ → U where Ũ is the set of
pointed U -small sets:

Ũ = {(A, a) | A ∈ U, a ∈ A},

and π1(A, a) = A is the projection function.
2) For a small category C , every Grothendieck universe U of

sets can be lifted to a universe π1 : Ṽ → V in the presheaf
category PR C by the Hofmann-Streicher lifting [33]: V
maps every Γ ∈ C to the set of U -valued presheaves over
C/Γ, and Ṽ maps every Γ ∈ C to the set

{(A, a) | A ∈ V (Γ), a : 1 → A ∈ PR (C/Γ)}.

The actions of V and Ṽ on morphisms γ : ∆ → Γ is given
by precomposing with (γ · −) : (C /∆)op → (C/Γ)op.
However, the universe V constructed in this way is not
what we want for interpreting the universe of judgements
J, because V classifies all (U -small) presheaves rather than
just (Yoneda-embedding of) C -objects.

3) Liftings of Grothendieck universes of sets to sheaf toposes in
general [64, 25], categories of assemblies, and realizability
toposes [64] also exist.

4) A syntactic example of universes is the map π1 : (A : J, a :
A) → (A : J) in the category LFSIG of LF-signatures
(III-A). The pullback of π1 along an arbitrary morphism
B : S → (A : J) can be chosen to be simply

S.B (A : J, a : A)

S (A : J)
B

All the examples above can be equipped with structures of
Σ-types, Π-types, and extensional equality types.

Definition 16. For a universe p : Ũ → U in a category C , its
externalisation [p : Ũ → U ], or simply [U ], is the fibration
over C whose fiber category [U ]Γ over every object Γ ∈ C
has as objects C -morphisms A : Γ → U . Morphisms A → B
in the fiber [U ]Γ are C -morphisms h : Γ.A → Γ.B making
the following diagram commute:

Γ.A Γ.B

Γ

h

A∗p B∗p

where Γ.A and Γ.B arise from pulling back p along A and B
respectively. The reindexing functor γ∗ : [U ]Γ → [U ]∆ for a
morphism γ : ∆ → Γ is precomposition:

y∗(Γ
A−→ U) = (∆

γ−→ Γ
A−→ U).

For an LF-signature S, the category JDG S of judgements
of S from Definition 9 is precisely the fiber over S of the
externalisation of the universe π1 : (A : J, a : A) → (A : J) in
the category LFSIG of LF-contexts from Section III-A.



When a universe is additionally equipped with logical struc-
tures, these structures can be carried over to the externalisation.
For example, if the universe is equipped with binary product
prod : U × U → U as in (4), the cartesian product of two
objects A,B : Γ → U in the fiber [U ]Γ is

Γ U × U U
⟨A,B⟩ prod

Moreover, this choice of cartesian products are strictly pre-
served by the reindexing functor γ∗ : [U ]Γ → [U ]∆ since
reindexing is defined to be precomposition.

If the universe U is equipped with Σ-types, Π-types, and
extensional equality types, each fiber category of [U ] has an
LCCC structure given in a way similar to Section III-B. The
reindexing functor strictly preserves the LCCC structure.

Example 13 contains another example of universes: starting
from a cartesian closed category C , we constructed in the
presheaf category PR C a morphism p : Tm → Ty that as a
universe classifies exactly (the Yoneda embedding of) projection
morphisms Γ × A → Γ in C . However, p inherently only
supports simple types: For an arbitrary type family over Γ,
i.e. an arbitrary morphism f : B → Γ in C , there may be no
⌈B⌉ : YΓ → Ty making Yf a pullback of p along ⌈B⌉.

The good news is that the dependently typed version of
the universe p : Tm → Ty in Example 13 exists. Perhaps
unexpectedly, what we need is exactly Hofmann’s [30] tech-
nique for turning locally cartesian closed categories into (strict)
models of extensional MLTT. Hofmann op. cit. showed how
to construct a CwF (with the type connectives of extensional
MLTT) over an arbitrary LCCC C , but as pointed out by
Fiore [17] and Awodey [6], a CwF structure ⟨Ty ,Tm⟩ over
C is precisely a universe p : Tm → Ty in PR C that is a
representable morphism, a perspective known as natural models
of dependent type theories [6, 48].

Definition 17. A morphism p : Tm → Ty in a presheaf
category PR C is called representable if for every Γ ∈ C and
A : YΓ → Ty , there is an object Γ.A ∈ C and a morphism
f : Γ.A → Γ in C making a pullback square:

YΓ.A Tm

YΓ Ty

Yf p

A

Putting aside the type connectives, Hofmann’s construction
can be seen as an instance of Bénabou’s [8] construction from a
fibration to an equivalent split fibration (see also Streicher [66,
Theorem 3.1] and Jacobs [35, §5.2]), applied to the codomain
fibration C→ → C of an LCCC C . This splitting technique is
the right adjoint to the forgetful functor from split fibrations
to fibrations. There is also a left adjoint due to Giraud [22, I
2.4.3]; see also Streicher [66, page 13]. Lumsdaine and Warren
[45] and Awodey [6] showed that the left-adjoint splitting can
also be used to construct (strict) models of type theories from
weak models, known as the local universe construction.

Using either Hofmann’s construction or the local universe
construction, we have the following result.

Theorem 18 (Hofmann [30], Awodey [6], Lumsdaine and
Warren [45]). For every small locally cartesian closed category
C , there is a universe p : ŨC → UC in PR C such that (1) p is
representable; (2) every morphism f : A → B in C is classified
by p; (3) p supports 1, Σ, Π, and extensional equality types.

In the situation of Theorem 18, by the representability of p,
the fiber [UC ]1 of the externalisation over the terminal object 1
contains only representable objects. And since p classifies (the
Yoneda embedding of) all morphisms of C , it in particularly
classifies all morphisms YA → Y1C = 1. Therefore the fiber
category [UC ]1 is equivalent to the LCCC C .

B. Diagrammatic Models

By Theorem 18, PR C has the structure for interpreting
the universe of judgements J and the type connectives on J.
The presheaf category PR C can interpret the unit type and
Σ-types of the LF as usual [31]. Thus we can turn PR C
into an LF-CwF. Since the abstract syntax of the LF is initial
among all LF-CwFs (Section III-A), there is a unique LF-CwF
homomorphism, which consists of (1) a functor interpreting
LF-signatures (i.e. LF-contexts) as C -presheaves

J−K : LFSIG −−−→ PR C (5)

and (2) mappings from LF-types/terms to PR C -types/terms
that strictly preserve all operations, also denoted by J−K.

Definition 19. A diagrammatic model of an LF-signature S
in an LCCC C is a global element m : 1 → JSK of the
interpretation of S in PR C .

Diagrammatic models are more ergonomic to work with than
functorial models because PR C as a presheaf topos has a very
rich structure that we can manipulate using a type theoretic
language. In this way, a diagrammatic model of S in C is a
closed element of the record type JSK in the internal language
of PR C , containing all fields of S and with J replaced by its
interpretation UC .

Example 20. The signature of barebone type theory from
Example 3 is interpreted as the presheaf JBTTK ∈ PR C
denoted by the record type

R E C O R D JBTTK W H E R E
ty : UC

tm : ty → UC

A closed element of this record consists of (1) a morphism
A : 1 → UC , which gives rise to an object Ã in C by the
representability of ŨC → UC , and (2) a morphism B : YÃ →
UC which gives rise to a morphism B̃ → Ã in C :

YB̃

YÃ ŨC

1 ∼= Y1C UC

B

A



Thus a diagrammatic model of BTT in a locally cartesian
closed category C gives rise to a morphism B̃ → Ã in C .

In Definition 9, the category JDG S of judgements for a
signature S is defined to be the full subcategory of the slice
LFSIG/S spanned by projections S.A → S for judgements
S ⊢ A : J. Every such judgement is sent by the interpretation
functor J−K : LFSIG → PR C to a morphism JAK : JSK → UC ,
which is exactly an object in the fiber of the externalisation
[UC ] over JSK. Since J−K is a homomorphism of LF-CwFs, it
(strictly) preserves context extensions, so the context projection
S.A → S is sent to the morphism JSK.JAK → JSK in PR C :

S.A (B : J, b : B) JSK.JAK ŨC

S (B : J) JSK UCA JAK

J−K

Therefore J−K sends the morphisms of JDG S to morphisms
of [UC ]JSK as well. In conclusion, for every LF-signature S
and LCCC C , we have a functor

GC : JDG S −−−→ [UC ]JSK,

which preserves LCCC structures since the type connectives
giving the LCCC structures of JDG S Section III-B are
preserved by interpretation.

Definition 21. Every diagrammatic model m : 1 → JSK in an
LCCC C determines a functorial model F (m) := m∗ ◦GC :
JDG S → C by composing GC with the reindexing functor
m∗ : [UC ]JSK → [UC ]1 ∼= C :

JDG S [UC ]JSK

C ∼= [UC ]1

GC

F (m) m∗

Using F (m) will be the main way of constructing functorial
models. Of course, if the LCCC C that we start with already
has a universe U that can model J, for example, when C
is a presheaf topos, then we may also directly construct
diagrammatic models classified by U in the language of C
itself, skipping the step of embedding C into PR C .

C. From Functorial Models to Diagrammatic Models

Conversely, a functorial model M : JDG S → C induces
a diagrammatic model D(M) as well. This may seem trivial
because functorial models assign semantics to all judgements
while diagrammatic models only assign semantics to generating
judgements. However, this task is complicated by the fact that
M as an LCC-functor only needs to preserve the LCC-structure
up to isomorphism, so M will not be exactly F (D(M)) in
general, and we have to simultaneously prove F (D(M)) ∼= M
for the induction to go through.

Lemma 22. Let S be a signature and C an LCCC. Every
functorial model M : JDG S → C determines a diagrammatic

model D(M) : 1 → JSK and a natural isomorphism ϕM :
F (D(M)) ∼= M : JDG S → C .

Before proving 22, we first observe that every LF-signature
S is isomorphic (in the category LFSIG of LF-signatures) to a
standard signature, which is inductively defined to be either

1) the empty signature,
2) (T, a : A) for some standard T and T ⊢ A : J, or
3) (T,B : A → J) for some standard T and T ⊢ A : J.

Moreover, every judgement S ⊢ A : J under a standard
signature S is equal (in the equational theory of the LF) to a
standard judgement, which is inductively defined to be either

1) S ⊢ B a : J for some declaration B : A → J in S and
S ⊢ a : A, or

2) the type formers 1, Σ, Π, a = b of J applied to standard
judgements.

These claims can be shown by induction on the syntax of
the LF. Note that they are not the same as normalisation of
the LF – we do not claim terms have any standard or normal
form (which is in indeed not true because extensional equality
types do not enjoy normalisation [29, §3.2.2]).

When proving statements P (S) about LF-signatures S that
are invariant under isomorphisms or defining constructions
C(S) for LF-signatures that can be transported along isomor-
phisms, we conveniently only need to prove or construct for
standard signatures and consider only standard judgements.

Proof of 22. The required constructions D(M) and ϕM in the
statement of Lemma 22 can be transported along isomorphisms
S ∼= S′of LF-signatures, so we can assume S is standard. Then
we construct D(M), the components of ϕM , and show the
naturality of ϕM by a simultaneous induction on the structure
of standard signatures S, standard judgements A in S, and
terms S ⊢ a : A.

Part 1. We first construct D for every signature S.
Case 1.1. If S is the empty signature, JSK is the terminal

presheaf, so there is a unique choice for D(M) : 1 → JSK.
Case 1.2. If S = (T, a : A) for some T ⊢ A : J, we have an

inclusion functor i : JDG T → JDG S sending every judgement
(T ⊢ B : J) ∈ JDG T to its weakening (S ⊢ B : J) ∈ JDG S.
By composing this functor with M : JDG S → C we have a
functorial model M ◦ i : JDG T → C of T , which further gives
rise to a diagrammatic model D(M ◦ i) of T by induction.
Our goal is to construct a morphism D(M) : 1 → JSK making
the left triangle below commute:

JSK = JT K.JAK ŨC

1 JT K UC

pS p

D(M◦i) JAK

(6)

In the category JDG S, we have a morphism

(T, a : A, 1 ⊢ a : A) : (S ⊢ 1 : J) → (S ⊢ A : J) (7)

which is mapped by M : JDG S → C to a morphism

M(a) : 1C
∼= M(S ⊢ 1 : J) → M(S ⊢ A : J)



in C ∼= [UC ]1. By the inductive hypothesis, we have a natural
isomorphism ϕM◦i : F (D(M ◦ i)) ∼= M ◦ i. By Definition 21
of F , F (D(M ◦ i)) applied to T ⊢ A : J is the pullback of
p : ŨC → UC along JAK · D(M ◦ i), and M ◦ i applied to
T ⊢ A : J is simply M(S ⊢ A : J). Hence we have pullbacks:

M(S ⊢ A : J) JSK = JT K.JAK ŨC

M(S ⊢ 1 : J) ∼= 1 JT K UC

ppS

g

D(M◦i) JAK

M(a) (8)

We now define the desired diagrammatic model D(M) to be
the composite g ·M(a) : 1 → JSK.

Case 1.3. If S = (T,B : A → J) for some T ⊢ A : J,
the projection morphism pS : JT,B : A → JK → JT K is
the exponential object in the slice category PR C /JT K from
pT.A : JT K.JAK → JT K to π1 : JT K × UC → JT K. We would
like to define D(M) : 1 → JT,B : A → JK making the left
triangle below commute,

JT,B : A → JK JT K × UC JT K.JAK ŨC

1 JT K UC

pS
π1 pT.A pD(M)

D(M◦i) JAK

where i : JDG T → JDG S is the weakening functor, and
D(M ◦ i) is the diagrammatic model of the smaller context
T obtained from the inductive hypothesis. By the universal
property of JT,B : A → JK as the exponential, we need
to construct a morphism D(M ◦ i)× pT.A → π1 in the slice
category over JT K. The product D(M ◦i)×pT.A is the pullback
of pT.A along D(M ◦ i), which is isomorphic to the object
M(i(T ⊢ A : J)) via ϕM◦i : F (D(M ◦ i)) ∼= M ◦ i:

M(i(T ⊢ A : J)) JSK = JT K.JAK ŨC

1 JT K UC

ppT.A

D(M◦i) JAK

Our goal is to construct a morphism M(i(T ⊢ A : J)) → UC .
Back in the category JDG S, we have the judgement S ⊢

ΣAB : J, and the projection πΣAB
1 : ΣAB → A; henceforth

we omit the context S ⊢ on objects. The projection map is sent
by M : JDG S → C ∼= [UC ]1 to a morphism in C . Since the
universe p : ŨC → UC (weakly) classifies all C -morphisms,
the morphism MπΣAB

1 gives us some ⌈B⌉ : M(A) → UC

and a pullback square:

M(Σ A B) ŨC

M(A) UC

MπΣAB
1

p

⌈B⌉

(9)

The morphism ⌈B⌉ fulfils our goal M(i(T ⊢ A : J)) =
M(A) → UC .

Part 2. Now we define the component of ϕM : FDM ∼= M
at every (standard) judgement in a (standard) signature S.

Case 2.1. For the judgement S ⊢ B a : J where S = (T,B :
A → J, R) for some T and R, T ⊢ A : J, and S ⊢ a : A, we
have a pullback diagram in JDG S:

B a Σ A B

1 A

πΣAB
1

a

Since M is an LCCC functor, it preserves pullbacks and the
terminal object, so we have a pullback square in C :

M(B a) M(Σ A B)

1 M(A)

MπΣAB
1

Ma

On the other hand, in Case 1.3 above, we have defined the
B-component of the diagrammatic model D(M) to be the
code ⌈B⌉ of the morphism MπΣAB

1 as in the diagram (9).
Hence, unfolding the definition of F , FDM(B a) will be the
pullback of p : ŨC → UC along the following morphism:

1 (FDM)(A) MA UC
F (D(M))(a) (ϕM )A ⌈B⌉

Using the naturality of (ϕM )A, this morphism is the same as

1
M(a)−−−→ MA

⌈B⌉−−→ UC . Therefore both M(A) and FDM(A)
are the pullback of p along ⌈B⌉ ·M(a), so they are isomorphic
in a canonical way.

Case 2.2. For a judgement A that is some type former
of J applied to (smaller) standard judgements, M(A) and
D(F (M))(A) are both LCC-functors so they preserve these
type formers. By the universal properties of these type formers,
M(A) and D(F (M))(A) are isomorphic in a canonical way.

Part 3. We also need to show that the family of morphisms

ϕM (A) : FDM(A) ∼= M(A)

is natural in A. Because JDG S has exponentials, which are
preserved by M and FDM , it is sufficient to show that for
every S ⊢ A : J and S ⊢ a : A, there is a commutative triangle:

1 FDM(A)

M(A)

FDM(a)

M(a) (ϕM )A

If a is a variable, this follows from the definition of D(T, a : A)
in Case 1.2 above. If a is one of the other term formers, it
follows from the fact that M and FDM as LCC-functors both
preserve these term formers.

V. EQUIVALENCE OF TWO NOTIONS OF MODELS

We have now mappings F (Definition 21) from diagrammatic
models to functorial models, and vice versa D (Lemma 22).
Moreover, there is an isomorphism F (D(M)) ∼= M for every
functorial model M : JDG S → C . Naturally, we would expect
D(F (m)) ∼= m for every diagrammatic model m as well, and
then diagrammatic and functorial models will be in bijection up



to isomorphisms. But we do not have a notion of isomorphisms
of diagrammatic models yet, so we will define it in this section,
which turns out to be more interesting a task than it sounds.

Example 23. Let us still begin with some small examples for
intuition. Consider the signature (A : J) of one judgement and
nothing else. Diagrammatic models of it in an LCCC C are
morphisms m : 1 → UC in PR C , which give rise to objects
A in C by Theorem 18 in a surjective way (but different
m may give rise to the same object in C ). An isomorphism
between two models m1 and m2 in this case ought to be an
isomorphism i : A1 → A2 in C between the C -objects A1

and A2 induced by m1 and m2 respectively.
Now suppose the signature is extended to (A : J, f : (A →

A) → A). Then every diagrammatic model gives rise to an
object A together with a morphism f : (A ⇒ A) → A in C ,
where A ⇒ A denotes the exponential. Now an isomorphism
between two diagrammatic models should be a C -isomorphism
i : A1 → A2 that commutes with f :

A1 ⇒ A1 A1

A2 ⇒ A2 A2

f1

i−1⇒i i

f2

The fact that we have dependent functions in LF signatures
is why we only consider isomorphisms rather than homomor-
phisms of diagrammatic models.

Suppose that the signature is further extended with a family
of judgements B : A → J indexed by A. A diagrammatic
model now further induces an C -object B with a morphism
g : B → A. An isomorphism of diagrammatic models should
now further include a C -isomorphism j : B1 → B2 that
commutes with i:

B1 B2

A1 A2

j

g1 g2

i

Finally, if a signature is extended with a declaration of an
equation, the notion of isomorphisms between diagrammatic
models should remain unchanged, since in LCCCs there is not
any higher-dimensional coherence between equalities.

Diagrammatic models in an LCCC C are defined by
interpreting an LF-signature S as a presheaf JSK ∈ PR C
(Definition 19). In the internal language of the presheaf topos
PR C , a presheaf is a ‘set’. Now that we are interested in
isomorphisms of models, sets are no longer sufficient, and
instead, we would like to use groupoids as our interpretation.
More precisely, we plan to interpret every LF-signature S
as an internal groupoid ⟨JSK, JSK∼=⟩ in PR C whose object
part is exactly the presheaf JSK in the earlier interpretation
(Section IV-B). Then, global elements i : 1 → JSK∼= of the
morphism part of the groupoid will be defined as isomorphisms
between diagrammatic models s · i and t · i : 1 → JSK.

One way to carry out the plan above is to follow Hofmann
and Streicher’s [32] celebrated groupoid model of Martin-Löf
type theory internally in the language of the presheaf topos
PR C , rather than in the ambient set theory.

In outline, in the language of PR C , there is a groupoid U
∼=
C

whose objects have the type UC and the morphisms between
A,B : UC in this groupoid are the isomorphisms A ∼= B.
This groupoid provides the interpretation for the universe J.
For every A : UC , the type A can be regarded as a discrete
groupoid, so U

∼=
C still models Π, Σ, and extensional equalities.

Π and Σ types outside J in the LF are interpreted in the
same way as Hofmann and Streicher [32]. The result of this
construction would then be an internal LF-CwF in PR C , whose
externalisation over the terminal object 1 ∈ PR C will then
the (ordinary) LF-CwF that interprets an LF-signature S as a
groupoid of diagrammatic models.

While the approach outlined above is feasible, there is a
more direct approach that we will follow instead. First, we
notice that in virtually all logical frameworks the notions of
homomorphisms/isomorphisms of models of a theory S can
be expressed as another theory that contains (1) two copies
of the declarations of S and (2) new declarations for the
homomorphisms/isomorphisms between the basic sorts of the
two copies of S, together with (3) equations asserting the
homomorphic properties. This is also the case for LCCLF.
Take the signature S = (A : J, f : (A → A) → A) for
example; in the LF we have the following signature S

∼= of
isomorphisms of S-models:

A1 : J f1 : (A1 → A1) → A1

A2 : J f2 : (A2 → A2) → A2

i : A1
∼= A2 _ : (i.fwd · f1) = (λg. f2 (i.fwd · g · i.bwd))

where A1
∼= A2 is the judgement of isomorphisms defined in

Example 5 and f ·g means function composition λx. f (g x). In
the category LFSIG of LF-signatures, there are two morphisms
s, t : S

∼= → S that project out (A1, f1) and (A2, f2)
respectively. Similarly, we have morphisms inv , id , comp in
LFSIG for the inverse, identity, composition of S-isomorphisms,
assembling to an internal groupoid:

S
∼= ×S S

∼= S
∼= S

S × S

comp

inv

⟨s,t⟩
id

where S
∼=×S S

∼= is the signature of three copies of S and two
isomorphisms in between. The interpretation of this internal
groupoid by J−K : LFSIG → PR C for every LCCC C is
precisely the internal groupoid that we wanted.

Motivated by the discussion above, we would like to define
an internal groupoid ⟨S, S∼=⟩ for every LF-signature S, which
can be done inductively together with some related conditions
on judgements and terms in a signature.



Lemma 24. LCCLF satisfies the following statements:
1) Every LF-signature S determines a judgement of S-

isomorphisms

M1 : S, M2 : S ⊢ S
∼= : J

in which we reuse the name S for the iterative Σ-type of
the fields of S. Moreover, there are terms inv , id , comp
of the following types and they satisfy (judgementally in
the LF) the axioms of groupoids:

M1,M2 : S ⊢ invS : S
∼=[M1,M2] → S

∼=[M2,M1]
M1 : S ⊢ idS : S

∼=[M1,M1]
M1,M2,M3 : S ⊢ compS : S

∼=[M1,M2] → S
∼=[M2,M3]

→ S
∼=[M1,M3]

where square brackets mean substitution.
2) Every judgement S ⊢ A : J over a signature S determines

a term coeA for coercing along S-isomorphisms

M1,M2 : S ⊢ coeA : S
∼=[M1,M2] → A[M1] → A[M2]

such that coeA is functorial, i.e., it preserves idS and
compS of S

∼=. Conceptually, this amounts to say that
every judgement in S determines a J-valued presheaf over
the groupoid S

∼= in the LF.
3) Every term S ⊢ a : A of a judgement S ⊢ A : J over a

signature S determines a term coha showing the coherence
of coercion:

M1,M2 : S ⊢ coha : (i : S
∼=[M1,M2])

→ coeA i a[M1] = a[M2]

Conceptually, this amounts to say that every term a
determines a natural transformation from the constant
J-presheaf 1 to the presheaf A.

The proof of this lemma is omitted here for lack of space,
and it can be found in Appendix A.

Remark 25. The constructions ⟨S∼=, coe, coh⟩ in the preceding
proof are essentially the same idea as observational equality
[2, 4], but at one homotopy level higher. Altenkirch et al. [2]
constructed a universe of sets (with extensional principles such
as function extensionality and uniqueness of identity proofs)
in intensional type theory with proof-irrelevant propositions,
while here we constructed groupoids from sets. But the idea
of defining equalities or isomorphisms structurally for each
type former remains the same.

Given an signature S, again, we will reuse S as the name of
the iterative Σ-type of the fields of S, and denote the signature
(M1 : S,M2 : S, i : S

∼=) by ∫ S∼=. In the category LFSIG of
LF-contexts, there are two projections morphisms

M1,M2 : ∫ S∼= −−−→ S

which are interpreted by J−K (Section IV-B) in the presheaf cat-
egory PR C for every LCCC C as two morphisms JM1K, JM2K :
J∫ S∼=K → JSK.

Definition 26. Given a signature S and an LCCC C , an
isomorphism of diagrammatic models m1,m2 : 1 → JSK in C

is a morphism i : 1 → J∫ S∼=K in PR C such that m1 = JM1K·i
and m2 = JM2K · i:

J∫ S∼=K

1 JSK
JSK

JM1K
JM2K

i

m1

m2

The groupoid of diagrammatic models and isomorphisms,
induced by the internal groupoid structure on S

∼=, is denoted
as S-MOD(C ).

Theorem 27. For every LCCC C and signature S, the
mappings F and D between diagrammatic and functorial
models from 21 and 22 extend to an equivalence:

F : S-MOD(C ) ∼= LCCC∼=(JDG S,C ) : D

where LCCC∼=(JDG S,C ) is the groupoid of (1) functors
JDG S → C that preserve locally cartesian closed structures
and (2) natural isomorphisms.

The proof of is omitted here for lack of space, and it can
be found in Appendix A.

VI. DISCUSSION

In this paper we have developed the categorical semantics
of the logical framework LCCLF. Our development follows
the tradition of categorical logic pioneered by Lawvere [44]:
a syntactic presentation S of a theory generates a classifying
category C with certain structures, and structure-preserving
functors C → D are equivalent to models of S in D.

Our development is presented in the traditional set-theoretic
language, but we did not rely on anything specific to material
set theories or the axiom of choice, as long as concepts such
as LCCCs are all defined as categories with chosen structures
rather than just mere existence of structures. Therefore the
development in this paper is valid internally in any elementary
topos with an NNO and universes. This in particular includes
the effective topos EFF [53, 34], which is useful for studying
type theories with impredicative polymorphisms.

Unlike in the untyped and simply typed settings [13, 35],
the definition of diagrammatic models of LCCLF is signifi-
cantly harder than that of functorial models because of type
dependency. The payoff of our effort of bridging these two
sides is that functorial semantics unlocks the opportunity for
using abstract categorical tools, while diagrammatic semantics
allows us to use concrete type-theoretic internal languages of
categories to define models of type theories.

The development of LCCLF in this paper is by no means
the end of the story. Firstly, it is worthwhile to mechanise
LCCLF in a proof assistant. Secondly, signatures of LCCLF
in this paper are finitary in two aspects: there can only be
finitely many declarations, and every operation has finitely
many operands. It is worthwhile to relax both restrictions, so
that, for example, type theories with countably many universes
or infinitary products can be accommodated.



REFERENCES

[1] J. Adamek, J. Rosicky, E. M. Vitale, and F. W.
Lawvere, Algebraic Theories. Cambridge: Cambridge
University Press, 2010. [Online]. Available: http:
//ebooks.cambridge.org/ref/id/CBO9780511760754

[2] T. Altenkirch, C. McBride, and W. Swierstra, “Obser-
vational equality, now!” in Proceedings of the 2007
Workshop on Programming Languages Meets Program
Verification, ser. PLPV ’07. Association for Computing
Machinery, 2007, p. 57–68.

[3] T. Altenkirch, P. Capriotti, G. Dijkstra, N. Kraus, and
F. Nordvall Forsberg, “Quotient inductive-inductive types,”
in Foundations of Software Science and Computation
Structures, C. Baier and U. Dal Lago, Eds. Springer
International Publishing, 2018, pp. 293–310.

[4] T. Altenkirch, S. Boulier, A. Kaposi, and N. Tabareau,
Setoid Type Theory – A Syntactic Translation. Springer
International Publishing, 2019, p. 155–196.

[5] C. Angiuli and D. Gratzer, “Principles of dependent
type theory,” 2024, draft. [Online]. Available: https:
//www.danielgratzer.com/papers/type-theory-book.pdf

[6] S. Awodey, “Natural models of homotopy type theory,”
Mathematical Structures in Computer Science, vol. 28,
no. 2, p. 241–286, 2018.

[7] J. Bénabou, Problèmes dans les topos: d’après le cours
de Questions spéciales de mathématique: rapport no 34,
mars 1973, Seminaires de mathématique pure. Université
catholique de Louvain, 1973.

[8] ——, “Fibrations petites et localement petites,” C.
R. Acad. Sci. Paris, vol. 281, pp. 897–900,
1975. [Online]. Available: https://gallica.bnf.fr/ark:
/12148/bpt6k6228235m/f171.image

[9] J. Cartmell, “Generalised algebraic theories and contextual
categories,” Annals of Pure and Applied Logic, vol. 32,
pp. 209–243, 1986.

[10] S. Castellan, P. Clairambault, and P. Dybjer, Categories
with Families: Unityped, Simply Typed, and Dependently
Typed. Springer International Publishing, 2021, pp. 135–
180.

[11] P. Clairambault and P. Dybjer, “The biequivalence of
locally cartesian closed categories and Martin-Löf type
theories,” Mathematical Structures in Computer Science,
vol. 24, no. 6, 2014.

[12] P. Cohn, Universal Algebra, ser. Mathematics and Its
Applications. Springer Dordrecht, 1981.

[13] R. L. Crole, Categories for Types. Cambridge University
Press, 1994.

[14] P.-L. Curien, R. Garner, and M. Hofmann, “Revisiting
the categorical interpretation of dependent type theory,”
Theoretical Computer Science, vol. 546, p. 99–119, 2014.

[15] M. de Boer, “A proof and formalization of the initial-
ity conjecture of dependent type theory,” p. 94, 2020,
licentiate defense over Zoom.

[16] P. Dybjer, Internal type theory. Springer Berlin Heidel-
berg, 1996, p. 120–134.

[17] M. Fiore, “Discrete generalised polynomial functors,”
2012, talk given at ICALP 2012. [Online]. Available:
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf

[18] M. Fiore and C.-K. Hur, “Second-order equational logic,”
in Computer Science Logic, A. Dawar and H. Veith, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
320–335.

[19] M. Fiore and O. Mahmoud, “Second-order algebraic
theories,” in Mathematical Foundations of Computer
Science 2010, P. Hliněný and A. Kučera, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 368–
380.

[20] M. Fiore and D. Szamozvancev, “Formal metatheory of
second-order abstract syntax,” Proc. ACM Program. Lang.,
vol. 6, no. POPL, 2022.

[21] J.-Y. Girard, “Interprétation fonctionelle et élimination
des coupures de l’arithmétique d’ordre supérieur,” Thèse
d’État, Université Paris VII, 1972.

[22] J. Giraud, “Cohomologie non abélienne,” C. R. Acad. Sci.
Paris, vol. 260, pp. 2666–2668, 1965.

[23] D. Gratzer, “Syntax and semantics of modal type
theory,” Ph.D. dissertation, Aarhus University, 2023. [On-
line]. Available: https://pure.au.dk/portal/en/publications/
syntax-and-semantics-of-modal-type-theory

[24] D. Gratzer and J. Sterling, “Syntactic categories for
dependent type theory: sketching and adequacy,” 2021.
[Online]. Available: https://arxiv.org/abs/2012.10783

[25] D. Gratzer, M. Shulman, and J. Sterling, “Strict universes
for Grothendieck topoi,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.12012

[26] H. Grodin, Y. Niu, J. Sterling, and R. Harper, “Decalf:
A directed, effectful cost-aware logical framework,” Pro-
ceedings of the ACM on Programming Languages, vol. 8,
no. POPL, p. 273–301, 2024.

[27] R. Harper, “An equational logical framework for type
theories,” 2021. [Online]. Available: https://arxiv.org/abs/
2106.01484

[28] R. Harper, F. Honsell, and G. Plotkin, “A framework for
defining logics,” Journal of the ACM, vol. 40, no. 1, p.
143–184, 1993.

[29] M. Hofmann, “Extensional concepts in intensional type
theory,” Ph.D. dissertation, University of Edinburgh, 1995.
[Online]. Available: https://era.ed.ac.uk/handle/1842/399

[30] ——, “On the interpretation of type theory in locally
cartesian closed categories,” Lecture Notes in Computer
Science, vol. 933, p. 427–441, 1995.

[31] ——, “Syntax and semantics of dependent types,” in
Semantics and Logics of Computation, ser. Publications
of the Newton Institute, A. Pitts and P. Dybjer, Eds.
Cambridge University Press, 1997, p. 79–130.

[32] M. Hofmann and T. Streicher, The groupoid interpretation
of type theory. Oxford University Press, 1998.

[33] ——, “Lifting Grothendieck universes,” 1999,
unpublished note. [Online]. Available: https://www2.
mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

[34] J. Hyland, The Effective Topos. Elsevier, 1982, vol. 110,

http://ebooks.cambridge.org/ref/id/CBO9780511760754
http://ebooks.cambridge.org/ref/id/CBO9780511760754
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://gallica.bnf.fr/ark:/12148/bpt6k6228235m/f171.image
https://gallica.bnf.fr/ark:/12148/bpt6k6228235m/f171.image
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2202.12012
https://arxiv.org/abs/2106.01484
https://arxiv.org/abs/2106.01484
https://era.ed.ac.uk/handle/1842/399
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf


p. 165–216.
[35] B. Jacobs, Categorical Logic and Type Theory, ser.

Studies in Logic and the Foundations of Mathematics.
Amsterdam: North Holland, 1999, no. 141.

[36] A. Kaposi and S. Xie, “Second-Order Generalised Alge-
braic Theories: Signatures and First-Order Semantics,” in
9th International Conference on Formal Structures for
Computation and Deduction (FSCD 2024), ser. Leibniz
International Proceedings in Informatics (LIPIcs), J. Re-
hof, Ed., vol. 299. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2024.

[37] A. Kaposi, A. Kovács, and T. Altenkirch, “Constructing
quotient inductive-inductive types,” Proc. ACM Program.
Lang., vol. 3, no. POPL, 2019.

[38] A. Kaposi, A. Kovács, and A. Lafont, “For finitary
induction-induction, induction is enough,” in 25th Inter-
national Conference on Types for Proofs and Programs
(TYPES 2019), ser. Leibniz International Proceedings
in Informatics (LIPIcs), M. Bezem and A. Mahboubi,
Eds., vol. 175. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020, pp. 6:1–6:30.

[39] C. Kapulkin and Y. Li, “Extensional concepts
in intensional type theory, revisited,” 2023,
doi:https://doi.org/10.48550/arXiv.2310.05706.

[40] K. Kapulkin and P. L. Lumsdaine, “The simplicial model
of Univalent Foundations (after Voevodsky),” Journal of
the European Mathematical Society, vol. 23, no. 6, p.
2071–2126, 2021.

[41] Y. Kinoshita, J. Power, and M. Takeyama, “Sketches,”
Journal of Pure and Applied Algebra, vol. 143, no. 1–3,
p. 275–291, 1999.

[42] A. Kovács, “Type-theoretic signatures for algebraic
theories and inductive types,” Ph.D. dissertation,
Eötvös Loránd University, 2023. [Online]. Available:
https://arxiv.org/abs/2302.08837

[43] J. Lambek and P. J. Scott, Introduction to higher order
categorical logic. Cambridge University Press, 1986.

[44] F. Lawvere, “Functorial semantics of algebraic theories,”
Ph.D. dissertation, Columbia University, 1963. [Online].
Available: http://www.tac.mta.ca/tac/reprints/articles/5/
tr5abs.html

[45] P. L. Lumsdaine and M. A. Warren, “The local universes
model: An overlooked coherence construction for depen-
dent type theories,” ACM Trans. Comput. Logic, vol. 16,
no. 3, 2015.

[46] P. Martin-Löf, Intuitionistic type theory. Bibliopolis
Naples, 1984, vol. 6.

[47] C. Maurer, “Universes in topoi,” in Model Theory and
Topoi, F. W. Lawvere, C. Maurer, and G. C. Wraith, Eds.
Springer Berlin Heidelberg, 1975, pp. 284–296.

[48] C. Newstead, “Algebraic models of dependent type theory,”
Ph.D. dissertation, Carnegie Mellon University, 2018.

[49] Y. Niu, J. Sterling, H. Grodin, and R. Harper, “A cost-
aware logical framework,” Proc. ACM Program. Lang.,
vol. 6, no. POPL, 2022.

[50] nLab, “slice of presheaves is presheaves on slice,”

https://ncatlab.org/nlab/show/slice+of+presheaves+is+
presheaves+on+slice, 2024, Revision 20.

[51] B. Nordström, K. Petersson, and J. M. Smith, Program-
ming in Martin-Löf’s type theory. Oxford University
Press, 1990, vol. 200.

[52] U. Norell, “Dependently typed programming in Agda,”
in Advanced Functional Programming: 6th Interna-
tional School, AFP 2008, Heijen, The Netherlands, May
2008, Revised Lectures, P. Koopman, R. Plasmeijer, and
D. Swierstra, Eds. Springer Berlin Heidelberg, 2009, pp.
230–266.

[53] J. v. Oosten, Realizability: an introduction to its categori-
cal side, 1st ed., ser. Studies in logic and the foundations
of mathematics. Oxford: Elsevier, 2008.

[54] F. Pfenning, Logical Frameworks—A Brief Introduction.
Springer Netherlands, 2002, p. 137–166.

[55] A. Pitts, “Categorical logic,” in Handbook of Logic in
Computer Science: Volume 5. Algebraic and Logical
Structures. Oxford University Press, 2001.

[56] G. Plotkin, “LCF considered as a programming language,”
Theoretical Computer Science, vol. 5, no. 3, pp. 223–255,
1977.

[57] J. C. Reynolds, “Towards a theory of type structure,”
in Programming Symposium, Proceedings Colloque sur
la Programmation, Paris, France, April 9-11, 1974, ser.
Lecture Notes in Computer Science, B. Robinet, Ed.,
vol. 19. Springer, 1974, pp. 408–423.

[58] R. A. Seely, “Locally cartesian closed categories and
type theory,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 95, no. 1, p. 33–48, 1984.

[59] J. Sterling, “Algebraic type theory and universe hierar-
chies,” 2019, doi:10.48550/arXiv.1902.08848.

[60] ——, “First steps in synthetic Tait computability: The
objective metatheory of cubical type theory,” Ph.D. dis-
sertation, Carnegie Mellon University, 2021, version 1.1,
revised May 2022.

[61] J. Sterling and C. Angiuli, “Normalization for cubical
type theory,” Proceedings - Symposium on Logic in
Computer Science, vol. 2021-June, p. 1–22, 2021, arXiv:
2101.11479.

[62] J. Sterling and R. Harper, “Sheaf semantics of termination-
insensitive noninterference,” in 7th International Confer-
ence on Formal Structures for Computation and Deduction
(FSCD 2022), ser. Leibniz International Proceedings in
Informatics (LIPIcs), A. P. Felty, Ed., vol. 228. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp.
5:1–5:19.

[63] ——, “Logical relations as types: Proof-relevant para-
metricity for program modules,” Journal of the ACM,
vol. 68, no. 6, 2021.

[64] T. Streicher, “Universes in toposes,” From Sets and Types
to Topology and Analysis: Towards practical foundations
for constructive mathematics., vol. 48, 2005.

[65] ——, Semantics of Type Theory: Correctness, Complete-
ness and Independence Results. Boston, MA: Birkhäuser
Boston, 1991.

https://doi.org/https://doi.org/10.48550/arXiv.2310.05706
https://arxiv.org/abs/2302.08837
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://ncatlab.org/nlab/show/slice+of+presheaves+is+presheaves+on+slice
https://ncatlab.org/nlab/show/slice+of+presheaves+is+presheaves+on+slice
https://ncatlab.org/nlab/revision/slice+of+presheaves+is+presheaves+on+slice/20
https://doi.org/10.48550/arXiv.1902.08848


[66] ——, “Fibered categories a la Jean Benabou,” 2023.
[Online]. Available: https://arxiv.org/abs/1801.02927

[67] T. Uemura, “A general framework for the semantics
of type theory,” Mathematical Structures in Computer
Science, vol. 33, no. 3, p. 134–179, 2023.

[68] ——, “Abstract and concrete type theories,”
Ph.D. dissertation, University of Amsterdam, 2021.
[Online]. Available: https://dare.uva.nl/search?identifier=
41ff0b60-64d4-4003-8182-c244a9afab3b

[69] V. Voevodsky, “A C-system defined by a universe cate-
gory,” Theory and Applications of Categories, vol. 30, pp.
1181–1214, 2015.

[70] ——, “The (Π, λ)-structures on the C-systems defined
by universe categories,” Theory and Applications of
Categories, vol. 32, pp. 113–121, 2017.

[71] C. Wells, “Sketches: Outline with references,” 1993, avail-
able at https://ncatlab.org/nlab/files/Wells_Sketches.pdf.

APPENDIX A
PROOFS OMITTED IN THE MAIN TEXT

The proofs omitted in the main text are listed in this section,
with their corresponding statements restated for convenience.

Lemma 28. LCCLF satisfies the following statements:
1) Every LF-signature S determines a judgement of S-

isomorphisms

M1 : S, M2 : S ⊢ S
∼= : J

in which we reuse the name S for the iterative Σ-type of
the fields of S. Moreover, there are terms inv , id , comp
of the following types and they satisfy (judgementally in
the LF) the axioms of groupoids:

M1,M2 : S ⊢ invS : S
∼=[M1,M2] → S

∼=[M2,M1]
M1 : S ⊢ idS : S

∼=[M1,M1]
M1,M2,M3 : S ⊢ compS : S

∼=[M1,M2] → S
∼=[M2,M3]

→ S
∼=[M1,M3]

where square brackets mean substitution.
2) Every judgement S ⊢ A : J over a signature S determines

a term coeA for coercing along S-isomorphisms

M1,M2 : S ⊢ coeA : S
∼=[M1,M2] → A[M1] → A[M2]

such that coeA is functorial, i.e., it preserves idS and
compS of S

∼=. Conceptually, this amounts to say that
every judgement in S determines a J-valued presheaf over
the groupoid S

∼= in the LF.
3) Every term S ⊢ a : A of a judgement S ⊢ A : J over a

signature S determines a term coha showing the coherence
of coercion:

M1,M2 : S ⊢ coha : (i : S
∼=[M1,M2])

→ coeA i a[M1] = a[M2]

Conceptually, this amounts to say that every term a
determines a natural transformation from the constant
J-presheaf 1 to the presheaf A.

Proof of Lemma 24. Following Section IV-C, it is sufficient to
show these statements only for standard signatures and standard
judgements, since these statements can be transported along
isomorphisms of LF-signatures. We show these statements
simultaneously by induction on the structure of standard
signatures, standard judgements, and terms.

Part 1. We start with defining a groupoid S
∼= for every

signature S, with the inductive hypothesis that all the claims
above about signatures, judgements and terms are already
shown for structurally smaller cases.

Case 1.1. If S is the empty signature, we let S∼= be the unit
type 1 together with the trivial groupoid structure.

Case 1.2. If S = (T, a : A) for some T ⊢ A : J, in the
context of M1,M2 : S, we will write Mi.T and Mi.a for the
first and second projections of Mi : S, and we let M1,M2 :
S ⊢ S

∼= : J be the judgement

Σ(i : T
∼=[M1.T,M2.T ]).

(
coeA[M1.T,M2.T ] i M1.a = M2.a

)
.

The groupoid structure on this S
∼= is defined by that of T

∼=

and the assumption that coeA preserves the structure idT

and compT of T∼=. Conceptually, this definition of S∼= is the
category of elements for the presheaf determined by T ⊢ A : J.

Case 1.3. If S = (T,B : A → J) for some T ⊢ A : J, in
the context of M1,M2 : S, we will write A1, A2 : J for A[M1]
and A[M2] respectively and similarly B1 and B2 for B[M1]
and B[M2] respectively. We define M1,M2 : S ⊢ S

∼= : J to be

Σ(i : T
∼=[M1.T,M2.T ]).

(a1 : A1) → (B1 a1 ∼= B2 (coeA i a1))

The groupoid structure on this S
∼= is defined using that of

T
∼= and the evident groupoid structure on isomorphisms of

judgements in J.

Part 2. Now we construct coeA for every possibility of
standard judgements.

Case 2.1. If the judgement is S ⊢ B a : J for some variable
B : A → J in the context S and S ⊢ a : A, we need to define

M1,M2 : S ⊢ coeB a : S
∼= → B1 a1 → B2 a2

where ai and Bi are a[Mi] and B[Mi] as usual. Let S =
(T,B : A → J, S′). In the context of M1,M2 : S, given any
i : S

∼=, by the definition of (T,B : A → J)∼= in Case 1.3, we
can project out from i : S

∼= to an element

pi : Σ(j : T
∼=). (a1 : A1) → (B1 a1 ∼= B2 (coeA j a1))

Now given any b1 : B1 a1, using (π2 pi a1).fwd , we get an
element of type B2 (coeA (π1 pi) a1). Use the coherence
coha i : coeA (π1 pi) a1 = a2, we get an element of B2 a2.

Case 2.2. The case for the unit judgement is simple. There
is a unique choice of

M1,M2 : S ⊢ coe1 : S
∼=[M1,M2] → 1 → 1

which is functorial because 1 has a unique element.

https://arxiv.org/abs/1801.02927
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://ncatlab.org/nlab/files/Wells_Sketches.pdf


Case 2.3. For the case S ⊢ Σ A B : J for some S ⊢ A : J
and S.A ⊢ B : J, we need to define a term that coerce elements
of Σ-types along isomorphisms:

M1,M2 : S ⊢ coeΣAB : S
∼=[M1,M2] → Σ A1 B1 → Σ A2 B2

where Ai and Bi stand for A[Mi] and (M1,M2 : S, ai : Ai ⊢
B[Mi, ai]) respectively. By the inductive hypotheses, we can
use terms

M1,M2 : S ⊢ coeA : S
∼=[M1,M2] → A1 → A2

M ′
1,M

′
2 : S.A ⊢ coeB : (S.A)

∼=[M ′
1,M

′
2] → B[M ′

1] → B[M ′
2]

We can use coeA to coerce the first component of ΣAB:

coeΣAB i (a1, b1) = (coeA i a1, ?0 : B[M2, coeA i a1] )

Now to use coeB to fill out the hole ?0 , we recall that the
judgement (S.A)

∼= of (S.A)-isomorphisms is defined earlier
in Case 1.2 to be

M ′
1,M

′
2 : S.A ⊢ Σ(i : S

∼=[M ′
1.S,M

′
2.S]).(

coeA i (π2 M ′
1) = π2 M ′

2

)
: J

Thus we fill out the hole ?0 by putting

?0 = coeB [(M1, a1), (M2, coeA i a1)] (i, refl) b1

and the resulting coercion term is

coeΣAB i (a1, b1) = (coeA i a1,
coeB [(M1, a1), (M2, coeA i a1)] (i, refl) b1).

whose functoriality follows from that of coeA and coeB .
Case 2.4. The case of Π A B is similar to the one of Σ A B

above, except that we need to use the backward direction of an
isomorphism to coerce A2 to A1 in order to coerce a function
f : (a1 : A1) → B1 to a function (a2 : A2) → B2:

coeΠAB i f = λ(a2 : A2).
coeB [σ] (i, refl) (f (coeA (invS i) a2))

where the substitution σ is [(M1, coeA (invS i) a2), (M2, a2)].
This definition is well typed because coeA is functorial, so

coeA i (coeA (invS i) a2) = a2

and thus (i, refl) is indeed an element of (S.A)
∼=[σ].

Case 2.5. For the case S ⊢ a = b : J, where S ⊢ A : J and
S ⊢ a, b : A, we need

M1,M2 : S ⊢ coea=b : S
∼=[M1,M2] → (a1 = b1) → (a2 = b2)

where ai and bi stand for a[Mi] and b[Mi] as usual. Given
i : S

∼=[M1,M2] and a1 = b1, we have coeA i a1 = coeA i b1,
and the inductive hypotheses give us

M1,M2 : S ⊢ coha i : (coeA i a1) = a2

M1,M2 : S ⊢ cohb i : (coeA i b1) = b2

Hence we have a2 = b2 as required.

Part 3. Finally, we need to verify that every term S ⊢ a : A
satisfies the coherence condition:

M1,M2 : S ⊢ coha : (i : S
∼=[M1,M2])

→ coeA i a[M1] = a[M2]

We omit the details here because it is relatively routine: for the
case where a is a variable in the S, the coherence is guaranteed
by the definition of (T, a : A)

∼= earlier in Case 1.2; the case
for other term formers follow from the inductive hypotheses
of subterms and the βη-equalities of the connectives.

Theorem 27. For every LCCC C and signature S, the
mappings F and D between diagrammatic and functorial
models from 21 and 22 extend to an equivalence:

F : S-MOD(C ) ∼= LCCC∼=(JDG S,C ) : D

where LCCC∼=(JDG S,C ) is the groupoid of (1) functors
JDG S → C that preserve locally cartesian closed structures
and (2) natural isomorphisms.

Proof sketch of Theorem 27. So far F and D are merely
functions between diagrammatic and functorial models, so
we first need to extend them to functors and then show that
they form an equivalence.

Part 1. Let us start with extending F to a functor. Let
m1,m2 : 1 → JSK be two diagrammatic models and
θ : 1 → J∫ S∼=K be an isomorphism between them. By
Definition 21, F (mi) : JDG S → C is the composite

JDG S [UC ]JSK [UC ]1 C ,G m∗
i ∼=

where G maps every S ⊢ A : J to its interpretation JAK :
JSK → UC , viewed as an object of the fiber category [UC ]JSK.
To define F (θ), it is sufficient to define a natural isomorphism
m∗

1G
∼= m∗

2G; by the definition of diagrammatic models, mi =
JMiK · θ, so it is furthermore sufficient to define a natural
isomorphism JM1K∗G ∼= JM2K∗G : JDG S → [UC ]J∫ S∼=K. The
situation is as follows:

J∫ S∼=K

JSK

1 JSK UC

JM2K

JAK=GA

θ

m2

m1 JAK=GA

JM1K

To define the required natural transformation at every
judgement S ⊢ A : J, we use the coerce morphism of the
judgement A from Lemma 24 in the uncurried form:

M1,M2 : S, i : S
∼=[M1,M2] ⊢ coeA : A[M1] → A[M2].

The interpretation of this morphism in PR C is a morphism

JcoeAK : JM1K∗JAK → JM2K∗JAK

in the fiber category [UC ]J∫ S∼=K that we are looking for. The
invertibility of this map follows from the invertibility invS of
S
∼= in Lemma 24.



Naturality of the family of morphisms defined above comes
from the coherence terms in Lemma 24: given a morphism
f : A → B in JDG S, it induces a term S ⊢ λf : A → B in
the LF. Now using the coherence cohλf from Lemma 24, we
have a commutative diagram in the category JDG(∫ S∼=):

A[M1] A[M2]

B[M1] B[M2]

coeA

f [M1] f [M2]

coeB

whose interpretation in [UC ]J∫ S∼=K is exactly the needed
naturality square.

Part 2. To extend D to a functor LCCC∼=(JDG S,C ) →
S-MOD(C ), given two LCC-functors N1, N2 : JDG S → C
and a natural isomorphism σ : N1

∼= N2, we would like to
define D(σ) : 1 → J∫ S∼=K in PR C that lies over D(N1) and
D(N2). Following the structure of the proofs of Lemma 22
and Lemma 24, we define D(σ) by induction on the structure
of standard signatures S, and maintain the invariant that the
coercion ∫ S∼= ⊢ coeA : A[M1] → A[M2] for every judgement
A is mapped by the functor F (D(σ)) : JDG(∫ S∼=) → C to
exactly the component of the natural isomorphism σA : N1A →
N2A at A, modulo the isomorphisms NiA ∼= F (D(Ni)) in
Lemma 22. There is no need to impose any invariant for
the coherence terms coha in this proof, since in LCCCs two
morphisms can be equal in at most one way. This is a rather
tedious inductive proof so we only provide a sketch here.

Case 2.1. The case for the empty signature is trivial, as
F (σ) is unique.

Case 2.2. For S = (T, a : A) where T ⊢ A : J, according
to Case 1.2 of the proof of Lemma 24, we need a global
element of the interpretation of the type

Σ(i : T
∼=[M1.T,M2.T ]).

coeA[M1.T,M2.T ] i M1.a = M2.a.

The first component is obtained from the induction hypothesis
for the signature T , and the second component is obtained
from the invariant that coercion morphisms are interpreted as
the components of the natural isomorphism.

Case 2.3. For S = (T,B : A → J) where T ⊢ A : J, by
Case 1.3 of the proof of Lemma 24, we need a global element
of the interpretation of the type

Σ(i : T
∼=[M1.T,M2.T ]). (10)

(a1 : A1) → (B1 a1 ∼= B2 (coeA i a1)).

The first component is still obtained by induction, and the
second component is obtained from the component of σ :
N1 → N2 at the judgement Σ A B.

We also need to check that all judgements in a signature S
maintain our invariant that the coercion map coeA is interpreted
as the component σA. This is again shown by induction on the
structure of (standard) judgements, mimicking the structure of
the definition of coeA.

Case 2.a. The case for S ⊢ B a : J for some variable
(B : A → J) ∈ S follows from the fact that coercion for this

case is defined in Case 2.1 of the proof of Lemma 24 to be
invoking the forward direction of the second component of
(10), which we have defined to be a component of σ.

Case 2.b. The case for the unit type is trivial. The cases for
Σ and Γ types uses the fact that N1 and N2 preserve LCCC
structures and σ is natural, so its components at Σ-types and
Π-types behave the same as how the coercion maps of Σ-types
and Π-types are defined in the proof of Lemma 24.

Case 2.c. The case for equality types is also trivial, because
the interpretation of extensional equality types in LCCCs have
at most one element.

Part 3. Next we show that F and D form a pair of
equivalence of groupoids. First recall that in Lemma 22, we
have already a family of isomorphisms M ∼= F (D(M)) for all
M : JDG S → C . If we examine the proof of Lemma 22,
we can notice that every component of the isomorphism
M ∼= F (D(M)) is defined using the unique morphism into
some construct with a universal property. Thus the family of
isomorphisms M ∼= F (D(M)) is necessarily natural in M .

It remains to construct a family of isomorphisms m ∼=
D(F (m)), natural in m ∈ S-MOD(C ), for all signatures
S. Again, this is constructed by induction on the structure
of standard signatures S, with the additional invariant that
the natural isomorphism F (D(F (m))) ∼= F (m) constructed
in Lemma 22 coincides with the interpretation of coercion
morphisms coeA in C for every judgement S ⊢ A : J. We will
only provide a sketch here.

Case 3.1. For the empty signature, m ∼= D(F (m)) trivially
holds because there is a unique diagrammatic model and there
is a unique isomorphism.

Case 3.2. For the signature S = (T, a : A) where T ⊢ A : J,
by Case 1.2 of Lemma 24, (M1,M2 : S ⊢ ∫ S∼= : J) is

Σ(i : T
∼=[M1.T,M2.T ]).(

coeA[M1.T,M2.T ] i M1.a = M2.a
)
.

We need to construct a global element of J∫ S∼=K that lies over
m and D(F (m)). The first component (i : T∼=[M1.T,M2.T ])
can be obtained by the inductive hypothesis for the signature T .
The second component coeA[M1.T,M2.T ] i M1.a = M2.a
follows from the additional invariant that the interpretation
of coeA coincides with the isomorphism F (D(F (m)))(A) →
F (m)(A) in Lemma 22, which was used to define the (a : A)
component of D(F (m)) in Case 1.2 of Lemma 22.

Case 3.3. For the signature S = (T,B : A → J) where
T ⊢ A : J, by Case 1.3 of Lemma 24, (M1,M2 : S ⊢ ∫ S∼= : J)
is the judgement

Σ(i : T
∼=[M1.T,M2.T ]).

(a1 : A1) → (B1 a1 ∼= B2 (coeA i a1)).

The first component is still obtained by induction. To construct
the second component, we recall that Case 1.3 of the proof
of Lemma 22 defines the component B : A → J of the
diagrammatic model D(F (m)) to be a code of

F (m)(π1) : F (m)(Σ A B) → F (m)(A) (11)



in the universe p : ŨC → UC . By the definition of F (m),
the B component of m is the classifying map of a morphism
isomorphic to (11) in PR C /F (m)(A), so we have the required
(a1 : A1) → B1 a1 ∼= B2 (coeA i a1).


	Introduction
	Presentations of Locally Cartesian Closed Categories
	Contributions
	Related Work
	Outline

	Syntax of the Logical Framework
	Functorial Semantics of Signatures
	CwFs with the LF Connectives
	Categories of Judgements and Functorial Models

	Diagrammatic Semantics of Signatures
	Universes in Categories
	Diagrammatic Models
	From Functorial Models to Diagrammatic Models

	Equivalence of Two Notions of Models
	Discussion
	Appendix A: Proofs Omitted in the Main Text

