
208

Modular Models of Monoids with Operations
ZHIXUAN YANG, Imperial College London, United Kingdom

NICOLAS WU, Imperial College London, United Kingdom

Inspired by algebraic effects and the principle of notions of computations as monoids, we study a categorical

framework for equational theories and models of monoids equipped with operations. The framework covers

not only algebraic operations but also scoped and variable-binding operations. Appealingly, in this framework

both theories and models can be modularly composed. Technically, a general monoid-theory correspondence

is shown, saying that the category of theories of algebraic operations is equivalent to the category of monoids.

Moreover, more complex forms of operations can be coreflected into algebraic operations, in a way that

preserves initial algebras. On models, we introduce modular models of a theory, which can interpret abstract

syntax in the presence of other operations. We show constructions of modular models (i) from monoid

transformers, (ii) from free algebras, (iii) by composition, and (iv) in symmetric monoidal categories.

CCS Concepts: • Theory of computation→ Categorical semantics; Denotational semantics; Algebraic
semantics; Equational logic and rewriting; Program constructs.

Additional Key Words and Phrases: equational systems, Σ-monoids, effects, modularity, monad transformers

ACM Reference Format:
Zhixuan Yang and Nicolas Wu. 2023. Modular Models of Monoids with Operations. Proc. ACM Program. Lang.

7, ICFP, Article 208 (August 2023), 39 pages. https://doi.org/10.1145/3607850

1 INTRODUCTION
In his seminal work, Moggi [1989a,b, 1991] pioneered modelling notions of computation, which are

now more commonly referred to as computational effects, using monads and monad transformers.

The understanding of this approach is later deepened by Plotkin and Power [2001, 2002, 2004], who

characterise many monads that model computational effects as arising from equational theories of

some primitive effectful operations and equational laws characterising their interaction.

Later, variations of monads are proposed to model more forms of computational effects, including

arrows [Hughes 2000; Jacobs et al. 2009], applicative functors [Mcbride and Paterson 2008; Paterson

2012], parameterised monads [Atkey 2009], graded monads [Katsumata 2014]. All these notions can

be unified in the framework ofmonoids in monoidal categories, leading up to the principle of notions

of computation as monoids [Pieters et al. 2020; Rivas and Jaskelioff 2017].

These ideas from denotational semantics are quickly adopted by the functional programming

community as an abstraction for effectful programming [Filinski 1994; Wadler 1995]. Many refine-

ments have been proposed for making programming with effects moremodular. A fundamental idea

is to separate syntax from semantics, so syntactic effectful programs can be written without resorting

to a specific semantics, and (possibly many kinds of) semantics can be given later. Building on this,

there are further two kinds of modularity that are both desirable but are sometimes conflated:

Authors’ addresses: Zhixuan Yang, s.yang20@imperial.ac.uk, Department of Computing, Imperial College London, United

Kingdom; Nicolas Wu, n.wu@imperial.ac.uk, Department of Computing, Imperial College London, United Kingdom.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART208

https://doi.org/10.1145/3607850

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0001-5573-3357
HTTPS://ORCID.ORG/0000-0002-4161-985X
https://doi.org/10.1145/3607850
https://orcid.org/0000-0001-5573-3357
https://orcid.org/0000-0002-4161-985X
https://doi.org/10.1145/3607850

208:2 Zhixuan Yang and Nicolas Wu

Syntactic modularity is where the syntactic specification of two languages Σ1 and Σ2 can be

combined into a larger language Σ1 +syn Σ2.

Semantic modularity is where semantic models 𝑀1 and 𝑀2 for the sub-languages can be

combined into a model𝑀1 +sem 𝑀2 of the larger language Σ1 +syn Σ2.

In terms of this classification, free monads and their variants provide syntactic modularity

[Kiselyov and Ishii 2015; Swierstra 2008; Voigtländer 2008]. Type classes of monads with operations

[Liang et al. 1995] in Haskell [Gill and Kmett 2012] also achieve syntactic modularity.

On the other hand,monad transformers [Moggi 1989a], layered monads [Filinski 1999], combining

monads by coproducts [Ghani and Uustalu 2004], and the work by Jaskelioff and Moggi [2010] on

lifting operations through monad transformers are about semantic modularity.

Effect Handlers. Notably, effect handlers, introduced by Plotkin and Pretnar [2013] and further

developed by many people, achieve both kinds of modularity, which explains their quick adoption.

In this approach, effectful operations are described by an algebraic theory (sometimes without

any equations), whose free-algebra monad is used as the monad for effectful computations. Effect

handlers are (not necessarily free) algebras of this theory, so they can ‘handle’ effectful computations,

i.e. the free algebra, using the unique homomorphism out of the free algebra. Algebraic theories

and handlers are both composable so syntactic and semantic modularity are both achieved.

However, effectful operations in this framework necessarily fall into a kind of effectful operation

known as algebraic operations [Plotkin and Power 2003]. An algebraic operation on a monad

𝑀 : C → C is a natural transformation 𝛼 : 𝐴 ◦𝑀 → 𝑀 for an endofunctor 𝐴 : C → C , typically

a polynomial functor, such that it is compatible with monad multiplication:

𝜇𝑀 · (𝛼 ◦𝑀) = 𝛼 · (𝐴 ◦ 𝜇𝑀) : 𝐴 ◦𝑀 ◦𝑀 → 𝑀.

This intuitively says that the operation 𝛼 commutes with sequential composition of computations.

Not all effectful operations have this property though: for example, exception catching in Haskell

catch :: IO a→ (Exc → IO a) → IO a does not satisfy (catch p h) >>= k = catch (p >>= k) (h >=> k)
since the left-hand side only catches the exception in p while the right-hand side catches the

exception in p and k. Such non-algebraic operations can be programmed as handlers [Plotkin and

Pretnar 2013], but they do not have the benefit of (syntactic or semantic) modularity, since as

handlers they themselves cannot be modularly handled [Wu et al. 2014; Yang et al. 2022].

A line of research seeks to lift the expressivity of effect handlers [Bach Poulsen and van der Rest

2023; Piróg et al. 2018; Wu et al. 2014; Yang et al. 2022] by considering signatures/theories of broader

ranges of operations and their models. The leading example is scoped operations considered by

Piróg et al. [2018], which are operations on monads𝑀 of the following form for some 𝐴 : C → C :

𝑠 :

∫ 𝑋 ∈C
𝐴(𝑀𝑋) × (𝑀−)𝑋 � 𝐴 ◦𝑀 ◦𝑀 → 𝑀, (1)

where the isomorphism is by the co-Yoneda lemma. Typically, the functor 𝐴 is (−)𝑛 for some

natural number 𝑛. The intuition is that 𝑠 is an operation delimiting 𝑛 scopes: the coend ∫𝑋 is like

an existential type ∃𝑋 , and 𝐴(𝑀𝑋) = (𝑀𝑋)𝑛 is the computation inside the scopes, returning some

type 𝑋 , and (𝑀−)𝑋 is the computation after these scopes. For example, the operation of exception

catching delimits two scopes, one for ‘try’ and the other for ‘catch’, so 𝐴 = (−)2 � (− × −).
However, existing work in this direction only considers syntactic modularity (with the exception

[Wu et al. 2014]). The root of the difficulty with semantic modularity is that only algebraic operations

have a canonical lifting along a monad morphism: given a monad morphism 𝑓 : 𝑀 → 𝑁 and an

algebraic operation 𝛼 : 𝐴 ◦𝑀 → 𝑀 on𝑀 , there is a unique algebraic operation 𝛼 : 𝐴 ◦ 𝑁 → 𝑁 :

𝛼 = (𝐴 ◦ 𝑁 𝐴 ◦𝑀 ◦ 𝑁 𝑀 ◦ 𝑁 𝑁 ◦ 𝑁 𝑁
𝐴◦𝜂𝑀◦𝑁 𝛼◦𝑁 𝜇𝑀𝑓 ◦𝑁) (2)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:3

making 𝑓 : 𝑀 → 𝑁 an algebra homomorphism from 𝛼 to 𝛼 . In contrast, if the operation takes the

form (1) or more generally the form 𝛼 : Σ𝑀 → 𝑀 for a functor Σ : Endo(C) → Endo(C), we do
not have a formula to define a meaningful 𝛼 : Σ𝑁 → 𝑁 from 𝑓 : 𝑀 → 𝑁 and 𝛼 : Σ𝑀 → 𝑀 .

Overview. Motivated by the lack of semantic modularity in existing frameworks, the present paper

has two aims/parts: the first one is to develop a unifying account of equational theories of (algebraic

and non-algebraic) effectful operations; the second one is to develop a framework ofmodular models

that provide semantic modularity for non-algebraic operations. These two parts together achieve

both modularities in the style of effect handlers, but for a wider range of operations.

The main definition of the first part (§2–4) is monoidal theory families, which are categories of

equational theories of monoids with operations, such that the family is closed under coproducts,

and every theory in the family admits free algebras. Examples include the family of algebraic

operations, and the family of scoped operations, and the family of variable-binding operations.

Syntactic modularity is achieved by the coproduct of equational theories.

The main definition of the second part (§5–6) is modular models 𝑀 of some theory ¥Ψ in a theory

family F . Every𝑀 is basically a family of functors ¥Σ-Alg→ (¥Σ + ¥Ψ)-Alg (oplax-) natural in ¥Σ ∈ F
sending algebras of the theory ¥Σ to algebras of ¥Σ + ¥Ψ. In plain words, a modular model sends

monoids with operations to monoids with more operations, so semantic modularity is built into the

definition of modular models. Then the question becomes how to construct modular models, for

which we show several constructions and examples in §6.

Example. We sketch a small concrete example here to demonstrate the ideas. Let E be the monoidal

category ⟨Endo𝑓 (Set), ◦, Id⟩ of finitary endofunctors on sets. The equational theory Ec of monads

𝑀 with exception catching has two additional operations besides those of monads:

throw : 1→ 𝑀 and catch : (Id × Id) ◦𝑀 ◦𝑀 � (𝑀 ×𝑀) ◦𝑀 → 𝑀,

and for now let us ignore equations on these operations. The operation throw is for throwing an

exception. The operation catch is for catching an exception in a scope and handling it, which is an

instance of (1) with𝐴 = Id× Id. As we briefly mentioned earlier, the product𝑀 ×𝑀 in the signature

of catch is a pair of computations, one for the program 𝑝 whose exceptions are caught, the other

one for the program ℎ handling the exception; the ◦𝑀 after𝑀 ×𝑀 in the signature of catch is an

explicit continuation argument 𝑘 . Thus catch (⟨𝑝, ℎ ⟩, 𝑘) is understood as handling the exception in

𝑝 using ℎ, and then continues as 𝑘 . The explicit continuation is exactly the trick to workaround the

limitation of algebraic operations (we will say more about it in §4).

All theories of monads with some scoped operations are collected as a category SCP(E), which
we call the monoidal theory family of scoped operations over E , whose arrows are translations of

theories. The category SCP(E) has finite coproducts by taking the coproduct of the signatures and

equations. Moreover, each theory in SCP(E) has free algebras, in particular initial algebras. For

example, the initial algebra of Ec is the initial one among all monads with throw and catch. The

carrier of the initial algebra 𝜇Ec : Set→ Set can be characterised as the initial solution to

𝑋 � Id + 1 + (𝑋 × 𝑋) ◦ 𝑋 ∈ Endo𝑓 (Set).
The monad 𝜇Ec models syntactic programs with exception throwing and catching.

A (strict) modular model of the theory Ec is a family of functors 𝑀 ¥Σ : ¥Σ-Alg → (¥Σ + Ec)-Alg,
natural in ¥Σ ∈ SCP(E). Here (−)-Alg is the functor SCP(E) → CAT sending each theory to

the category of its models. One possible modular model of Ec is to send every ¥Σ-algebra carried
by 𝐴 to 𝐴 ◦ (1 + Id) equipped with operations in ¥Σ and Ec. In the same way that there may be

many handlers of the same algebraic operation, we also have choices over how catch and throw

act on 𝐴 ◦ (1 + Id). Besides the ‘standard’ semantics (detailed in Example 6.3), we may also have

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:4 Zhixuan Yang and Nicolas Wu

non-standard semantics such as re-trying the program after the handling program is executed, or

the semantics that the exceptions thrown by the handling program are recursively handled.

The benefit of a modular model 𝑀 of Ec over an ordinary model of Ec is that 𝑀 allows us to

interpret syntactic programs 𝜇 (¥Σ + Ec) involving throwing and catching mixed with any other

operations ¥Σ in SCP(E). By the initiality of 𝜇 (¥Σ + Ec), there is an algebra homomorphism:

ℎ : 𝜇 (¥Σ + Ec) → 𝑀 ¥Σ (𝜇 ¥Σ) in (¥Σ + Ec)-Alg,
which interprets Ec but leaves ¥Σ-operations uninterpreted. In this way, we achieve syntactic and

semantic modularity in the style of effect handlers, but for the non-algebraic operation catch.

Paper Organisation. In §2, we review monoidal categories and a metalanguage for them. In §3,

we recap Fiore and Hur [2009]’s equational systems and define functorial translations between them,

making them a category, and show some constructions of colimits in this category. In §4, we define

monoidal theory families and study the connections between some notable examples. In §5, we

introduce modular models of a theory and show how they can be used for interpreting syntax. In

§6, we show general constructions and examples of modular models.

Along these lines, we make the following contributions:

(1) We show in §3 a syntactic way to present Fiore and Hur [2009]’s equational systems, based

on a metalanguage for monoidal categories by Jaskelioff and Moggi [2010].

(2) We introduce in §3.4 functorial translations between equational systems, and we show that a

subcategory of equational systems is cocomplete, allowing equational systems to be modularly

composed, and every functorial translation has a left adjoint, producing ‘relative free algebras’.

(3) We show a general monoid-theory correspondence (Theorem 4.3)—under certain conditions

on the monoidal category E , the theory family ALG(E) of monoids with algebraic operations is

equivalent to the category Mon(E) of monoids in E , generalising the classical correspondence

between presentations of finitary algebraic theories and finitary monads.

(4) We show that the theory family ALG(E) is a coreflective subcategory of the family of all

theories with cocontinuous signatures and contexts, and the coreflection preserves initial algebras

(Theorem 4.4). This means that algebraic operations are enough for modelling abstract syntax.

(5) We show several general constructions and examples of modular models: modular models

of algebraic or scoped operations can be obtained from monoid transformers (§6.1) based on

results by Jaskelioff and Moggi [2010]; free modular models can be obtained from relative free

algebras; modular models can be composed; modular models in symmetric monoidal categories can

be obtained from ordinary models in two different ways, dependent and independent combinations

(§6.4); phased computation can be taken as a modular model.

2 MONOIDS, MONOIDAL CATEGORIES, AND A METALANGUAGE
To put our work in context, we first review the concept of monoids in monoidal categories and some

examples that are relevant in the treatment of computational effects (§2.1). We then introduce a

metalanguage for monoidal categories, adapted from Jaskelioff and Moggi [2010], which we will use

in later sections for describing constructions in monoidal categories conveniently (§2.2).

2.1 Notions of Computation as Monoids in Monoidal Categories
A monoidal category is a category E equipped with a functor □ : E × E → E , called the monoidal

product, an object 𝐼 ∈ E , called the monoidal unit, and three natural isomorphisms

𝛼𝐴,𝐵,𝐶 : 𝐴 □ (𝐵 □𝐶) � (𝐴 □ 𝐵) □𝐶, 𝜆𝐴 : 𝐼 □𝐴 � 𝐴, 𝜌𝐴 : 𝐴 □ 𝐼 � 𝐴

satisfying some coherence axioms [Mac Lane 1998, §VII.1]. A monoidal category is (right) closed if

all functors − □𝐴 have right adjoints −/𝐴 : E → E .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:5

A monoid ⟨𝑀, 𝜇, 𝜂 ⟩ in a monoidal category E is an object𝑀 ∈ E equipped with two morphisms:

a multiplication 𝜇 : 𝑀 □𝑀 → 𝑀 and a unit 𝜂 : 𝐼 → 𝑀 making the following diagrams commute:

(𝑀 □𝑀) □𝑀 𝑀 □ (𝑀 □𝑀)

𝑀 □𝑀 𝑀 𝑀 □𝑀

𝜇□𝑀

𝜇

𝛼𝑀,𝑀,𝑀

𝑀□𝜇

𝜇

𝐼 □𝑀 𝑀 𝑀 □ 𝐼

𝑀 □𝑀 𝑀 𝑀 □𝑀

𝜌−1

𝑀

𝑀□𝜂

𝜇

𝜆−1

𝑀

𝜂□𝑀

𝜇

(3)

Below we review several examples of monoidal categories, in which monoids model different

flavours of notions of computations, and will serve as the main application of the theory developed

in this paper. Should any of the examples be unfamiliar to the reader, they can be glossed over.

Monads. The category Endo(C) of endofunctors C → C on a category C can be turned into a

monoidal category by equipping it with functor composition 𝐹 ◦𝐺 as the monoidal product and

the identity functor Id : C → C as the unit. Monoids in this category are called monads on C , and

they are used to model computational effects, also called notions of computation, in programming

languages [Moggi 1989b, 1991], where the unit 𝜂 : Id→ 𝑀 is understood as embedding pure values

into computations, and the multiplication 𝜇 : 𝑀 ◦𝑀 → 𝑀 is understood as flattening computations

of computations into computations by sequentially executing them. The understanding of 𝜇 as

sequential composition is better exhibited by the following co-Yoneda isomorphism:

(𝐹 ◦𝐺)𝐴 = 𝐹 (𝐺𝐴) �
∫ 𝑋 ∈C ∐

C (𝑋,𝐺𝐴) 𝐹𝑋

where

∫ 𝑋
denotes a coend and

∐
C (𝑋,𝐺𝐴) denotes aC (𝑋,𝐺𝐴)-fold coproduct. The informal reading

of the coend is that 𝐹𝑋 is the first computation, returning a value of type 𝑋 , and the second

computation is determined by the result of 𝐹𝑋 , given as a function 𝑋 → 𝐺𝐴. So 𝜇 : 𝑀 ◦𝑀 → 𝑀 is

sequential composition of two computations in which the second is determined by the first one.

However, the category Endo(C) is usually not as well behaved as we would like for doing

algebraic theories in it, even when C itself is a very nice category such as Set. In particular,

Endo(Set) is not closed with respect to either cartesian products or functor composition; and some

objects in Endo(Set), such as the continuation monad 𝑅 (𝑅
−)
, do not have free monoids over them.

These will be problematic when considering algebraic theories on Endo(C). Fortunately, these
problems can be rectified by restricting to the subcategory of finitary endofunctors.

Finitary Monads. An endofunctor 𝐹 ∈ Endo(Set) is called finitary if it preserves filtered colimits.

A useful characterisation of finitariness is that we lose no information if we restrict 𝐹 to finite sets.

Precisely, 𝐹 is finitary exactly when we first restrict 𝐹 as 𝐹 ◦𝑉 : Fin→ Set on the full subcategory

of finite sets, where 𝑉 : Fin→ Set is the inclusion functor, and then take the left Kan extension of

𝐹 ◦𝑉 along 𝑉 , the resulting functor is still isomorphic to 𝐹 . In other words, we have the following

equivalence, where Endo𝑓 (Set) ⊆ Endo(Set) denotes the full subcategory of finitary endofunctors:

Endo𝑓 (Set) SetFin
−◦𝑉

Lan𝑉 −
� (4)

The category Endo𝑓 (Set) inherits the monoidal structure ⟨◦, Id⟩ of Endo(Set). What is new is that

the monoidal structure is closed, and functor composition in Endo𝑓 (Set) is itself a finitary functor.

These conditions suffice to guarantee that every object in Endo𝑓 (Set) has free monoids.

Monoids in Endo𝑓 (Set) are called finitary monads on Set, and they are known to be equivalent

to (finitary) Lawvere theories [Lawvere 1963; Linton 1966] and abstract clones [Cohn 1981].

Apart frommodelling computational effects, a related but slightly different application of monoids

in Endo𝑓 (Set), or equivalently SetFin, is modelling abstract syntax with variable binding [Fiore et al.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:6 Zhixuan Yang and Nicolas Wu

1999; Fiore and Szamozvancev 2022]. In this case, a monoid𝑀 ∈ SetFin is understood as a variable

set of terms indexed by the number of variables in the context. Under the equivalence (4), the

monoidal structure ⟨◦, Id⟩ of Endo𝑓 (Set) is equivalent to ⟨•,𝑉 ⟩ on SetFin where

𝑉𝑛 = 𝑛 and (𝐹 •𝐺)𝑛 =
∫ 𝑚∈Fin (𝐹𝑚) × (𝐺𝑛)𝑚 . (5)

The monoid unit 𝑉 → 𝑀 is then embedding variables as𝑀-terms, and the monoid multiplication

𝑀 •𝑀 → 𝑀 is simultaneous substitution of terms for variables. Moreover, the right adjoint −/𝐺 to

− •𝐺 is given by the end formula: (𝐹/𝐺)𝑛 =
∫
𝑚∈Fin

∏
Set(𝑛,𝐺𝑚) 𝐹𝑚.

Yet another interesting reading of monoids of ⟨•,𝑉 ⟩ due to Fiore and Staton [2014] is computa-

tions supporting (i) binding a piece of code to a code pointer and (ii) jumping to a code pointer.

Based on this reading, the monoidal category ⟨SetFin, •,𝑉 ⟩ provides an adequate denotational

semantics of a calculus of substitution/jumps, on which algebraic effects can be encoded.

Sometimes the semantics of a programming language must be given in a category other than Set.
Thus it is useful to generalise Endo𝑓 (Set) � SetFin: we can replace Setwith any locally 𝜅-presentable
(l𝜅p) category C for a regular cardinal 𝜅, Fin with the subcategory C𝜅 of 𝜅-presentable objects in
C , and finitary functors with 𝜅-accessible functors Endo𝜅 (C) [Adámek and Rosicky 1994]. This

results in a cocomplete closed monoidal category ⟨Endo𝜅 (C), ◦, Id⟩, on which ◦ is 𝜅-accessible.
Examples of l𝜅p categories include presheaf categories SetD for small categories D and 𝜅 = ℵ0, the

category Cat of small categories for 𝜅 = ℵ0, and the category 𝜔Cpo of 𝜔-complete partial orders

for 𝜅 = ℵ1. The category of 𝜔Cpo is particularly relevant to us since it can be used for modelling

languages with recursion. Moreover, when C is l𝜅p, it is automatically l𝜆p for any 𝜆 > 𝜅.

Locally𝜅-presentable categories provide a nice setting for doing algebraic theories and are general

enough for various applications in programming languages. In this paper we use l𝜅p categories as

a condition to ensure the existence of free monoids with operations, but readers unfamiliar with

them may think with the special case C = Set whenever l𝜅p categories are mentioned.

Cartesian Monoids. Every cartesian category C , i.e. a category with finite products, can be

equipped with the binary product × as the monoidal product and the terminal object 1 ∈ C as the

monoidal unit. When C has all exponentials 𝐵𝐴, C is then a cartesian closed category. Particularly,

the category Set of sets is a closed monoidal category in this way. Monoids in Set are precisely the

usual notion of monoids in algebra, such as the set of lists with concatenation and empty list.

The category Endo𝜅 (C) is also cartesian closed whenever C is l𝜅p and cartesian closed. The

cartesian unit and product in Endo𝜅 (C) are defined pointwise: 1𝑛 = 1C and (𝐹 ×𝐺)𝑛 = 𝐹𝑛 ×𝐺𝑛.
A computational interpretation of cartesian monoids in Endo𝜅 (C) is that they model notions of

independent computations: the cartesian product 𝑀 ×𝑀 → 𝑀 composes two computations that

have no dependency and return the same type of values, whereas monad multiplication𝑀 ◦𝑀 → 𝑀

composes a computation with another that depends on the result of the former.

Applicatives. Between the two extremes of 𝑀 ◦ 𝑀 and 𝑀 × 𝑀 , there are monoidal structures

on Endo𝜅 (C) that allow computations to have restricted dependency. One of them is the Day

convolution induced by cartesian products [Day 1970]: the Day monoidal structure on Endo𝜅 (Set)
has as unit the identity functor, and the monoidal product is given by the following coend formula:

(𝐹 ★𝐺)𝑛 =
∫ 𝑚,𝑘∈Set𝜅×Set𝜅

𝐹𝑚 ×𝐺𝑘 × 𝑛𝑚×𝑘 . (6)

Informally, the Day convolution 𝐹 ★ 𝐺 models two computations 𝐹𝑛 and 𝐺𝑚 that are almost

independent except that their return values are combined by a pure function 𝑛𝑚×𝑘 . This structure
is symmetric and closed, with the right adjoint to −★𝐺 given by 𝐺 −−★ 𝐹 =

∫
𝑛∈Set𝜅

(𝐹 (− × 𝑛))𝐺𝑛 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:7

Monoids for ⟨★, Id⟩ are called applicative functors or simply applicatives [Mcbride and Paterson

2008; Paterson 2012]. A practical application of them is in build systems [Mokhov et al. 2018], since

usually the result of a building task does not affect what the next building task is.

Strong Monads. The multiplication 𝜇 : 𝑀 ◦ 𝑀 → 𝑀 of a monad 𝑀 : C → C allows one to

compose two effectful computations 𝑓 : 𝐴→ 𝑀𝐵 and 𝑔 : 𝐵 → 𝑀𝐶 sequentially:

𝐴
𝑓
−−→ 𝑀𝐵

𝑀𝑔
−−→ 𝑀 (𝑀𝐶)

𝜇𝐶−−→ 𝑀𝐶.

However, to give semantics to programming languages with non-linear variable contexts, what we

need is slightly stronger: for all objects Γ ∈ C (thought of as variable contexts) and pairs of arrows

𝑓 : Γ ×𝐴→ 𝑀𝐵 and 𝑔 : Γ × 𝐵 → 𝑀𝐶 (two computations under the context Γ), we would like to

have an arrow Γ ×𝐴→ 𝑀𝐶 . The structure of monads ⟨𝑀, 𝜇, 𝜂 ⟩ is not sufficient for doing this; we

need additionally a natural transformation 𝑠Γ,𝐵 : Γ ×𝑀𝐵 → 𝑀 (Γ × 𝐵), giving rise to the composite

Γ ×𝐴
⟨ 𝜋1, 𝑓 ⟩−−−−−→ Γ ×𝑀𝐵

𝑠Γ,𝐵−−−→ 𝑀 (Γ × 𝐵)
𝑀𝑔
−−→ 𝑀 (𝑀𝐶)

𝜇𝐶−−→ 𝑀𝐶.

To make this way of composing effectful computations associative and the pure computation

(𝜂𝐴 · 𝜋2) : Γ ×𝐴→ 𝑀𝐴 an identity, the natural transformation 𝑠 must satisfy certain coherence

conditions (see [Moggi 1991, Definition 3.2]). The natural transformation 𝑠 is called a strength for

the monad𝑀 , and the tuple ⟨𝑀, 𝜇, 𝜂, 𝑠 ⟩ is called a strong monad.

Strong monads are monoids in the monoidal category of strong endofunctors and composition.

A strong endofunctor ⟨𝐹, 𝑠 ⟩ on a category C with finite products is a functor 𝐹 : C → C with a

natural transformation 𝑠Γ,𝐵 : Γ × 𝐹𝐵 → 𝐹 (Γ × 𝐵) making the following diagrams commute:

1 × 𝐹𝐵 (Γ′ × Γ) × 𝐹𝐵 Γ′ × (Γ × 𝐹𝐵) Γ′ × 𝐹 (Γ × 𝐵)

𝐹 (1 × 𝐵) 𝐹𝐵 𝐹 ((Γ′ × Γ) × 𝐵) 𝐹 (Γ′ × (Γ × 𝐵))
𝑠1,𝐵

𝜆𝐹𝐵

𝐹𝜆𝐵

𝑠Γ′×Γ,𝐵

𝛼Γ′,Γ,𝐹𝐵

𝐹𝛼Γ′,Γ,𝐵

Γ′×𝑠Γ,𝐵

𝑠Γ′,Γ×𝐵 (7)

where 𝜆 and 𝛼 are the left unitor and associator for the cartesian monoidal structure ⟨×, 1⟩ on C .

Moreover, strong natural transformations between strong functors ⟨𝐹, 𝑠𝐹 ⟩ and ⟨𝐺, 𝑠𝐺 ⟩ are natural
transformations 𝜏 : 𝐹 → 𝐺 such that 𝑠𝐺Γ,𝐵 · (Γ × 𝜏𝐵) = 𝜏Γ×𝐵 · 𝑠

𝐹
Γ,𝐵 : Γ × 𝐹𝐵 → 𝐺 (Γ × 𝐵). Strong

endofunctors on C and strong natural transformations can be collected into a category Endo𝑠 (C).
The category Endo𝑠 (C) has a monoidal structure ⟨◦𝑠 , Id𝑠 ⟩: Id𝑠 is the identity functor equipped

with the identity strength, and ◦𝑠 is the composition of strong functors:

⟨𝐹, 𝑠𝐺 ⟩ ◦𝑠 ⟨𝐺, 𝑠𝐹 ⟩ = ⟨𝐹 ◦𝐺, (𝐹𝑠𝐺Γ,𝐵 · 𝑠
𝐹
Γ,𝐺𝐵)Γ,𝐵∈C ⟩.

Strong monads on C are precisely monoids in the monoidal category ⟨Endo𝑠 (C), ◦𝑠 , Id𝑠 ⟩. When

C is cartesian closed, strong functors/natural transformation are the same thing as C -enriched

functors/natural transformations [Kock 1972; McDermott and Uustalu 2022b].

Similar to the setting of 𝜅-accessible monads, it is beneficial to restrict the category Endo𝑠 (C)
when considering algebraic theories over it: we denote by Endo𝑠𝜅 (C) the full subcategory of

Endo𝑠 (C) that contains strong functors whose underlying functors are 𝜅-accessible. When C is

l𝜅p as a cartesian closed category, which means that C is l𝜅p and cartesian closed, and that the

𝜅-presentable objects of C are closed under finite products, the category Endo𝑠𝜅 (C) is also l𝜅p

and has a closed monoidal structure of functor composition and the identity functor. The primary

non-trivial example of such setting is C = 𝜔Cpo for modelling programming languages with

general recursion. We refer the reader to Kelly and Power [1993, §4] and Kelly [1982] for details.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:8 Zhixuan Yang and Nicolas Wu

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

𝑓 : 𝐴→ 𝐵 ∈ Pr Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑓 (𝑡) : 𝐵 ⊢ ∗ : I

Γ1 ⊢ 𝑡1 : 𝐴 Γ2 ⊢ 𝑡2 : 𝐵

Γ1, Γ2 ⊢ (𝑡1, 𝑡2) : 𝐴 □ 𝐵

Γ ⊢ 𝑡1 : I Γ𝑙 , Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ let ∗ = 𝑡1 in 𝑡2 : 𝐴

Γ ⊢ 𝑡1 : 𝐴1 □𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2 : 𝐵

Fig. 1. Well typed terms for the metalanguage.

Graded Monads. A generalisation of monads is to index the monad with some grades that track

quantitative information about the effects performed by a computation [Katsumata 2014; Katsumata

et al. 2022; McDermott and Uustalu 2022a]. For example, the grades can be a set of operations that

a computation may invoke, or it can be the number of nondeterministic choices that a computation

makes. Precisely, let ⟨G, ·, 1⟩ be any small strict monoidal category, whose objects are called grades.

A finitary G-graded monad [Kura 2020] is a functor𝑀 : G→ Endo𝑓 (Set) equipped with

𝜂 : Id→ 𝑀1 𝜇𝑎,𝑏 : (𝑀𝑎) ◦ (𝑀𝑏) → 𝑀 (𝑎 · 𝑏) for all 𝑎, 𝑏 ∈ G (8)

satisfying laws similar to those of monads. For example, for tracking operations performed by a

computation,G can be the poset of sets of operation names, ordered by inclusion, with the monoidal

structure 1 = ∅ and 𝑎 · 𝑏 = 𝑎 ∪𝑏. And for tracking the number of nondeterministic choices made by

a computation, G can be the poset ⟨N,⩽⟩ with monoidal structure ⟨0, +⟩.
Finitary graded monads are equivalent to monoids in the functor category Endo𝑓 (Set)G equipped

with the following variation of the Day tensor product:

𝐼 =
∐
G(1,−) Id 𝐹 ★𝐺 =

∫ 𝑎,𝑏∈G∐
G(𝑎 ·𝑏,−) (𝐹𝑎 ◦𝐺𝑏). (9)

The equivalence between finitary graded monads (8) and monoids for the monoidal structure (9)

can be calculated using (co)end calculus [Loregian 2021].

2.2 A Metalanguage for Monoidal Categories
When the monoidal category gets complex, commutative diagrams like those in (3) can be unwieldy,

we will use a typed calculus introduced by Jaskelioff and Moggi [2010] as a metalanguage to

denote constructions in monoidal categories, in the same way that 𝜆-calculus can be used to denote

constructions in cartesian closed categories. The use of the calculus not only provides a convenient

syntax, but also provides useful intuition as if we were working in the category of sets.

Types and Terms. A metalanguage for monoidal categories L = ⟨Ba, Pr,Ax⟩ is specified by three

components. The set Ba is a set of base types, ranged over by 𝛼 . The types of L are inductively

generated by the rule 𝐴, 𝐵 F 𝛼 | 𝐴 □ 𝐵 | I. The set Pr is a set of primitive operations, ranged over

by 𝑓 , each associated with two types 𝑓 : 𝐴→ 𝐵. The well typed terms of L are generated by the

typing rules in Figure 1 (there is no need to consider raw terms for our purposes). The type system

is a substructural one, since the language is to be interpreted in monoidal categories rather than

only cartesian categories. The rules in Figure 1 always have ambient contexts Γ, Γ𝑙 and Γ𝑟 whenever
possible so that the cut rule below is admissible, in which 𝑡 [𝑢/𝑥] is substituting 𝑢 for 𝑥 in 𝑡 :

Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡 : 𝐵 Δ ⊢ 𝑢 : 𝐴

Γ𝑙 ,Δ, Γ𝑟 ⊢ 𝑡 [𝑢/𝑥] : 𝐵
Cut

Lastly, Ax is a set of axioms, each ⟨Γ ⊢ 𝑡𝑙 : 𝐴, Γ ⊢ 𝑡𝑟 : 𝐴 ⟩ is a pair of terms under the same context.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:9

J𝑥K = id J𝑓 (𝑡)K = J𝑓 K · J𝑡K J∗K = id J(𝑡1, 𝑡2)K = J𝑡1K □E J𝑡2K
Jlet ∗ = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ1K □E J𝑡1K □E JΓ2K)

Jlet (𝑥1, 𝑥2) = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ𝑙K □E J𝑡1K □E JΓ𝑟 K)

Fig. 2. Denotational semantics for the metalanguage. The underscores stand for appropriate canonical
isomorphisms built from associators 𝛼 and unitors 𝜆, 𝜌 to make the domain and codomain match.

Γ ⊢ 𝑡 : 𝐴

Γ ⊢ (let ∗ = ∗ in 𝑡 : 𝐴) ≡ 𝑡 : 𝐴
(𝐼 -𝛽)

Γ ⊢ 𝑡1 : I Γ𝑙 , 𝑥 : 𝐼 , Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ (let ∗ = 𝑡1 in 𝑡2 [∗/𝑥]) ≡ 𝑡2 [𝑡1/𝑥] : 𝐴
(𝐼 -𝜂)

Γ1 ⊢ 𝑡1 : 𝐴1 Γ2 ⊢ 𝑡2 : 𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡3 : 𝐵

Γ𝑙 , Γ1, Γ2, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = (𝑡1, 𝑡2) in 𝑡3) ≡ 𝑡3 [𝑡1/𝑥1, 𝑡2/𝑥2] : 𝐵
(□-𝛽)

Γ ⊢ 𝑡1 : 𝐴1 □𝐴2 Γ𝑙 , 𝑥 : 𝐴1 □𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2 [(𝑥1, 𝑥2)/𝑥]) ≡ 𝑡2 [𝑡1/𝑥] : 𝐵
(□-𝜂)

Fig. 3. Equational theory of the metalanguage.

Interpretation. An interpretation J−K of the metalanguage L = ⟨Ba, Pr,Ax⟩ in a monoidal

category ⟨E , 𝐼E ,□E ⟩ consists of (i) an assignment of E -objects J𝛼K ∈ Ob(E) to each base type

𝛼 ∈ Ba, which determines the denotation of all types and contexts E as follows:

JIK = 𝐼E , J𝐴 □ 𝐵K = J𝐴K □E J𝐵K, J·K = 𝐼E , JΓ, 𝑥 : 𝐴K = JΓK □E J𝐴K,

and (ii) an assignment of E -arrows J𝑓 K : J𝐴K→ J𝐵K to each primitive operation 𝑓 : 𝐴→ 𝐵 ∈ Pr,
which determines the denotation of all terms as in Figure 2. The interpretation must make J𝑡𝑙K = J𝑡𝑟 K
for all axioms ⟨𝑡𝑙 , 𝑡𝑟 ⟩ ∈ Ax. Moreover, we write J−K{𝑥 ↦→𝑋 } for the interpretation that maps the basic

type or primitive operation 𝑥 to 𝑋 and everything else the same as J−K.

Equational Theory. The equational theory Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴 of the metalanguage L is generated by

the rules in Figure 3, the axioms in Ax, and the usual rules for equivalence and congruence under

all term formers. The rules in Figure 3 characterise the syntactic multicategory of the metalanguage

(quotiented by the equational theory) as a representable multicategory, thus corresponding to a

monoidal category [Hermida 2000]. Analogous to the classical correspondence between simply

typed 𝜆-calculus and cartesian closed categories [Lambek and Scott 1986], the equational theory is

sound for all interpretations: Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴 implies J𝑡1K = J𝑡2K. The converse is also true, following

from the fact that the syntactic multicategory corresponds to the free monoidal category over L,
but we do not need (and do not prove) this result in this paper.

Internal Language. Given a monoidal category E , its internal language L(E) has all objects E
as basic types and all arrows as primitive operations. These basic types and primitive operations

have a canonical interpretation in E—everything is interpreted as itself. The axioms of L(E) are
all pairs of terms that have the same denotation. Therefore the language L(E) provides a sound
and complete way to reason about E : two terms in L(E) satisfy 𝑡1 ≡ 𝑡2 if and only if they are

equal under the canonical interpretation in E . In the rest of this paper, whenever we work with a

monoidal category E , we often use L(E) to denote and reason about constructions in E .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:10 Zhixuan Yang and Nicolas Wu

Example 2.1. In the metalanguage with a base type𝑀 and a primitive operation 𝜇 : 𝑀 □𝑀 → 𝑀 .

The first diagram in the laws of monoids (3) can be represented by the following axiom (throughout

this paper, we write Γ ⊢ 𝑡1 = 𝑡2 : 𝐴 for the equational axiom consisting of 𝑡1 and 𝑡2):

𝑥 : 𝑀,𝑦 : 𝑀,𝑧 : 𝑀 ⊢ 𝜇 (𝜇 (𝑥,𝑦), 𝑧) = 𝜇 (𝑥, 𝜇 (𝑦, 𝑧)) : 𝑀 (10)

which looks the same as the usual associativity law for a binary operation 𝜇 in Set, but the
metalanguage can be interpreted in all monoidal categories. For example, for the monoidal category

⟨Endo(C), ◦, Id⟩, this equation is interpreted as the associativity law of monads.

Extensions. Sometimes we work in monoidal categories with additional structure, and in this case

we extend the calculus with new syntax for the additional structure. For example, when we work in

closed monoidal categories, we extend the calculus with a new type former 𝐵/𝐴 and typing rules:

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴
Γ1 ⊢ 𝑡1 : 𝐵/𝐴 Γ2 ⊢ 𝑡2 : 𝐴

Γ1, Γ2 ⊢ 𝑡1 𝑡2 : 𝐵

whose semantics is given by the corresponding structure of the closed monoidal category:

J𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴K = abst (J𝑡K) J𝑡1 𝑡2K = ev · (J𝑡1K □E J𝑡2K)
where abst : E (𝐶 □E 𝐴, 𝐵) → E (𝐶, 𝐵/E𝐴) is the natural isomorphism associated to the adjunction

(−□E 𝐴) ⊣ (−/E𝐴) and ev : (𝐵/E𝐴) □E 𝐴→ 𝐵 is its counit. The usual 𝛽 and 𝜂 rules characterising

the universal property of 𝐵/𝐴 are added to the equational theory routinely.

Other structures in E such as products and coproducts can be internalised in the metalanguages

similarly. For example, for the cartesian product, we can add a type former × with typing rules

Γ ⊢ 𝑡1 : 𝐴1 Γ ⊢ 𝑡2 : 𝐴2

Γ ⊢ ⟨𝑡1, 𝑡2 ⟩ : 𝐴1 ×𝐴2

Γ ⊢ 𝑡1 : 𝐴1 ×𝐴2 Γ𝑙 , 𝑥 : 𝐴𝑖 , Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ 𝑡2 [(𝜋𝑖 𝑡1)/𝑥] : 𝐵
𝑖 ∈ {1, 2}

as well as their 𝛽 and 𝜂 rules. Note that the first rule for ⟨𝑡1, 𝑡2 ⟩ introduces non-linearity to the

syntax of the metalanguage: the variables in Γ may appear in both subterms 𝑡1 and 𝑡2.

Example 2.2. Let E be a monoidal closed category. If some type 𝑀 together with two terms

(𝑥 : 𝑀,𝑦 : 𝑀 ⊢ 𝜇 : 𝑀) and (· ⊢ 𝜂 : 𝑀) in L(E) denotes a monoid in E , then Cayley’s theorem says

that this monoid embeds into the monoid𝑀/𝑀 with unit (· ⊢ 𝜆𝑥 . 𝑥 : 𝑀/𝑀) and multiplication

𝑓 : 𝑀/𝑀, 𝑔 : 𝑀/𝑀 ⊢ 𝜆𝑥. 𝑓 (𝑔 𝑥) : 𝑀/𝑀. (11)

The embedding is given by 𝑒 = (𝑥 : 𝑀 ⊢ 𝜆𝑦. 𝜇 : 𝑀/𝑀), which is a monoid homomorphism. It has

a left inverse 𝑟 = (𝑓 : 𝑀/𝑀 ⊢ 𝑓 𝜂 : 𝑀) such that J𝑟K · J𝑒K = idJ𝑀K. However, the inverse 𝑟 is in

general not a monoid homomorphism since 𝑓 (𝑔 𝜂) . 𝜇 [𝑓 𝜂/𝑥, 𝑔 𝜂/𝑦].
This elementary result has surprisingly many applications in functional programming for optimi-

sation, because the multiplication (11) is usually a kind of function composition with𝑂 (1) time com-

plexity, regardless of the possibly expensive multiplication 𝜇. When𝑀 is a free monoid in ⟨Set,×, 1⟩,
i.e. a list, this optimisation is known as difference lists [Hughes 1986]. When E = ⟨Endo𝜅 (C), ◦, Id⟩,
this optimisation is known as codensity transformation [Hinze 2012]. We will also use this fact later

for constructing modular models in Theorem 6.4.

3 EQUATIONAL SYSTEMS AND TRANSLATIONS
We have seen monoids in various monoidal categories, but if the only thing that we know about a

monoid is its unit and multiplication, then it is barely interesting. Instead, concrete examples of

monoids in practice usually come with additional operations. For example, the state monad (−×𝑆)𝑆
comes with operations for reading and writing the mutable state, and the exception monad − + 𝐸

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:11

has operations for throwing and catching exceptions, and the (ordinary) monoid in Set of lists with
concatenation has the operation of appending an element to a list.

Therefore we need a way to talk about monoids equipped with additional operations as equational

theories and their models, especially their free models, which are practically important since they

play the role of abstract syntax. Moreover, we would like to be able to combine such theories.

To fulfil these needs, we use Fiore and Hur [2007, 2009]’s equational systems to formulate

equational theories (§3.1) and their theorem for constructing free models (§3.2), which we first

recap below. We also show how the metalanguage from §2 can be used to present equational

systems syntactically. Then we recap the equational system of Σ-monoids, which is the theory of

monoids with operations (§3.3). Lastly, we introduce functorial translations between equational

systems, making them a category, and discuss the existence of colimits in this category (§3.4).

3.1 Equational Systems
An equational theory consists of the signature and equations of its operations. A concise way to

specify a signature on a category C is just a functor Σ : C → C , and then a Σ-algebra is a pair of a
carrier 𝐴 ∈ C and a structure map 𝛼 : Σ𝐴→ 𝐴. For example, the signature functor of the theory

of monoids in a monoidal category E is ΣMon = (− □ −) + 𝐼 . A ΣMon-algebra ⟨𝐴, 𝛼 ⟩ is an object 𝐴

with an arrow 𝛼 : (𝐴 □𝐴) + 𝐼 → 𝐴, or equivalently two arrows 𝐴 □𝐴→ 𝐴 and 𝐼 → 𝐴.

We denote the category of Σ-algebras by Σ-Alg, whose arrows from ⟨𝐴, 𝛼 ⟩ to ⟨𝐵, 𝛽 ⟩ are algebra
homomorphisms, i.e. arrows ℎ : 𝐴→ 𝐵 in C such that ℎ ·𝛼 = 𝛽 · Σℎ : Σ𝐴→ 𝐵. The forgetful functor

dropping the structure map is denoted by UΣ : Σ-Alg→ C or just U when it is not ambiguous.

Equations on a signature Σ : C → C are usually presented as commutative diagrams, such as

the first diagram in (3) for associativity. Formally speaking, such a commutative diagram is a pair

of paths from some formal object Γ𝐴 to some formal object 𝐴, containing a formal arrow Σ𝐴→ 𝐴.

The starting node Γ𝐴 can be called the context of the diagram.

A more categorical way to formulate a diagram is a functor Γ : C → C and a pair of functors

𝐿, 𝑅 : Σ-Alg→ Γ-Alg. For example, the functor Γ for the associativity diagram (3) is Γ = (−□−)□−,
and the down-right path is represented by the functor (− □ −)-Alg → ((− □ −) □ −)-Alg that

sends ⟨𝐴, 𝜇 : 𝐴 □𝐴→ 𝐴 ⟩ to ⟨𝐴, 𝜇 · (𝜇 □𝑀) ⟩. Such a functor 𝐿 : Σ-Alg→ Γ-Alg encoding half of

a commutative diagram must satisfy UΓ ◦ 𝐿 = UΣ.

Definition 3.1 (Fiore and Hur [2009]). An equational system ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) on a category C
consists of four functors: (i) a functorial signature Σ : C → C , (ii) a functorial context Γ : C → C ,

and (iii) a pair of two functorial terms 𝐿, 𝑅 : Σ-Alg→ Γ-Alg such that UΓ ◦ 𝐿 = UΣ and UΓ ◦𝑅 = UΣ.

An algebra or a model of ¤Σ is a Σ-algebra ⟨𝐴 ∈ C , 𝛼 : Σ𝐴→ 𝐴 ⟩ such that 𝐿⟨𝑋, 𝛼 ⟩ = 𝑅⟨𝑋, 𝛼 ⟩.
The full subcategory of Σ-Alg containing all ¤Σ-algebras is denoted by ¤Σ-Alg.

Compared to alternative frameworks such as enriched algebraic theories [Kelly and Power 1993]

or enriched Lawvere theories [Power 1999], equational systems are simpler to describe and more

flexible, yet still offer strong results for the existence of free algebras. Furthermore, we can use

the metalanguage in §2.2 to specify the data for equational systems on monoidal categories E in a

syntactic way (in fact, we were already doing this in Example 2.1 without mentioning it):

(i) To give a functorial signature/context E → E , it is sufficient to write a type expression 𝑇𝜏 in

L(E) extended with a new base type 𝜏 , such that 𝜏 occurs positively in 𝑇𝜏
1
. The type expression

𝑇𝜏 induces a functor E → E mapping every object 𝐴 to J𝑇𝜏K{𝜏 ↦→𝐴} . The arrow mapping for the

1
The rule for positivity of a variable in a term is defined inductively as usual: 𝜏 occurs in itself positively and all other base

types 𝛽 both positively and negatively; and 𝜏 occurs in 𝐵/𝐴 positively (negatively) if 𝜏 occurs in 𝐵 positively (negatively)

and in 𝐴 negatively (positively), and so on for other type formers.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:12 Zhixuan Yang and Nicolas Wu

functor follows from the functoriality of the type formers. Moreover, we add a new term syntax

𝑇𝜏 𝑓 to the metalanguage L(E) for the arrow mapping. It has the following typing rule:

𝑥 : 𝐴 ⊢ 𝑓 : 𝐵 Γ ⊢ 𝑡 : 𝑇𝜏 [𝐴/𝜏]
Γ ⊢ (𝑇𝜏 𝑓) 𝑡 : 𝑇𝜏 [𝐵/𝜏]

For example, the type expression 𝑇𝜏 = 𝜏 □ 𝜏 denotes the functor − □ − : E → E , and its arrow

mapping is Γ ⊢ (𝑇𝜏 𝑓) 𝑡 : 𝐵 □ 𝐵 for all terms 𝐴 ⊢ 𝑓 : 𝐵 and Γ ⊢ 𝑡 : 𝐴 □𝐴.
(ii) To give a functorial term Σ-Alg→ Γ-Alg for functors Σ, Γ : E → E given by type expressions

𝑆𝜏 and 𝐺𝜏 in the way above, it is sufficient to write a term 𝑥 : 𝐺𝜏 ⊢ 𝑡 : 𝜏 in the language L(E)
extended with a base type 𝜏 and a primitive operation op : 𝑆𝜏 → 𝜏 . Then the term 𝑥 : 𝐺𝜏 ⊢ 𝑡 : 𝜏

induces a functor 𝑇 : Σ-Alg→ Γ-Alg such that

𝑇 ⟨𝐴, 𝑓 : Σ𝐴→ 𝐴 ⟩ = ⟨𝐴, J𝑡K{𝜏 ↦→𝐴, op ↦→ 𝑓 } ⟩ : Σ-Alg→ Γ-Alg

By structural induction on typing derivations in the style of Reynolds [1983]’s abstraction theorem,

it is possible to show that UΓ ◦𝑇 = UΣ as required in Definition 3.1. For example, the two terms

(10) denote a pair of functorial terms (− □ −)-Alg→ (− □ − □ −)-Alg.

Monoids. As a pivotal example, the concept of monoids in a monoidal category ⟨E ,□, 𝐼 ⟩ (§2.1)
can be presented as an equational system when E has finite coproducts:

Mon = (ΣMon ⊲ ΓMon ⊢ 𝐿Mon = 𝑅Mon) (12)

First we extend the metalanguage with a type constructor 𝐴1 + · · · +𝐴𝑛 for finite coproducts in E ,

together with term syntax [𝑡1, . . . , 𝑡𝑛] for elimination and inj𝑖 𝑡 for introduction. Then the functorial

signature and context of the equational system Mon are given by type expressions

ΣMon = (𝜏 □ 𝜏) + I and ΓMon = (𝜏 □ 𝜏 □ 𝜏) + 𝜏 + 𝜏,
and the functorial equation 𝐿Mon = 𝑅Mon is given by two terms in L(E) with a new primitive

operation op : 𝜏 □ 𝜏 + I→ 𝜏 as follows: first we define two terms for using op more conveniently:

𝜇 = (𝑥 : 𝜏,𝑦 : 𝜏 ⊢ op (inj
1
(𝑥,𝑦)) : 𝜏) 𝜂 = (· ⊢ op (inj

2
∗) : 𝜏)

Then we define the following terms in which 𝜇 [𝑡1, 𝑡2] is shorthand for 𝜇 [𝑡1/𝑥, 𝑡2/𝑦]:
𝑙1 = (𝑥 : 𝜏 □ 𝜏 □ 𝜏 ⊢ let (𝑥1, 𝑥2, 𝑥3) = 𝑥 in 𝜇 [𝜇 [𝑥1, 𝑥2], 𝑥3] : 𝜏)
𝑟1 = (𝑥 : 𝜏 □ 𝜏 □ 𝜏 ⊢ let (𝑥1, 𝑥2, 𝑥3) = 𝑥 in 𝜇 [𝑥1, 𝜇 [𝑥2, 𝑥3]] : 𝜏)
𝑙2 = (𝑥 : 𝜏 ⊢𝜇 [𝜂, 𝑥] : 𝜏)
𝑟2 = (𝑥 : 𝜏 ⊢𝑥 : 𝜏)

𝑙3 = (𝑥 : 𝜏 ⊢𝜇 [𝑥, 𝜂] : 𝜏)
𝑟3 = (𝑥 : 𝜏 ⊢𝑥 : 𝜏)

Finally 𝐿Mon = 𝑅Mon is given by 𝑥 : (𝜏 □ 𝜏 □ 𝜏) + 𝜏 + 𝜏 ⊢ [𝑙1, 𝑙2, 𝑙3] = [𝑟1, 𝑟2, 𝑟3] : 𝜏 . A model of the

equational systemMon is exactly a monoid in ⟨E ,□, 𝐼 ⟩.

Notation 3.2. As demonstrated above, although Definition 3.1 only considers exactly one functorial

signature Σ and equation Γ ⊢ 𝐿 = 𝑅, multiple operations and equations can be expressed using

coproducts. Given an equational system ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) on a categoryC with binary coproducts,

we denote by ¤Σ ↰op Σ′ the extension of ¤Σ with new operations of signature Σ′ : C → C :

¤Σ ↰op Σ′ B (Σ + Σ′ ⊲ Γ ⊢ 𝐿 ◦ 𝜋 = 𝑅 ◦ 𝜋)
where 𝜋 : (Σ + Σ′)-Alg → Σ-Alg is the forgetful functor dropping Σ′ operations. Similarly, we

denote extending an equational system ¤Σ with a new equation Γ′ ⊢ 𝐿′ = 𝑅′ by
¤Σ ↰eq (Γ′ ⊢ 𝐿′ = 𝑅′) B (Σ ⊲ Γ + Γ′ ⊢ [𝐿, 𝐿′] = [𝑅, 𝑅′]).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:13

3.2 Free Algebras of Equational Systems
Among the algebras of an equational theory ¤Σ over C , the free algebras are particularly useful

since they represent abstract syntax of terms built from variables and operations of the theory. The

abstract syntax can be interpreted with another model using the free-forgetful adjunction:

𝜙 : C (𝑋,𝐴) � ¤Σ-Alg(Free 𝑋, ⟨𝐴, 𝛼 ⟩)

Given any model ⟨𝐴, 𝛼 ⟩ of ¤Σ and 𝑔 : 𝑋 → 𝐴, the morphism 𝜙 (𝑔) : Free 𝑋 → ⟨𝐴, 𝛼 ⟩ interprets the
free algebra with the semantic model ⟨𝐴, 𝛼 ⟩. Fiore and Hur [2009] show various conditions for the

existence of free algebras. In this paper, we will use the following one.

Theorem 3.3 (Fiore and Hur [2009]). For all equational systems ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) over C , if C is

cocomplete and Σ and Γ preserve colimits of 𝛼-chains for a limit ordinal 𝛼 , there are left adjoints

¤Σ-Alg Σ-Alg C⊣ ⊣

(13)

to the inclusion functor ¤Σ-Alg ↩→ Σ-Alg and the forgetful functor Σ-Alg→ C respectively.

Notation 3.4. We denote the composite adjunction of (13) by F ¤Σ ⊣ U ¤Σ : ¤Σ-Alg→ C , or simply

F ⊣ U when ¤Σ is understood. Moreover, the initial ¤Σ-algebra is denoted by ⟨𝜇 ¤Σ, 𝛼 ¤Σ : Σ𝜇 ¤Σ→ 𝜇 ¤Σ ⟩.

Fiore and Hur’s proof of this result is quite technical, but we will not rely on the specifics of

their construction. For concreteness, we provide some informal intuition here: the free Σ-algebra
on some 𝐴 ∈ C is first constructed by a transfinite iteration of 𝐴 + Σ− on 0 [Adámek 1974]

0 𝐴 + Σ0 𝐴 + Σ(𝐴 + Σ0) · · ·! 𝐴+Σ!

and taking colimits for limit ordinals. The iteration will stop at some 𝑋 � 𝐴 + Σ𝑋 in 𝛼 steps, giving

the carrier of the free Σ-algebra. Then it is quotiented by the equation 𝐿 = 𝑅 and the congruence

rule, using Fiore and Hur’s algebraic coequalisers. The quotienting may also need to be repeated 𝛼

times when Γ does not preserve epimorphisms. The result of quotienting is the free ¤Σ-algebra.

Example 3.5. When E is cocomplete and □ : E × E → E preserves 𝛼-chains for some limit

ordinal 𝛼 , then Theorem 3.3 is applicable to the equational systemMon (12). Moreover, when E
is closed, there is a simple formula for free monoids: for every 𝐴 ∈ E , the free monoid over 𝐴 is

the initial algebra 𝜇𝑋 .𝐼 +𝐴 □ 𝑋 equipped with appropriate monoid operations [Fiore 2008]. This

formula is useful in practice: when E is ⟨Set,×, 1⟩, it is exactly the usual definition 𝜇𝑋 .1 +𝐴 × 𝑋
of 𝐴-lists; and when E is ⟨Endo𝜅 (C), ◦, Id⟩ or ⟨Endo𝜅 (Set),★, Id⟩ in §2.1, this gives formulas for

free monads and free applicatives that are suitable for implementation [Rivas and Jaskelioff 2017].

3.3 Equational Systems for Monoids with Operations
Monoids equipped with additional operations are called Σ-monoids by Fiore et al. [1999]. Let

Σ : E → E be a functor with a pointed strength 𝜃 , i.e. a natural transformation

𝜃𝑋,⟨𝑌,𝑓 ⟩ : (Σ𝑋) □ 𝑌 → Σ(𝑋 □ 𝑌)

for all 𝑋 in E and ⟨𝑌 ∈ E , 𝑓 : 𝐼 → 𝑌 ⟩ in the coslice category 𝐼/E , satisfying coherence conditions

analogous to those of strengths (7). To denote Σ and 𝜃 syntactically, we extend the metalanguage

with a type constructor Σ and the following typing rule

· ⊢ 𝑓 : 𝑌 Γ ⊢ 𝑡 : (Σ𝑋) □ 𝑌
Γ ⊢ 𝜃𝑋,⟨𝑌,𝑓 ⟩ 𝑡 : Σ(𝑋 □ 𝑌)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:14 Zhixuan Yang and Nicolas Wu

Then the equational system Σ-Mon of Σ-monoids extends the theory Mon of monoids (12) with a

new operation op : Σ𝜏 → 𝜏 and a new equation 𝐿Σ-Mon = 𝑅Σ-Mon:

Σ-Mon = (Mon ↰op Σ) ↰eq

(
(Σ−) □ − ⊢ 𝐿Σ-Mon = 𝑅Σ-Mon

)
(14)

where the new equation 𝐿Σ-Mon = 𝑅Σ-Mon is given by

𝑥 : Σ𝜏,𝑦 : 𝜏 ⊢ 𝜇 (op 𝑥,𝑦) = op((Σ𝜇) (𝜃𝜏,⟨ 𝜏,𝜂 ⟩ (𝑥,𝑦))) : 𝜏 (15)

which encodes the following commutative diagram:

(Σ𝜏) □ 𝜏 Σ(𝜏 □ 𝜏) Σ𝜏

𝜏 □ 𝜏 𝜏

𝜃𝜏,⟨𝜏,𝜂 ⟩ Σ𝜇

opop□𝜏

𝜇

Note that (15) refers to 𝜃 , so technically the equational system should be denoted by ⟨Σ, 𝜃 ⟩-Mon,
but writing Σ-Mon will not cause confusion.

The equation (15) expresses that the operation op commutes with monoid multiplication. When

using the monoidal category ⟨Endo𝑓 (Set), •,𝑉 ⟩ for modelling higher-order abstract syntax, which

was the original context where Fiore et al. [1999] introduced Σ-monoids, this equation expresses

the sensible condition that operations must commute with substitution. However, this equation

might not be desirable in other contexts; for example, when using ⟨Endo𝜅 (C), ◦, Id⟩ to model com-

putational effects, this equation expresses that effectful operations must commute with sequential

composition, which is not true in general. Those effectful operations that do satisfy this condition

and have signature Σ = 𝐴 □ − for some 𝐴 ∈ E are called algebraic operations [Jaskelioff and Moggi

2010; Plotkin and Power 2001]. We will say more about the equation (15) shortly in Example 3.7

and see that imposing it on Σ-monoids actually does not lose generality.

A model of the equational system Σ-Mon is called a Σ-monoid. When the monoidal category

E is cocomplete and functors Σ, Γ, □ all preserve colimits of 𝛼-chains for some limit ordinal 𝛼 ,

Theorem 3.3 ensures the existence of free Σ-monoids. When E is additionally closed, such as

⟨Endo𝜅 (C), ◦, Id⟩ in §2.1, there is again a simple description of the free Σ-monoid [Fiore and Hur

2007; Fiore and Saville 2017]: it is carried by the initial algebra 𝜇𝑋 .𝐼 +𝐴 □ 𝑋 + Σ𝑋 . This formula

has many applications in modelling abstract syntax: variable binding [Fiore and Szamozvancev

2022], explicit substitution [Ghani et al. 2006], and scoped operations [Piróg et al. 2018].

Now let us look at some concrete examples. In all the following examples, the monoidal cat-

egory ⟨E ,□, 𝐼 ⟩ is assumed to have set-indexed coproducts

∐
𝑖∈𝑆 𝐴𝑖 and finite products

∏
𝑖∈𝐹 𝐴𝑖 .

Additionally, we assume the monoidal product distributes over coproducts from the right:

(∐𝑖∈𝑆 𝐴𝑖) □ 𝐵 �
∐
𝑖∈𝑆 (𝐴𝑖 □ 𝐵).

Example 3.6 (Exception Throwing). Letting 𝐸 be a set, the theory Et𝐸 of exception throwing is

the theory ΣEt𝐸
-Mon where ΣEt𝐸

= (∐𝐸 1) □ − : E → E , and

∐
𝐸 1 is the 𝐸-fold coproduct of the

terminal object in E (which may be different from the monoidal unit 𝐼).

For the special case E = ⟨Endo𝜅 (C), ◦, Id⟩, the equational system Et𝐸 describes (𝜅-accessible)

monads𝑀 : C → C equipped with a natural transformation

throw : (∐𝐸 1) ◦𝑀 =
∐
𝐸 (1 ◦𝑀) =

∐
𝐸 1 −→ 𝑀 (16)

whose component 1 → 𝑀 for each 𝑒 ∈ 𝐸 represents a computation throwing an exception 𝑒 .

Working in the generality of monoids allows us to generalise exceptions to more settings: taking

E = ⟨Endo𝜅 (Set),★, Id⟩, the theory describes applicative functors 𝐹 with exception throwing:

(∐𝐸 1) ★ 𝐹 � ∐
𝐸 (1★ 𝐹) =

∐
𝐸 (
∫ 𝑎,𝑏

1𝑎 × 𝐹𝑏 × −𝑎×𝑏) � ∐
𝐸 (
∫ 𝑏

𝐹𝑏) → 𝐹 (17)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:15

Note that exception throwing for monads (16) and for applicatives (17) differ by the domain 1 vs∫ 𝑏
𝐹𝑏. This reflects the nature of applicative functors that computations are independent, so the

computation after exception throwing is not necessarily discarded.

Example 3.7 (Exception Catching). Although exception throwing is an algebraic operation, it is

well known that catching is not: if we were to model it as an algebraic operation catch : 𝑀×𝑀 → 𝑀

on a monad𝑀 such that catch ⟨𝑝,ℎ ⟩ means catching exceptions possibly thrown by 𝑝 and handling

exceptions using ℎ, then the equation (15) for Σ𝑀 = 𝑀 ×𝑀 implies that

ph : 𝑀 ×𝑀,𝑘 : 𝑀 ⊢ 𝜇 (catch ph, 𝑘) = catch ⟨𝜇 (𝜋1 ph, 𝑘), 𝜇 (𝜋2 ph, 𝑘) ⟩ : 𝑀 (18)

But this is undesirable because the scopes of catching are different: the left-hand side does not catch

exceptions in 𝑘 while the right-hand side catches exceptions in 𝑘 .

Plotkin and Pretnar [2013]’s take on this problem is that catching is inherently different from

throwing: throwing is the only operation of the theory of exceptions, but catching is a model of the

theory. This view leads to the fruitful line of research on handlers of algebraic effects.

An alternative view advocated by Wu et al. [2014] and Piróg et al. [2018] is that catching is

also an operation of the theory of exceptions, albeit a more complex one which they call a scoped

operation. This view allows one to construct free algebras of both throwing and catching, and then

one can define different models/handlers of both catching and throwing [Yang et al. 2022].

Piróg et al. [2018]’s modelling of catching as a scoped operation can also be described as ΣEc-

monoids in the monoidal category ⟨Endo(C), ◦, Id⟩, where the signature functor ΣEc : E → E is

ΣEc = (1 ◦ −) + (Id × Id) ◦ − ◦ − with the pointed strength 𝜃𝑋,⟨𝑌,𝑓 ⟩ for all 𝑋 ∈ E and ⟨𝑌, 𝑓 ⟩ : 𝐼/E :

(ΣEc𝑋) ◦ 𝑌 =
(
(1 ◦ 𝑋) + (Id × Id) ◦ 𝑋 ◦ 𝑋

)
◦ 𝑌

� (1 ◦ 𝑋 ◦ 𝑌) + (Id × Id) ◦ 𝑋 ◦ 𝑋 ◦ 𝑌

−→ (1 ◦ 𝑋 ◦ 𝑌) + (Id × Id) ◦ 𝑋 ◦ 𝑌 ◦ 𝑋 ◦ 𝑌 � ΣEc (𝑋 ◦ 𝑌)

where the boxed 𝑌 is inserted using 𝑓 : 𝐼 → 𝑌 . The intuition for the signature ΣEc is that the first

operation 1 ◦𝑀 → 𝑀 is throwing an exception as in Example 3.6, and the second operation

catch : (Id × Id) ◦𝑀 ◦𝑀 � (𝑀 ×𝑀) ◦𝑀 −→ 𝑀 (19)

is catching. The trick here to avoid the undesirable equation (18) is that catch has after𝑀 ×𝑀 an

additional −◦𝑀 that represents an explicit continuation after the scoped operation catch [Piróg et al.

2018]: catch (⟨𝑝,ℎ ⟩, 𝑘) is understood as handling the exception in 𝑝 with ℎ and then continuing as

𝑘 . Then the equation (15) of Σ-monoids instantiates to

ph : 𝑀 ×𝑀,𝑘 : 𝑀,𝑘 ′ : 𝑀 ⊢ 𝜇 (catch (ph, 𝑘), 𝑘 ′) = catch (ph, 𝜇 (𝑘, 𝑘 ′)) : 𝑀. (20)

Unlike (18), this equation is semantically correct: catching ph and then doing 𝑘 and then 𝑘 ′ should
be the same as catching ph and then continuing as 𝜇 (𝑘, 𝑘 ′). The scope of catch is not confused.

This trick applies more generally: for all functors Φ : E → E and monoids 𝑀 in a monoidal

category E , define Σ = (Φ−) □ − and a pointed strength for Σ:

(Σ𝑋) □ 𝑌 �−→ Φ(𝑋 □ 𝐼) □ (𝑋 □ 𝑌)
Φ(𝑋□𝜂𝑌)□id

−−−−−−−−−−→ Φ(𝑋 □ 𝑌) □ (𝑋 □ 𝑌) = Σ(𝑋 □ 𝑌) .

Then arrows 𝑓 : Φ𝑀 → 𝑀 without any condition are in bijection with arrows 𝑔 : (Φ𝑀) □𝑀 → 𝑀

that satisfy the equation (15) of Σ-monoids instantiated with the Σ:

𝑓 ↦→ (Φ𝑀 □𝑀
𝑓 □𝑀
−−−−→ 𝑀 □𝑀

𝜇
−→ 𝑀) 𝑔 ↦→ (Φ𝑀

Φ𝑀□𝜂
−−−−−→Φ𝑀 □𝑀

𝑔
−→ 𝑀)

Therefore, imposing (15) on Σ-monoids does not lose generality.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:16 Zhixuan Yang and Nicolas Wu

Moreover, we can add equations to the theory ΣEc-Mon to characterise the interaction of throw

and catch. The theory Ec is ΣEc-Mon extended with the following equations:

𝑘 : 𝜏 ⊢ catch(⟨ throw, 𝜂 ⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨ throw, throw ⟩, 𝑘) = throw : 𝜏

𝑘 : 𝜏 ⊢ catch(⟨𝜂, throw ⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨𝜂, 𝜂 ⟩, 𝑘) = 𝑘 : 𝜏

where 𝜂 : I→ 𝜏 , throw : 1→ 𝜏 , and catch : (𝜏 × 𝜏) □ 𝜏 → 𝜏 . These equations can be alternatively

presented with an empty context by replacing all the 𝑘’s with 𝜂 as in · ⊢ catch(⟨ throw, 𝜂 ⟩, 𝜂) = 𝜂 : 𝜏 ,

which is equivalent to the first equation above, since by (20), catch(⟨𝑥,𝑦 ⟩, 𝜂);𝑘 = catch(⟨𝑥,𝑦 ⟩, 𝑘).

Example 3.8. Let 𝑆 be a set. The theory St𝑆 of monads with global 𝑆-state [Plotkin and Power

2002] can be generally defined for monoids as follows. The theory St𝑆 is ΣSt𝑆
-Mon with signature

ΣSt𝑆
denoted by ((∏𝑆 I) □ 𝜏) + ((

∐
𝑆 I) □ 𝜏), whose first component represents an operation

𝑔 : (∏𝑆 I) □ 𝜏 → 𝜏 reading the state, and the second component represents an operation 𝑝 :

(∐𝑆 I) □ 𝜏 → 𝜏 writing an 𝑆-value into the state. Plotkin and Power [2002]’s equations of these

two operations can also be specified at this level of generality. For example, the law saying that

writing 𝑠 ∈ 𝑆 to the state and reading it immediately gives back 𝑠 is

𝑘 :

∏
𝑆 I ⊢ 𝑝𝑠 (𝑔(𝑘, 𝜂𝜏)) = 𝑝𝑠 (let ∗ = 𝜋𝑠𝑘 in 𝜂𝜏) : 𝜏

where 𝑝𝑠 (𝑥) abbreviates 𝑝 (inj𝑠 ∗, 𝑥).

There are many more examples of Σ-monoids that we cannot expand on here. Some interesting

ones are lambda abstraction [Fiore et al. 1999], the algebraic operations of 𝜋-calculus [Stark 2008],

and the non-algebraic operation of parallel composition [Piróg et al. 2018].

3.4 Functorial Translations
Arrows between equational systems are not studied in the work by Fiore and Hur [2007, 2009], but

we need them later for talking about combinations of equational systems. A natural idea for arrows

from an equational system ¤Σ to another ¤Ψ is translations, which map operations in ¤Σ to terms of ¤Ψ,
preserving equations in a suitable sense. However, a technical difficulty is that equational systems

¤Ψ may not have terms, i.e. initial algebras. In the following, we avoid this by introducing a more

abstract and simpler definition which we call functorial translations between equational systems.

And they seem to be the right notion of arrows between equational systems.

Definition 3.9. A functorial translation of equational systems on C from ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅)
to ¤Σ′ = (Σ′ ⊲ Γ′ ⊢ 𝐿′ = 𝑅′) is a functor 𝑇 : ¤Σ′-Alg → ¤Σ-Alg such that U ¤Σ ◦ 𝑇 = U ¤Σ′ , where
U ¤Σ : ¤Σ-Alg → C and U ¤Σ′ : ¤Σ′-Alg → C are the forgetful functors. Equational systems on C
and translations form a category Eqs(C), in which the identity arrows are the identity functors

¤Σ-Alg→ ¤Σ-Alg, and composition of translations 𝑇 ◦𝑇 ′ is functor composition.

Note the contravariance in the definition: a translation ¤Σ → ¤Σ′ is a functor ¤Σ′-Alg → ¤Σ-Alg
from the opposite direction preserving carriers and homomorphisms, since U ¤Σ ◦𝑇 = U ¤Σ′ .

Example 3.10. The theory Grp of groups in a category C with finite coproducts and products is

the theoryMon of monoids in ⟨C ,×, 1⟩ extended with a unary inverse operation:

Grp = (Mon ↰op −) ↰eq (𝑥 : 𝜏 ⊢ 𝜇⟨𝑥, 𝑥−1 ⟩ = 𝜂 : 𝜏)

where 𝑥−1
denotes the newly added operation. Then there is a translation 𝑇 : Mon → Grp

that maps every ⟨𝑋, 𝛼 : (ΣMon𝑋 + 𝑋) → 𝑋 ⟩ in Grp-Alg to an object ⟨𝑋, 𝛼 · 𝜄1 : ΣMon𝑋 → 𝑋 ⟩ in
Mon-Alg by forgetting the newly added operation. In the rest of the paper, we call translations like

𝑇 : Mon→ Grp that simply forgets some operations and equations inclusion translations.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:17

Relative Free Algebras. Let Eqs𝑐 (C) be the full subcategory of Eqs(C) containing equational
systems whose functorial signature and context preserve colimits of all 𝛼-chains for some limit

ordinal 𝛼 . By Theorem 3.3, every equational system ¤Σ in Eqs𝑐 (C) has the free-forgetful adjunction
F ¤Σ ⊣ U ¤Σ : ¤Σ-Alg→ C when C is cocomplete. In this case, functorial translations are equivalent to

the traditional notion of translations as monad morphisms. Proofs of the results in this paper can

be found in the appendix.

Lemma 3.11. For every cocomplete category C and ¤Σ, ¤Ψ ∈ Eqs𝑐 (C), functorial translations𝑇 : ¤Σ→
¤Ψ are in bijection with monad morphisms𝑚 : U ¤ΣF ¤Σ → U ¤ΨF ¤Ψ.

In the adjunction F ¤Σ ⊣ U ¤Σ : ¤Σ-Alg→ C , the category C can be viewed as the category ∅-Alg for

the empty theory ∅ with no operations, and U ¤Σ : ¤Σ-Alg→ ∅-Alg is the unique translation from ∅
to ¤Σ. The fact that U ¤Σ always has a left adjoint can be generalised to any functorial translations.

Theorem 3.12. For cocomplete C , every functorial translation 𝑇 : ¤Σ→ ¤Ψ in Eqs𝑐 (C) as a functor
𝑇 : ¤Ψ-Alg→ ¤Σ-Alg has a left adjoint 𝐹 : ¤Σ-Alg→ ¤Ψ-Alg.

Proof sketch. The free ¤Ψ-algebra over a ¤Σ-algebra ⟨𝐴, 𝛼 ⟩ is constructed as the initial algebra of the

equational system ¤Ψ extended with 𝐴 as constants and equations saying that Σ-operations on 𝐴
constants are exactly 𝛼 . A detailed proof can be found in the appendix. □

For example, Theorem 3.12 applied to the translationMon→ Grp in Example 3.10 constructs

free groups over monoids. This theorem will later be used for constructing free modular models.

Colimits. Colimits in Eqs(C) allow one to ‘glue’ equational systems. For example, the equational

system for rings can be obtained by first taking the coproduct of Grp andMon and then taking a

suitable coequaliser 𝐿 ⇒ Grp +Mon encoding the interaction of operations.

Theorem 3.13. The category Eqs𝑐 (C) is cocomplete if C is cocomplete.

Proof sketch. It is sufficient to show the existence of arbitrary coproducts and coequalisers: coprod-

ucts are defined by taking the coproduct of functorial signatures and functorial context; coequalisers

are defined by adding a new equation. The appendix provides a more detailed proof. □

Lastly, the following direct description of a special case of pushouts is sometimes convenient.

Lemma 3.14. Let ¤Σ ∈ Eqs(C) for C a category with finite coproducts, and for 𝑖 ∈ {1, 2}, let
Θ𝑖 : C → C be a functorial signature and 𝐸𝑖 = (Θ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖) be an equation. Let 𝑇1 and 𝑇2 in the

diagram below be the inclusion translations, then the following is a pushout diagram of 𝑇1 and 𝑇2:

¤Σ ¤Σ ↰op Φ2 ↰eq 𝐸2

¤Σ ↰op Φ1 ↰eq 𝐸1
¤Σ ↰op (Φ1 + Φ2) ↰eq 𝐸

𝑇2

𝑇1

where 𝐸 = (Θ1+Θ2 ⊢ [𝐿1◦𝛼1, 𝐿2◦𝛼2] = [𝑅1◦𝛼1, 𝑅2◦𝛼2]) and 𝛼𝑖 : (Σ+(Φ1+Φ2))-Alg→ (Σ+Φ𝑖)-Alg
is the projection functor.

4 MONOIDAL THEORY FAMILIES
Motivated by the principle notions of computations as monoids (§2), we are primarily interested

in equational theories that extend the theory Mon of monoids with more operations. The more

precise way to say it now is that we are interested in the coslice categoryMon/Eqs𝑐 (E). Moreover,

sometimes we are only interested in operations of some special forms, e.g. variable-binding opera-

tions, instead of all possible operations on monoids. Thus in this section, we do a finer classification

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:18 Zhixuan Yang and Nicolas Wu

of theories in Mon/Eqs𝑐 (E), grouping them into different monoidal theory families. It turns out

that the simplest kind of operations, the algebraic ones, play a special role among all operations.

Definition 4.1. A monoidal theory family over a monoidal category E is a full subcategory

F ⊆ Mon/Eqs(E) of the coslice category of equational systems under the theoryMon of monoids

such that (i) the collection of objects of F is closed under finite coproducts inMon/Eqs(E), and
(ii) each ⟨ ¤Σ,𝑇 ⟩ ∈ F has free algebras E → ¤Σ-Alg.

Note that the coproducts in Mon/Eqs(E) are equivalently pushouts ¤Σ← Mon→ ¤Ψ in Eqs(E),
so coproducts in F are intuitively combining theories while identifying their monoid operations.

This definition itself is not very interesting, but its examples and their connections are interesting.

The examples below assume a monoidal category E with the following properties.

Definition 4.2. A monoidal category E is called cordial when it is cocomplete and its monoidal

product □ : E ×E → E is right distributive (i.e. □ preserves small coproducts in the first argument)

and preserves colimits of 𝛼-chains for some limit ordinal 𝛼 in both arguments.

Most of the monoidal categories mentioned in §2.1 are cordial: ⟨Endo𝜅 (C), ◦, Id⟩ for an l𝜅p C ,

⟨C ,×, 1⟩ for a cocomplete cartesian closed C , ⟨Endo𝜅 (Set),★, Id⟩, ⟨Endo𝑠𝜅 (C), ◦𝑠 , Id𝑠 ⟩ for an l𝜅p

as a cartesian closed category C , and ⟨Endo𝑓 (Set)G,★, 𝐼 ⟩. Note that without the restriction to 𝜅-

accessible functors, ⟨Endo(C), ◦, Id⟩ for an l𝜅p C may not be cordial because functor composition

𝐹 ◦ − may not preserve colimits of any chains, e.g. C = Set and 𝐹 = 2
(2−)

. But if 𝐹 is 𝜅-accessible,

there is always a large enough ordinal 𝛼 such that 𝛼-chains are 𝜅-filtered so preserved by 𝐹 ◦ −.

Algebraic Operations. Our first example is the family ALG(E) of algebraic operations on a cordial

monoidal category ⟨E ,□, 𝐼 ⟩. The full subcategory ALG(E) ⊆ Mon/Eqs(E) contains
{⟨Σ-Mon ↰eq 𝐸, 𝑇 ⟩ | 𝐴, 𝐵 ∈ E , Σ = 𝐴 □ −, 𝐸 = (K𝐵 ⊢ 𝐿 = 𝑅)} (21)

where 𝑇 : Mon ↩→ Σ-Mon ↰eq 𝐸 is the inclusion translation, and 𝐸 is an arbitrary functorial

equation whose context is a constant functor K𝐵𝑋 = 𝐵 for all 𝑋 . In other words, ALG(E) contains
all equational systems Σ-Mon (14) extended with an equation for some Σ = 𝐴□−with the associator
of E as the pointed strength 𝛼𝐴,𝑋,𝑌 : (𝐴 □ 𝑋) □ 𝑌 � 𝐴 □ (𝑋 □ 𝑌).

The categoryALG(E) satisfies the conditions in Definition 4.1 since it is closed under coproducts

following Lemma 3.14, and all equational systems (21) inALG(E) have free algebras by Theorem 3.3,

since the signature and context functor of (21) preserve colimits of 𝛼-chains for some ordinal 𝛼 .

In particular the theory of exceptions (Example 3.6) and states (Example 3.8) are inALG(E). When

E = ⟨Endo𝜅 (C), ◦, Id⟩ for an l𝜅p category C , ALG(E) consists of theories of algebraic operations
𝐴 ◦𝑀 → 𝑀 for 𝐴 ∈ Endo𝜅 (C) on 𝜅-accessible monads𝑀 . When E is ⟨Endo𝜅 (Set),★, Id⟩, it then
contains theories of applicatives 𝐹 with ‘applicative-algebraic’ operations 𝐴★ 𝐹 → 𝐹 .

The family ALG(E) of theories of algebraic operations is closely related to traditional notions of

(presentations of) equational theories and syntactic translations between them.

Proposition. The category ALG(⟨Endo𝑓 (Set), ◦, Id⟩) is equivalent to the category of (presentations

of) first-order equational theories and their syntactic translations (see e.g. [Fiore and Mahmoud 2014]

for a detailed definition). Moreover, the category of ALG(⟨Endo𝑓 (Set)G,★, 𝐼 ⟩) is equivalent to the
category of presentations of graded algebraic theories and their morphisms introduced by Kura [2020].

We forgo a proof here. The key observation for showing this is that for any cordial E and

𝐴, 𝐵 ∈ E , translations (𝐴 □ −)-Mon → (𝐵 □ −)-Mon in ALG(E) are in bijection with arrows

𝐴→ 𝐵∗ in E where 𝐵∗ is the free monoid over 𝐵 in E .

Theorem 4.3. For a cordial monoidal category E , there is an equivalence ALG(E) � Mon(E)
between the category ALG(E) and the category Mon(E) of monoids in E .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:19

Proof sketch. Every ¥Σ ∈ ALG(E) is mapped to its initial algebra treated as a monoid. Every monoid

𝑀 is mapped to the theory of𝑀-actions on monoids. The appendix provides more details. □

Instantiating E with ⟨Endo𝑓 (C), ◦, Id⟩ for an lfp C , we obtain the classical correspondence

between finitary monads and (presentations of) first-order equational theories. What is new is

that Theorem 4.4 is applicable to other cordial monoidal categories in §2.1, giving us equivalences

of cartesian monoids/applicative functors/graded monads and the corresponding categories of

theories of algebraic operations. This general monoid-theory correspondence seems new to us.

Another interesting property of ALG(E) is the following saying that almost all equational

theories of operations on monoids can be turned into one in ALG(E) by a coreflection, and the

coreflection preserves initial algebras, i.e. the abstract syntax of terms of operations. Hence in

principle, theories of algebraic operations alone are sufficient for the purpose of modelling syntax.

Theorem 4.4. Let E be a cordial monoidal category. (i) The category ALG(E) is a coreflective

subcategory ofMon/Eqs𝑐 (E), i.e. there is an adjunction ALG(E) Mon/Eqs𝑐 (E).⊢

(ii) Moreover,

the coreflector ⌊−⌋ preserves initial algebras: for every ⟨ ¤Σ ∈ Eqs𝑐 (E),𝑇 : Mon→ ¤Σ ⟩, the initial ¤Σ-
algebra (viewed as a monoid using 𝑇) is isomorphic to the initial algebra of

⌊
⟨ ¤Σ,𝑇 ⟩

⌋
as monoids.

Proof sketch. Every ⟨ ¤Σ,𝑇 ⟩ ∈ Mon/Eqs𝑐 (E) has an initial algebra 𝜇 ¤Σ, which has a monoid structure

under the translation 𝑇 . The coreflector maps every ⟨ ¤Σ,𝑇 ⟩ to the theory of 𝜇 ¤Σ-Act of 𝜇 ¤Σ-actions.
The category of algebras of 𝜇 ¤Σ-Act is equivalent to the coslice category𝑇 𝜇 ¤Σ/Mon(E), so the initial
algebra 𝜇 ¤Σ-Act is still the same monoid 𝑇 𝜇 ¤Σ. The appendix provides more details. □

Although ALG(E) is sufficient for modelling syntax, it is not enough when we also consider

models. The counit of the coreflection gives us a translation

⌊
⟨ ¤Σ,𝑇 ⟩

⌋
→ ⟨ ¤Σ,𝑇 ⟩, i.e. a functor

¤Σ-Alg→
⌊
⟨ ¤Σ,𝑇 ⟩

⌋
-Alg, but these two categories of models are in general not equivalent.

Scoped Operations. Our next example of monoidal theory families is the family SCP(E) of scoped
(and algebraic) operations, such as exception catching (Example 3.7). The family SCP(E) is given by

the full subcategory ofMon/Eqs(E) containing objects
{⟨Σ-Mon ↰eq 𝐸, 𝑇 ⟩ | 𝐴, 𝐵,𝐶 ∈ E , Σ = (𝐴 □ − □ −) + (𝐵 □ −), 𝐸 = (K𝐶 ⊢ 𝐿 = 𝑅)} (22)

where 𝑇 : Mon → Σ-Mon ↰eq 𝐸 is the inclusion translation and K𝐶 : E → E is the constant

functor mapping to 𝐶 ∈ E . The pointed strength 𝜃𝑋,⟨𝑌,𝑓 ⟩ of Σ needed in the definition of Σ-Mon
(14) is as follows, where the boxed 𝑌 is inserted using 𝑓 : 𝐼 → 𝑌 :

(Σ𝑋) □ 𝑌 � (𝐴 □𝑋 □𝑋 □ 𝑌) + (𝐵 □𝑋 □ 𝑌) → (𝐴 □𝑋 □ 𝑌 □𝑋 □ 𝑌) + (𝐵 □𝑋 □ 𝑌) � Σ(𝑋 □ 𝑌).
Piróg et al. [2018] introduced scoped operations to model non-algebraic operations that delimit

scopes. As explained in Example 3.7, the trick is to let the operation take an explicit continuation.

A direct corollary of Theorem 4.4 is that the initial-algebra preserving coreflection there restricts

to ALG(E) SCP(E).⊢

Thus the terms of scoped operations can be alternatively expressed with

only algebraic ones, but as argued by Piróg et al. [2018] and Yang et al. [2022], the models of scoped

operations are different from those of the coreflected algebraic operations.

Variable-Binding Operations. Our final example is the monoidal theory family of variable-

binding operations studied by Fiore et al. [1999]. For now we work concretely in the monoidal

category ⟨SetFin, •,𝑉 ⟩ (5), but it is possible to replace SetFin with Endo𝜅 (Set) for infinitary syntax.

A binding signature ⟨𝑂, 𝑎 ⟩ consists of a set 𝑂 of operations and an arity assignment 𝑎 : 𝑂 → N∗
of a sequence of natural numbers to each operation. Each 𝑜 ∈ 𝑂 with 𝑎(𝑜) = ⟨𝑛𝑖 ⟩1⩽𝑖⩽𝑘 stands for
an operation taking 𝑘 arguments, each binding 𝑛𝑖 variables. For example, the binding signature for

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:20 Zhixuan Yang and Nicolas Wu

untyped 𝜆-calculus has two operations {app, abs}: application 𝑎(app) = ⟨0, 0⟩ has two arguments,

each binding no variables; abstraction 𝑎(abs) = ⟨1⟩ has one argument that binds one variable.

A binding signature then determines an endofunctor Σ⟨𝑂,𝑎 ⟩ : SetFin → SetFin:

Σ⟨𝑂,𝑎 ⟩ =
∐
𝑜∈𝑂, 𝑎 (𝑜)=⟨𝑛𝑖 ⟩1⩽𝑖⩽𝑘

∏
1⩽𝑖⩽𝑘 (−)𝑉

𝑛𝑖
(23)

where (−)𝑉𝑛𝑖
is the exponential by 𝑛𝑖 -fold product of the monoidal unit𝑉 . It has a pointed strength:

(∐𝑜

∏
𝑖 𝑋

𝑉𝑛𝑖) • 𝑌 � ∐
𝑜

∏
𝑖 (𝑋𝑉

𝑛𝑖 • 𝑌)
∐

𝑜

∏
𝑖 𝑡𝑜,𝑖−−−−−−−−→∐

𝑜

∏
𝑖 (𝑋 • 𝑌)𝑉

𝑛𝑖

where 𝑡𝑜,𝑖 is the adjunct of (𝑋𝑉
𝑛𝑖 •𝑌)×𝑉 𝑛𝑖 id × 𝜂𝑌−−−−−→ (𝑋𝑉𝑛𝑖 •𝑌)× (𝑉 𝑛𝑖 •𝑌) � (𝑋𝑉𝑛𝑖 ×𝑉 𝑛𝑖) •𝑌 → 𝑋 •𝑌 .

The monoidal theory family VAR(SetFin) ⊆ Mon/Eqs(SetFin) then contains objects

{⟨Σ⟨𝑂,𝑎 ⟩-Mon ↰eq 𝐸, 𝑇 ⟩ | 𝑂 a set, 𝑎 : 𝑂 → N∗, 𝐸 = (K𝐵 ⊢ 𝐿 = 𝑅)}

where 𝑇 : Mon → Σ⟨𝑂,𝑎 ⟩-Mon ↰eq 𝐸 is the inclusion translation. The definition of VAR(SetFin)
satisfies Definition 4.1 because it is closed under coproducts by Lemma 3.14, and the functorial

signature Σ⟨𝑂,𝑎 ⟩ and context K𝐵 are finitary. The finitariness of Σ⟨𝑂,𝑎 ⟩ is a consequence of (−)𝑉
being a left adjoint to the right Kan extension Ran𝑉+1, so (−)𝑉 preserves all colimits.

Again, the coreflector in Theorem 4.4 allows us to turn every theory in VAR into one with only

algebraic operations but has isomorphic initial algebras. For example, under the coreflection, the

theory Λ of untyped 𝜆-calculus is turned into a theory ⌊Λ⌋ which has an ordinary 𝑛-ary operation

𝑡 for every 𝜆-term 𝑡 with 𝑛 free variables, together with suitable equations. The equational systems

Λ and ⌊Λ⌋ have isomorphic initial algebras (as monoids).

Summary. It is a good time to reflect what we have so far: (i) we have seen how to present

equational systems, in particular theories of monoids with operations, using the metalanguage

(§3.1); (ii) we can build (relative) free models (Theorem 3.3 and 3.12); (iii) we can combine such

theories using colimits, achieving syntactic modularity (§3.4); (iv) these theories are classified into

families (§4), with the family of algebraic operations playing a special role (Theorem 4.3 and 4.4).

5 MODULAR MODELS OF MONOIDS
Now we come to the second part of this paper on semantic modularity. The idea is simple: given

a theory ¥Ψ in a monoidal theory family F , we would like to consider modular models 𝑀 of ¥Ψ-
operations that can coexist with any other theories ¥Σ ∈ F , in the sense that𝑀 can transform every

model of every theory ¥Σ ∈ F to a model of ¥Σ + ¥Ψ (§5.1). We have two equivalent formulations, one

based on CAT-valued functors (Definition 5.2), and another based on fibrations (Theorem 5.4). We

also explain how modular models are used to interpret abstract syntax in a modular way (§5.2).

5.1 Modular Models
Notation 5.1. Given a monoidal theory family F , each ¥Σ ∈ F is a pair ⟨ ¤Σ,𝑇 ⟩ of an equational

system ¤Σ and a translationMon→ ¤Σ. We use the notation ¥Σ-Alg to mean the category ¤Σ-Alg of
algebras for the underlying equational system ¤Σ of ¥Σ.

Definition 5.2. Given a monoidal theory family F , a modular model 𝑀 of some ¥Ψ ∈ F is a

family of functors 𝑀 ¥Σ : ¥Σ-Alg → (¥Σ + ¥Ψ)-Alg for each ¥Σ ∈ F together with a family of natural

transformations𝑀𝑇 : 𝑀 ¥Σ ◦𝑇 → (𝑇 + ¥Ψ) ◦𝑀 ¥Σ′ for each translation 𝑇 : ¥Σ→ ¥Σ′ in F :

¥Σ-Alg ¥Σ′-Alg

(¥Σ + ¥Ψ)-Alg (¥Σ′ + ¥Ψ)-Alg
𝑀 ¥Σ

𝑇

𝑀 ¥Σ′

𝑇+ ¥Ψ

𝑀𝑇

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:21

such that𝑀id is the identity transformation, and for all 𝑇 : ¥Σ→ ¥Σ′ and 𝑇 ′ : ¥Σ′ → ¥Σ′′, the square
𝑀𝑇 ′◦𝑇 is exactly the pasting of𝑀𝑇 and𝑀𝑇 ′ , i.e.𝑀𝑇 ′◦𝑇 = ((𝑇 + ¥Ψ) ◦𝑀𝑇 ′) · (𝑀𝑇 ◦𝑇 ′). The modular

model𝑀 is called strong when𝑀𝑇 are invertible for all 𝑇 , and strict when𝑀𝑇 are identities.

Definition 5.2 is based on lax transformations of CAT-valued functors. CAT-valued functors are

equivalent to split fibrations via the Grothendieck construction, and it turns out we can alternatively

formulate modular models based on fibrations. The fibrational formulation is not as compact

as Definition 5.2, but is usually easier to work with, especially when thinking about certain

‘dependently typed’ constructions such as mapping each ¥Σ in F to the initial algebra in ¥Σ-Alg.
We show the fibrational formulation before diving into any examples of modular models. We will

only need the very basics about fibrations (see e.g. Jacobs [1999, Chapter 1]). For every monoidal

theory family F , the CAT-valued functor (−)-Alg : F op → CAT induces a category F -Alg and a

(split) fibration F -Alg→ F , which we explicitly describe below. The intuition is that F -Alg is the

category of all models of all equational systems in F .

Definition 5.3. For every monoidal theory family F , the objects of category F -Alg are tuples

⟨ ¤Σ ∈ Eqs(E), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ E , 𝛼 : Σ𝐴→ 𝐴 ⟩
such that ⟨ ¤Σ,𝑇Σ ⟩ ∈ F and ⟨𝐴, 𝛼 ⟩ ∈ ¤Σ-Alg. Arrows between two objects ⟨ ¤Σ,𝑇Σ, 𝐴, 𝛼 ⟩ and ⟨ ¤Ψ,𝑇Ψ, 𝐵, 𝛽 ⟩
are pairs ⟨𝑇,ℎ ⟩ where 𝑇 : ¤Σ → ¤Ψ is a functorial translation in F , and the other component

ℎ : 𝐴→ 𝐵 ∈ E is a ¤Σ-algebra homomorphism from ⟨𝐴, 𝛼 ⟩ to 𝑇 ⟨𝐵, 𝛽 ⟩:

Σ𝐵 Σ𝐴

𝐵 𝐴

𝛼𝑇 ⟨𝐵, 𝛽 ⟩
ℎ

Σℎ

in ¤Σ-Alg 𝑇

←−−−−−−−−−−

Ψ𝐵

𝐵

𝛽 in ¤Ψ-Alg

The identities are pairs of identity translations and homomorphisms: ⟨ Id : ¤Σ→ ¤Σ, id : 𝐴→ 𝐴 ⟩.
The composition of two arrows ⟨𝑇,ℎ ⟩ and ⟨𝑇 ′, ℎ′ ⟩ is ⟨𝑇 ◦𝑇 ′, ℎ · ℎ′ ⟩.

The fibration 𝑃 : F -Alg→ F is the projection: 𝑃 ⟨ ¤Σ,𝑇Σ, 𝐴, 𝛼 ⟩ = ⟨ ¤Σ,𝑇Σ ⟩ and 𝑃 ⟨𝑇,ℎ ⟩ = 𝑇 . It has
a split cleavage sending arrows 𝑇 : ⟨ ¤Σ,𝑇Σ ⟩ → ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ F and objects ⟨ ¤Ψ,𝑇Ψ, 𝐵, 𝛽 ⟩ ∈ F -Alg to

arrows ⟨𝑇, id⟩ : ⟨ ¤Σ,𝑇Σ, 𝐵,𝑇 ⟨𝐵, 𝛽 ⟩ ⟩ → ⟨ ¤Ψ,𝑇Ψ, 𝐵, 𝛽 ⟩ in F -Alg.

Given an equational system ¥Ψ ∈ F , we are also interested in models of equational systems in

F that are additionally equipped with a ¥Ψ-algebra. Such (F + ¥Ψ)-algebras can be obtained by a

change-of-base for the fibration 𝑃 : F -Mon→ F along the functor (− + ¥Ψ) : F → F , which is the

following pullback in the category CAT of categories:

(F + ¥Ψ)-Alg F -Alg

F F
𝑃

−+ ¥Ψ

Ξ

𝑄 ⌟ (24)

Explicitly, the objects of (F + ¥Ψ)-Alg are tuples:

⟨ ¤Σ ∈ Eqs(E), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ E , 𝛼 : Σ𝐴→ 𝐴, 𝛽 : Ψ𝐴→ 𝐴 ⟩
such that ⟨ ¤Σ,𝑇Σ ⟩ ∈ F , ⟨𝐴, 𝛼 ⟩ ∈ ¤Σ-Alg, ⟨𝐴, 𝛽 ⟩ ∈ ¤Ψ-Alg, and 𝑇Ψ⟨𝐴, 𝛼 ⟩ = 𝑇Σ⟨𝐴, 𝛽 ⟩ ∈ Mon(E). Ar-
rows in (F + ¤Ψ)-Alg are similar to those ⟨𝑇,ℎ ⟩ inF -Alg, but requireℎ also to be a ¤Ψ-homomorphism.

The pullback (24) also induces two functors 𝑄 and Ξ. The functor 𝑄 : (F + ¥Ψ)-Mon → F is

the projection to F , and it is a fibration with a split cleavage similar to that of 𝑃 . The functor Ξ :

(F + ¤Ψ)-Mon→ F -Monmaps objects ⟨ ¤Σ,𝑇Σ, 𝐴, 𝛼, 𝛽 ⟩ to ⟨ ⟨ ¤Σ,𝑇Σ ⟩ + ⟨ ¤Ψ,𝑇Ψ ⟩, 𝐴, [𝛼, 𝛽] ⟩. Additionally,
the pair ⟨Ξ,− + ¤Ψ ⟩ is a morphism of (split) fibrations from 𝑄 to 𝑃 .

Now we have enough machinery to spell out the fibrational formulation of modular models.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:22 Zhixuan Yang and Nicolas Wu

Theorem 5.4. Modular models𝑀 of some ¥Ψ ∈ F as in Definition 5.2 are in bijection with functors

�̄� : F -Alg → (F + ¥Ψ)-Alg such that 𝑄 ◦ �̄� = 𝑃 with 𝑃 and 𝑄 as in (24). A modular model 𝑀 is

strong (resp. strict) iff �̄� is a morphism of fibrations (resp. split fibrations) from 𝑃 to 𝑄 .

This theorem is essentially a lax version of the equivalence between CAT-valued functors and

(split) fibrations. A proof by diagram chasing can be found in the appendix. The advantage of the

fibrational formulation is that it reduces the 2-categorical notion of lax transformations to the

1-categorical notion of functors. Consequently, 3-categorical concepts can be avoided when talking

about transformations of modular models, such as the following concept of liftings.

Definition 5.5. A lifting
¯𝑙 for a modular model �̄� is a natural transformation

¯𝑙 : Id→ Ξ ◦ �̄� such

that 𝑃 ◦ ¯𝑙 = 𝜄 ◦ 𝑃 where 𝜄 : Id→ − + ¥Ψ is the coprojection in F and 𝑃,𝑄,Ξ are as in (24):

F -Alg (F + ¥Ψ)-Alg F -Alg

F F F

Id

Id

Ξ�̄�

𝑃𝑃

Id (−)+ ¥Ψ

𝑄

¯𝑙

𝜄

⌟

Also, with the fibrational formulation, the ‘dependently typed’ mapping sending every ¥Σ ∈ F to

its initial algebra 𝜇 ¤Σ in ¤Σ-Alg now can be conveniently formulated as a functor (−)★ : F → F -Alg:
¥Σ ↦→ ⟨ ¤Σ, 𝑇Σ, 𝜇 ¤Σ, 𝛼Σ

: Σ(𝜇 ¤Σ) → 𝜇 ¤Σ ⟩ (𝑇 : ¥Σ→ ¥Ψ) ↦→ ⟨𝑇, 𝑢 : ⟨𝜇 ¤Σ, 𝛼Σ ⟩ → 𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ ⟩ ⟩ (25)

where 𝑢 is the unique ¤Σ-homomorphism out of the initial algebra 𝜇 ¤Σ.

Example 5.6. For a trivial example of modular models, let F be the monoidal theory family

containing only the theory Mon of monoids in E with the identity translation Mon→ Mon. In
this case, F -Alg is exactly the category Mon(E) of monoids in E . A modular model 𝑀 with a

lifting 𝑙 of ⟨Mon, id⟩ in F is precisely a (covariant)monoid transformer [Jaskelioff and Moggi 2010]:

Mon(E) Mon(E).
Id

𝑀

𝑙 Thus modular models subsume monoid transformers.

Example 5.7. For a concrete example, let E be ⟨Endo𝜅 (C), ◦, Id⟩ for l𝜅p C . A strict modular

model𝑀 for the theory Et𝐸 of exception throwing (Example 3.6) in the family ALG(E) of algebraic
operations is given by a family of functors𝑀 ¥Σ : ¥Σ-Alg→ (¥Σ + Et𝐸)-Alg natural in ¥Σ ∈ ALG(E).
Recall that objects of ¥Σ-Alg are tuples as follows satisfying certain equations:

⟨𝐴 ∈ E , 𝛼 : Σ ◦𝐴→ 𝐴, 𝜂𝐴 : Id→ 𝐴, 𝜇𝐴 : 𝐴 ◦𝐴→ 𝐴 ⟩.

Each of them is mapped by𝑀 ¥Σ to a (¥Σ + Et𝐸)-algebra carried by the exception monad transformer

𝐶𝐴 = 𝐴 ◦ (E + Id), where E is the 𝐸-fold product of 1 in Endo𝜅 (C). The carrier is equipped with

operations [𝛼♯, 𝛽] : (Σ ◦𝐶𝐴) + E→ 𝐶𝐴, where

𝛼♯ = J𝑠 : Σ, 𝑎 : 𝐴, 𝑒 : E + Id ⊢ (𝛼 (𝑠, 𝑎), 𝑒) : 𝐶𝐴K 𝛽 = J𝑒 : E ⊢ (𝜂𝐴, inj
1
𝑒) : 𝐶𝐴K

and 𝐶𝐴 has the following monad structure:

𝜂𝐶 = J· ⊢ (𝜂𝐴, inj
2
(∗)) : 𝐶𝐴K 𝜇𝐶 = J𝑎 : 𝐴, 𝑒 : E + Id, 𝑎′ : 𝐴, 𝑒′ : E + Id ⊢

let (𝑎′′, 𝑒′′) = 𝑑 (𝑒, 𝑎′) in (𝜇𝐴 (𝑎, 𝑎′′), 𝜇E+Id (𝑒′′, 𝑒′))K

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:23

where 𝑑 : (E + Id) ◦𝐴→ 𝐴 ◦ (E + Id) is a distributive law2
:

𝑒 : E + Id, 𝑎 : 𝐴 ⊢ case 𝑒 of { inj
1
𝑒′ ↦→ (𝜂𝐴, inj

1
𝑒′); inj

2
∗ ↦→ (𝑎, inj

2
∗) : 𝐶𝐴},

and 𝜇E+Id is the multiplication of the exception monad E + Id:

𝑥 : E + Id, 𝑦 : E + Id ⊢ case 𝑥 of { inj
1
𝑒 ↦→ inj

1
𝑒; inj

2
∗ ↦→ 𝑦} : E + Id.

The arrow mapping of 𝑀 ¥Σ sends a ¤Σ-homomorphism ℎ : 𝐴 → 𝐵 to ℎ ◦ (E + 𝐼) : 𝐶𝐴 → 𝐶𝐵 . The

modular model𝑀 has a lifting 𝑙 ¥Σ,⟨𝐴, 𝛼 ⟩ = J𝑎 : 𝐴 ⊢ (𝑎, inj
2
∗) : 𝐶𝐴K.

5.2 Interpretation with Modular Models
The point of modular models might be clearer by seeing how they are used to interpret abstract

syntax. First recall that the abstract syntax of terms of some equational system ¤Ψ is modelled by

the initial algebra 𝜇 ¤Ψ, then for every ordinary model ⟨𝐴, 𝛼 ⟩ of ¤Ψ, the unique ¤Ψ-homomorphism

from 𝜇 ¤Ψ to 𝐴 is the interpretation of the syntax using the model 𝐴.

Now let 𝑀 be a modular model of some theory ¥Ψ = ⟨ ¤Ψ,𝑇Ψ ⟩ in some monoidal theory family

F . By Definition 4.1, every ¥Σ = ⟨ ¤Σ,𝑇Σ ⟩ ∈ F has free algebras and thus an initial algebra ⟨𝜇 ¤Σ, 𝛼Σ ⟩,
which is mapped by 𝑀 ¥Σ : ¥Σ-Alg → (¥Σ + ¥Ψ)-Alg to an algebra of ¥Σ + ¥Ψ. Then the initial algebra

𝜇 (¥Σ + ¥Ψ) of (the equational system part of) ¥Σ + ¥Ψ induces a unique homomorphism:

ℎ ¥Σ : 𝜇 (¥Σ + ¥Ψ) → 𝑀 ¥Σ⟨𝜇 ¤Σ, 𝛼Σ ⟩. (26)

The intuition is that this morphism modularly interprets the ¤Ψ-operations in the abstract syntax

𝜇 (¥Σ + ¥Ψ) with a modular model𝑀 , leaving operations from the other theory ¥Σ uninterpreted. For

example, with the modular model in Example 5.7, we can interpret terms of exception throwing

mixed with other algebraic operations: (26) specialises to ℎ ¥Σ : 𝜇 (¥Σ + Et𝐸) → (𝜇 ¤Σ ◦ (E + Id)).
As a special case, let ¥Σ be the theory ⟨Mon, id⟩ of monoids (which is always in F since it is the

initial object of F and F is closed under finite coproducts), and then 𝜇 ¤Σ is the initial monoid 𝐼 and

𝜇 (¥Σ + ¥Ψ) � 𝜇 ¤Ψ. In this case, the morphism ℎ ¥Σ : 𝜇 ¤Ψ→ ¥𝑀 ⟨ 𝐼 , 𝛼 𝐼 ⟩ (26) interprets the abstract syntax
𝜇 ¤Ψ without any more uninterpreted operations.

The interpretation (26) can be formulated as a natural transformation in ¥Σ by using the functor

(−)★ : F → F -Alg (25) sending every ¥Σ ∈ F to its initial algebra in F -Alg.

Proposition 5.8. Given a modular model𝑀 of ¥Ψ ∈ F , there is a natural transformation

¤ℎ𝑀 : (− + ¥Ψ)★→ Ξ�̄� (−)★ : F → F -Alg (27)

such that all
¤ℎ𝑀¥Σ = ⟨ id ¥Σ+ ¥Ψ, ℎ ¥Σ ⟩, where �̄� : F -Alg → (F + ¥Ψ)-Alg is the equivalent form of 𝑀 in

Theorem 5.4, and Ξ : (F + ¥Ψ)-Alg→ F -Alg is defined as in (24).

Remark. Since ¥Σ + ¥Ψ extends the theory of monoids, the interpretation (27) is always a monoid

morphism, and thus it preserves monoid multiplication 𝜇. This is called the semantic substitution

lemma [Tennent 1991] for E = ⟨SetFin, •,𝑉 ⟩ since 𝜇 stands for substitution in this case.

Liftings of modular models (Definition 5.5) are useful for reusing existing interpretations. Suppose

that some operations are first modelled by a theory ¥Σ and interpreted with some model 𝐴 ∈ ¥Σ-Alg,
and later some new operations ¥Ψ are added, and ¥Ψ has a modular model𝑀 with a lifting 𝑙 . Then by

the initiality of 𝜇 ¥Σ, the following diagram commutes:

Syntax 𝜇 ¥Σ 𝜇 (¥Σ + ¥Ψ)

Semantics 𝐴 𝑀 ¥Σ𝐴

𝑢1

𝑙𝐴

𝜇𝜄1

𝑢2
in ¥Σ-Alg

2
The syntax case 𝑒 of {inj

1
𝑥 ↦→ 𝑡1; inj

2
𝑢 ↦→ 𝑡2} is the eliminator of coproducts.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:24 Zhixuan Yang and Nicolas Wu

where vertical arrows 𝑢𝑖 are the unique homomorphisms out of initial algebras. This implies that

interpretations of existing programs 𝜇 ¥Σ can be reused with 𝑙 , without the need to re-interpreting

existing programs by 𝑢2 · 𝜇𝜄1.

6 CONSTRUCTIONS OF MODULAR MODELS
The definition of modular models is just a mathematical formulation of the idea of semantic

modularity, and certainly, what is more interesting is the concrete examples and constructions of

modular models. In this section we show several constructions and examples, which hopefully

evidence that our framework is not a vacuous abstraction.

6.1 Modular Models from Monoid Transformers
Monad transformers, and more generally Jaskelioff and Moggi [2010]’s monoid transformers, map

every monoid𝑀 to another 𝑇𝑀 , together with a lifting𝑀 → 𝑇𝑀 . Modular models can be thought

of as more elaborate versions of monoid transformers, sending monoids with operations to monoids

with more operations, except that we do not require liftings for modular models. However, monoid

transformers can sometimes be upgraded to modular models, and there are two general results:

one for theories in ALG(E) from monoid transformers (Theorem 6.1) and ordinary models (Corol-

lary 6.2), another for theories in SCP(E) from functorial monoid transformers (Theorem 6.4).

Theorem 6.1. Let F = ALG(E) for a cordial monoidal category E . For each ¥Ψ = ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ F ,
a functor 𝐻 : Mon(E) → ¤Ψ-Alg and a natural transformation 𝜏 : Id → 𝑇Ψ ◦ 𝐻 as depicted in the

diagram on the left below can be extended to a strict modular model �̄� of ¤Ψ such that the diagram on

the right below commutes, and �̄� has a lifting
¯𝑙⟨ ⟨ ¤Σ,𝑇Σ ⟩, 𝐴, 𝛼 ⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼 ⟩ :

¤Ψ-Alg

Mon(E) Mon(E)

𝐻 𝑇Ψ

Id

𝜏

F -Alg (F + ¥Ψ)-Alg

Mon(E) ¤Ψ-Alg

�̄�

𝐻

(28)

where the unlabelled vertical arrows are the evident projection functors.

Proof. For every algebraic operation 𝛼 : 𝑆 □𝐴→ 𝐴 and monoid morphism 𝜏𝐴 : 𝐴→ 𝐻𝐴, there is

always a lifting J𝑠 : 𝑆, ℎ : 𝐻𝐴 ⊢ 𝜇𝐻 (𝜏𝐴 (𝛼 (𝑠, 𝜂𝐴)), ℎ) : 𝐻𝐴K. Details can be found in the appendix. □

Example 5.7 is in fact this theorem applied to the exception monad transformer. The state monad

transformer 𝐴 ↦→ (𝐴(𝑆 × −))𝑆 for a set 𝑆 with |𝑆 | < 𝜅 together with its model for the theory St𝑆

of mutable state (Example 3.8) yields a modular model of St𝑆 in ALG(Endo𝜅 (C)). The list monad

transformer 𝐴 ↦→ 𝜇𝑋 .𝐴(1 + (− × 𝑋)) [Jaskelioff and Moggi 2010] with its model for the theory of

explicit nondeterminism also gives rise to a modular model. Moreover, it allows us to obtain modular

models of theories in ALG(E) from ordinary models by taking coproducts of monoids.

Corollary 6.2. Let ¤𝐴 = ⟨𝐴, 𝛼 ⟩ ∈ ¤Ψ-Alg be an ordinary model of ¤Ψ-Alg for ¥Ψ = ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ ALG(E).
By Fiore and Hur [2009, Theorem 6.1], the category of monoids in E is cocomplete for E cordial.

Thus we can take coproducts of monoids, and define a functor 𝐻 : Mon(E) → ¤Ψ-Alg mapping

every monoid ¤𝑀 to the ¤Ψ-algebra ¤𝑀 +Mon (𝑇Ψ ¤𝐴) equipped with

𝑔 : Ψ, 𝑚 : ¤𝑀 +Mon (𝑇Ψ ¤𝐴) ⊢ 𝜇 (injMon,2 (𝛼 (𝑔, 𝜂𝑇Ψ
¤𝐴)), 𝑚) : ¤𝑀 +Mon (𝑇Ψ ¤𝐴)

Together with the coprojection 𝜏 ¤𝑀 : ¤𝑀 → ¤𝑀 +Mon (𝑇Ψ ¤𝐴), 𝐻 extends to a modular model of ¥Ψ.

Now we move on to the family SCP(E) of scoped operations. Let us again start with an example.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:25

Example 6.3. The theory Ec of exception throwing and catching in Example 3.7 is in the family

SCP(E) for E = ⟨Endo𝜅 (Set), ◦, Id⟩. A strict modular model for it can be constructed by extending

the modular model of throwing in Example 5.7 with (i) a model for catching and (ii) a way to lift

existing scoped operations on𝑀 to being on 𝐶𝐴 = 𝑀 ◦ (1 + Id).
(i) To equip the carrier 𝐶𝐴 = 𝐴 ◦ (1 + Id) with an operation catch : (𝐶𝐴 ×𝐶𝐴) ◦𝐶𝐴 → 𝐶𝐴, we

denote by 𝑠 the following canonical strength in Endo𝜅 (Set):
𝐶𝐴 ×𝐶𝐴 = (𝐴 ◦ (1 + Id)) ×𝐶𝐴 → 𝐴 ◦ ((1 + Id) ×𝐶𝐴) � 𝐴 ◦ (𝐶𝐴 + Id ×𝐶𝐴).

Then catch is 𝑠 ◦𝐶𝐴 followed by the arrow denoted by the following term:

𝑎 : 𝐴, 𝑏 : (𝐶𝐴 + Id ×𝐶𝐴), 𝑘 : 𝐶𝐴 ⊢ case 𝑏 of { inj
1
𝑥 ↦→ 𝜇𝐶 ((𝑎, inj

2
∗), 𝜇𝐶 (𝑥, 𝑘))

inj
2
𝑦 ↦→ let ∗ = 𝜋1𝑦 in 𝜇𝐶 ((𝑎, inj

2
∗), 𝑘)} : 𝐶𝐴

(ii) To lift an existing scoped operation 𝛼 : Σ◦𝐴◦𝐴→ 𝐴 on𝐴 to𝐶𝐴, we define 𝛼
♯

: 𝑆 ◦𝐶𝐴◦𝐶𝐴 →
𝐶𝐴 by J𝑠 : 𝑆, 𝑎 : 𝐴, 𝑚 : 1 + Id, 𝑘 : 𝐶𝐴 ⊢ 𝜇𝐶 (𝛼 (𝑠, 𝑎, 𝜂𝐴), 𝑘) : 𝐶𝐴K.

Similar to Theorem 6.1, modular models for theories ¤Ψ ∈ SCP(E) can also be obtained from

monoid transformers that implement operations of ¤Ψ. The following theorem is essentially based

on Jaskelioff and Moggi [2010]’s result that scoped operations (which they call first-order operations)

can be lifted along what they call functorial monoid transformers.

Theorem 6.4. For each ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ SCP(E) over a cordial and closed monoidal category E , a functor

𝐻 : Mon(E) → ¤Ψ-Alg and a natural transformation 𝜏 : Id → 𝑇Ψ ◦ 𝐻 such that there is some

𝐹 : E → E and 𝜎 : Id→ 𝐹 satisfying U ◦𝑇Ψ ◦𝐻 = 𝐹 ◦U and 𝜏 ◦U = 𝜎 ◦𝑈 can be extended to a strict

modular model𝑀 of ⟨ ¤Ψ,𝑇Ψ ⟩ with a lifting 𝑙 such that (28) commutes and 𝑙⟨ ⟨ ¤Σ,𝑇Σ ⟩, 𝐴, 𝛼 ⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼 ⟩ .

¤Ψ-Alg

Mon(E) Mon(E)

E E

𝐻 𝑇Ψ

Id

Id

𝐹U U

𝜏

𝜎

In comparison to Theorem 6.1, the theorem above requires

a closed E and the monoid transformer ⟨𝑇Ψ ◦ 𝐻, 𝜏 ⟩ to be

functorial, i.e. an extension of an endofunctor transformer

⟨𝐹, 𝜎 ⟩. This is because the retract 𝜖 : 𝐴/𝐴→ 𝐴 of the Cayley

embedding (Example 2.2) used essentially in the proof is not a

monoid morphism. Many monoid transformers are functorial,

including the exception monad transformer underlying Ex-

ample 6.3, the state monad transformer𝐴 ↦→ (𝐴(𝑆×−))𝑆 , and
the free monad transformer (also known as the resumption monad transformer)𝐴 ↦→ 𝜇𝑋 . 𝐴(−+𝐹𝑋)
for accessible endofunctors 𝐹 : C → C [Cenciarelli and Moggi 1993].

6.2 Free Modular Models
In this subsection we show a very general construction, the free modular models. The idea is to

construct a modular model for an arbitrary theory ¥Ψ in the theory family Mon/Eqs𝑐 (E) by using

the relative free algebra functor F ¥Σ : ¥Σ-Alg→ (¥Σ + ¥Ψ)-Alg from Theorem 3.12.

However, a problem is that this family of functors is not natural in ¥Σ. To see this, consider

E = ⟨Set,×, 1⟩. We have the following theories in the familyMon/Eqs𝑐 (E):Mon with the identity

translation; Grp with the inclusion translation 𝑇 : Mon → Grp (Example 3.10); and the theory

BLat of bounded lattices with the translation that maps monoid multiplication to lattice join ∨,
monoid identity to lattice bottom ⊥. The following diagram in CAT does not commute:

Mon-Alg Grp-Alg

(Mon + BLat)-Alg (Grp + BLat)-Alg

𝑇

FGrpFMon
𝑇+BLat

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:26 Zhixuan Yang and Nicolas Wu

The theoryMon+BLat, bounded lattices whose join ∨ and ⊥ form a monoid, is isomorphic to BLat
since ⟨∨,⊥⟩ of a lattice is already a monoid, so FMon (𝑇𝐺) for every group 𝐺 is the free bounded

lattice over 𝐺 as a monoid. On the other hand, the theory Grp + BLat, bounded lattices whose

⟨∨,⊥⟩ form a group, has only trivial models since for every element 𝑥 , ⊥ = 𝑥 ∨ 𝑥−1
, and by the

idempotent law of join,⊥ = (𝑥 ∨𝑥) ∨𝑥−1 = 𝑥 ∨ (𝑥 ∨𝑥−1) = 𝑥 ∨⊥ = 𝑥 . Therefore (𝑇 +BLat) (𝐹Grp𝐺)
is always the trivial bounded lattice for every group 𝐺 . However, the diagram above can be made

an oplax transformation, resulting in a non-strict modular model of BLat.

Theorem 6.5. Let E be a cordial category. For any ¥Ψ in the family Mon/Eqs𝑐 (E), the family of

functors F ¥Σ : ¥Σ-Alg→ (¥Σ + ¥Ψ)-Alg can be extended to a modular model.

Proof sketch. For every 𝑇 : ¥Σ→ ¥Σ′ and 𝐴 ∈ ¥Σ′-Alg, there is the unit ¥Σ′-homomorphism 𝜂 : 𝐴→
U ¥Σ′F ¥Σ′𝐴. This is mapped by 𝑇 to a ¥Σ-homomorphism 𝑇𝐴→ 𝑇U ¥Σ′F ¥Σ′𝐴 = U ¥Σ (𝑇 + ¥Ψ)F ¥Σ′𝐴.

¥Σ-Alg ¥Σ′-Alg

(¥Σ + ¥Ψ)-Alg (¥Σ + ¥Ψ)-Alg
F ¥Σ

𝑇

F ¥Σ′

𝑇+ ¥Ψ

U ¥Σ′U ¥Σ

By the universal property of F ¥Σ𝑇𝐴, there is a (¥Σ + ¥Ψ)-homomorphism F ¥Σ (𝑇𝐴) → (𝑇 + ¥Ψ) (F ¥Σ′𝐴),
which is natural in 𝐴. This makes F a modular model of ¥Ψ. □

Example 6.6. The free modular model is remarkably general as it works forMon/Eqs𝑐 (E). For
example, let us consider how the free modular model adds new operations to a model of 𝜆-calculus.

Let E be ⟨SetFin, •,𝑉 ⟩ (5). As we mentioned earlier (23), the syntax of 𝜆-calculus can be presented as

an equational system Λ = Σ⟨𝑂,𝑎 ⟩-Mon for 𝑂 = { app, abs } with 𝑎(abs) = ⟨1⟩ and 𝑎(app) = ⟨0, 0⟩.
Models of Λ can be obtained from reflexive objects 𝑈 � 𝑈𝑈 in any cartesian closed category

𝐶: every 𝑈 induces a functor 𝑈 : Fin → Set with 𝑛 ↦→ C (𝑈 𝑛,𝑈). The functor 𝑈 has a monoid

structure [𝜂𝑈 , 𝜇𝑈] (similar to that of the continuation monad), and it is a model of Λ [Hyland 2017]:

abs𝑈 : 𝑈𝑉𝑛 � C (𝑈 𝑛+1,𝑈) � C (𝑈 𝑛,𝑈𝑈) � C (𝑈 𝑛,𝑈) � 𝑈𝑛
app𝑈 : (𝑈 ×𝑈)𝑛 � C (𝑈 𝑛,𝑈 ×𝑈) � C (𝑈 𝑛,𝑈𝑈 ×𝑈) eval

U
U ·−−−−−−−−→ C (𝑈 𝑛,𝑈) � 𝑈𝑛

Now consider the theory St𝑆 of mutable state (Example 3.8) for some finite set 𝑆 . Its free modular

model maps the Λ-model on𝑈 to a (Λ +Mon St𝑆)-model whose carrier is the initial algebra

𝜇𝑋 . 𝑈 + 𝑋 • 𝑋 +𝑉 + 𝑋𝑉 + 𝑋 × 𝑋 +∏𝑆 𝑋 +
∐
𝑆 𝑋 : Fin→ Set

quotiented by equations of Λ and St𝑆 , as well as equations saying that the Λ operations of the

initial algebra acting on the first component𝑈 is the same as the model [𝜂𝑈 , 𝜇𝑈 , abs𝑈 , app𝑈] of𝑈 .

6.3 Composition and Fusion of Modular Models
Modular models of different theories are composable, justifying the name ‘modular models’. Com-

posites of modular models admit a fusion lemma, saying that interpreting a term with two modular

models sequentially is equal to interpreting with the composite of the two models.

Definition 6.7. Given (strict/strong) modular models𝑀 of ¥Ψ ∈ F and 𝑁 of ¥Φ ∈ F in the functor

form as in Theorem 5.4, their composite 𝑀 ⊲ 𝑁 is a (strict/strong) modular model of ¥Ψ + ¥Φ:

𝑀 ⊲ 𝑁 : F -Alg→ (F + ¥Ψ + ¥Φ)-Alg

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:27

defined by the pullback property (24) for (F + ¥Ψ + ¥Φ)-Alg and the commutativity of the diagram:

F -Alg (F + ¥Ψ)-Alg F -Alg (F + ¥Φ)-Alg F -Alg

F F F F F

𝑀 Ξ 𝑁 Ξ

𝑃

Id

𝑄

−+ ¥Ψ

𝑃

Id −+¥Φ

𝑄 ′ 𝑃

Also, liftings 𝑙𝑁 of 𝑁 and 𝑙𝑀 of𝑀 in the form of Theorem 5.4 compose a lifting 𝑙𝑁 ◦ 𝑙𝑀 of𝑀 ⊲ 𝑁 .

Example 6.8. Let 𝑀𝐸 be the modular model of exception throwing and catching (Example 6.3),

and𝑀𝑆 be the modular model of mutable state arising from the state monad transformer [Liang

et al. 1995] by Theorem 6.1. The composite𝑀𝐸 ⊲𝑀𝑆 is a modular model of the coproduct Ec + St𝑆
of the theories of exception and mutable state.

Remark. Although the coproduct of theories is commutative, ¥Ψ + ¥Φ � ¥Φ + ¥Ψ, the composition of

modular models is not. For example, the opposite order𝑀𝑆 ⊲𝑀𝐸 of composing the modular models

in Example 6.8 gives rise to a different modular model of the coproduct Ec + St𝑆 , in which state

and exception interact differently [Yang and Wu 2021]. Informally, when an exception is caught,

𝑀𝐸 ⊲𝑀𝑆 rolls back to the state before the catch, whereas𝑀𝑆 ⊲𝑀𝐸 keeps the state. Both behaviours

are desirable depending on the application, so the language designer needs to determine the correct

order of composing modular models according to the desired interaction.

A composite model 𝑀 ⊲ 𝑁 can be used for interpreting (¥Σ + (¥Ψ + ¥Φ))★ using
¤ℎ𝑀⊲𝑁

(27). Since

(¥Σ + (¥Ψ + ¥Φ))★ � ((¥Σ + ¥Ψ) + ¥Φ)★, it can also be interpreted by using 𝑁 and 𝑀 sequentially. The

results of these two ways can be shown to be equal by the initiality of (¥Σ + (¥Ψ + ¥Φ))★.

Lemma 6.9 (Fusion). Given modular models𝑀 of ¥Ψ and 𝑁 of ¥Φ, the following diagram commutes:

(¥Σ + (¥Ψ + ¥Φ))★ ((¥Σ + ¥Ψ) + ¥Φ)★

Ξ𝑁Ξ𝑀 ¥Σ★ Ξ𝑁 (¥Σ + ¥Ψ)★
¤ℎ𝑀⊲𝑁
¥Σ

�

¤ℎ𝑁¥Σ+ ¥ΨΞ𝑁 ¤ℎ𝑀¥Σ

where
¤ℎ is the interpretation morphism (27) and Ξ is the functor Ξ in (24).

This result is an instance of short-cut fusion [Ghani and Johann 2007; Gill et al. 1993]. It combines

two consecutive interpretations of terms (¥Σ + (¥Ψ + ¥Φ))★ into one, eliminating the intermediate result

(¥Σ + ¥Ψ)★. Thus it is useful for optimising the performance and reasoning about their interactions.

6.4 Modular Models in Symmetric Monoidal Categories
Finally, we show some constructions of modular models that are only possible in symmetric monoi-

dal categories E , such as ⟨C ,×, 1⟩ for cartesian monoids and ⟨Endo𝜅 (Set),★, Id⟩ for applicatives.
In a symmetric E , any two monoids ⟨𝐴, 𝜇𝐴, 𝜂𝐴 ⟩ and ⟨𝐵, 𝜇𝐵, 𝜂𝐵 ⟩ compose to a monoid 𝐴 □ 𝐵:

𝜇𝐴□𝐵 =
(
(𝐴 □ 𝐵) □ (𝐴 □ 𝐵) � (𝐴 □𝐴) □ (𝐵 □ 𝐵) 𝜇𝐴□𝜇𝐵−−−−−→ 𝐴 □ 𝐵

)
𝜂𝐴□𝐵 = 𝜂𝐴 □ 𝜂𝐵

Moreover, there is a canonical way to lift scoped operations 𝛼 : 𝐶 □𝐴 □𝐴→ 𝐴 on 𝐴 to 𝐴 □ 𝐵:

𝐶 □ (𝐴 □ 𝐵) □ (𝐴 □ 𝐵) � 𝐶 □ (𝐴 □𝐴) □ (𝐵 □ 𝐵) 𝛼□𝜇
𝐵

−−−−→ 𝐴 □ 𝐵

Since algebraic operations are special cases of scoped operations, they can be lifted similarly. This

allows us to upgrade ordinary models of theories in ALG(E) or SCP(E) to modular models.

Theorem6.10 (Independent Combination). Let E be a symmetric cordial category and F beALG(E)
or SCP(E). For each ¥Ψ ∈ F , every ordinary model ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular model𝑀 of ¥Ψ
such that𝑀 ¥Σ⟨𝐵, 𝛽 ⟩ is carried by 𝐴 □ 𝐵, and𝑀 has a lifting 𝑙 ¥Σ,⟨𝐵,𝛽 ⟩ = J𝑏 : 𝐵 ⊢ (𝜂𝐴, 𝑏) : 𝐴 □ 𝐵K.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:28 Zhixuan Yang and Nicolas Wu

For E = ⟨Endo𝜅 (Set),★, Id⟩, the intuition for 𝐴★ 𝐵 is that two applicative-computations 𝐴 and

𝐵 are combined in the way that they execute independently, and operations act on 𝐴★ 𝐵 pointwise.

There is another way to compose two applicatives, namely 𝐴 ◦ 𝐵 [Mcbride and Paterson 2008].

In this way, the 𝐵-computation can depend on the result of 𝐴.

Theorem 6.11 (Dependent Combination). Let E be ⟨Endo𝜅 (Set),★, Id⟩ and F be ALG(E) or
SCP(E). For each ¥Ψ ∈ F , every ordinary model ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular model 𝑀 of ¥Ψ
such that𝑀 ¥Σ⟨𝐵, 𝛽 ⟩ is carried by 𝐴 ◦ 𝐵, and𝑀 has a lifting 𝑙 ¥Σ,⟨𝐵,𝛽 ⟩ = 𝜂

𝐴 ◦ 𝐵.

Example 6.12. To highlight the difference between Theorem 6.10 and Theorem 6.11, let ¤𝐴 be the

applicative functor induced by the exception monad E+ Id. It is a model of the applicative version of

the theory Et𝐸 of exception throwing, equipped with an operation throw : E★ (E + Id) → (E + Id).
Using Theorem 6.11, it can be extended to a modular model using (E + Id) ◦ 𝐵 � (E + 𝐵) for all
applicatives 𝐵. In this model, it holds that for all elements 𝑥,𝑦 ∈ (E + 𝐵)𝑋 , throw ⟨𝑒, 𝑥 ⟩ = inj

1
𝑒 =

throw ⟨𝑒,𝑦 ⟩, which means that exception throwing discards any 𝐵-computation. But it is not true

for the independent composition (E + Id) ★ 𝐵 using Theorem 6.10.

Phasing. As our final example, we show an interestingmodularmodel formulti-phased computation,

generalising the construction that Kidney and Wu [2021] and Gibbons et al. [2022] use for breadth-

first search. The theory Pha ∈ SCP(E) has a unary scoped operation later : 𝐴□𝐴 � 𝐼 □𝐴□𝐴→ 𝐴.

The intuition is that a programmay havemultiple phases of execution, and the operation later ⟨𝑝, 𝑘 ⟩
delays the execution of p by a phase, and continues as k. For example, the program

𝜇 (later ⟨ later ⟨𝑝3, 𝑝21 ⟩, 𝑝11 ⟩, later ⟨𝑝22, 𝑝12 ⟩)
is supposed to execute 𝑝11 and 𝑝12 at phase 1, 𝑝22 and 𝑝21 at phase 2, and 𝑝3 at phase 3.

Given a monoid ¤𝐴 = ⟨𝐴, 𝜇𝐴, 𝜂𝐴 ⟩ in a symmetric closed cordial monoidal category, Kidney and

Wu [2021]’s idea can be abstracted as equipping the free monoid 𝑆𝐴 = 𝜇𝑋 . 𝐴 □ 𝑋 + 𝐼 over 𝐴 with a

nonstandard monoid structure ⟨𝑆𝐴, 𝜇𝑆𝐴 , 𝜂𝑆𝐴 ⟩ with 𝜂𝑆𝐴 = J· ⊢ out◦ (inj
2
∗)K and 𝜇𝑆𝐴 being

𝑠 : 𝑆𝐴, 𝑡 : 𝑆𝐴 ⊢ case (out 𝑠, out 𝑡) of {(inj1 (𝑎, 𝑥), inj1 (𝑎′, 𝑦)) ↦→ out
◦ (inj

1
(𝜇𝐴 (𝑎, 𝑎′), 𝜇𝑆𝐴 (𝑥,𝑦));

(inj
2
∗, 𝑦) ↦→ out

◦ 𝑦; (𝑥, inj
2
∗) ↦→ out

◦ 𝑥}
where out : (𝑆𝐴 � 𝐴 □ 𝑆𝐴 + 𝐼) : out

◦
is the isomorphism for the initial algebra. Note that the use

of variable 𝑥 and 𝑎′ does not match their order in the context, so we need a symmetric monoidal

category, and we also need closedness for implementing structural recursion on the initial algebra

𝑆𝐴. The intuition is that 𝑆𝐴 = 𝜇𝑋 .𝐴□𝑋 + 𝐼 is a list of𝐴-computations at each phase, and 𝜇𝑆𝐴 merges

two lists by multiplying computations at the same phase. The later operation on 𝑆𝐴 is defined as

J(𝑝 : 𝑆𝐴, 𝑘 : 𝑆𝐴 ⊢ 𝜇𝑆𝐴 (out◦ (inj1 (𝜂𝐴, 𝑝), 𝑘)) : 𝑆𝐴K.

Proposition 6.13. Let E be a symmetric closed cordial monoidal category. There is a modular model

𝑀 of the theory Pha of phasing in SCP(E), such that𝑀 ¥Σ⟨𝐴, 𝛼 ⟩ is carried by 𝜇𝑋 . 𝐴 □ 𝑋 + 𝐼 .
Concluding Remark. Inspired by effect handlers and monad transformers, we have developed

a framework of modular models of monoids equipped with operations. As future work, we wish

to explore the connections of our framework to Lawvere-style algebraic theories, and consider

variations of modular models that are not covariant in their domains, which will encompass modular

models based on the continuation monad transformer. Another important direction is the design of

a type theory for programming with monoidal theory families and modular models.

ACKNOWLEDGEMENTS
The authors are supported by EPSRC Grant EP/S028129/1. We would like to thank Tom Schrijvers

and the anonymous reviewers for their highly helpful feedback.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:29

REFERENCES
Jiří Adámek. 1974. Free Algebras and Automata Realizations in the Language of Categories. Commentationes Mathematicae

Universitatis Carolinae 015, 4 (1974), 589–602. http://eudml.org/doc/16649

Jiří Adámek and Jiří Rosicky. 1994. Locally Presentable and Accessible Categories. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511600579

Robert Atkey. 2009. Parameterised notions of computation. Journal of Functional Programming 19, 3–4 (2009), 335–376.

https://doi.org/10.1017/S095679680900728X

Casper Bach Poulsen and Cas van der Rest. 2023. Hefty Algebras: Modular Elaboration of Higher-Order Algebraic Effects.

Proc. ACM Program. Lang. 7, POPL, Article 62 (Jan 2023), 31 pages. https://doi.org/10.1145/3571255

Pietro Cenciarelli and Eugenio Moggi. 1993. A Syntactic Approach to Modularity in Denotational Semantics. Technical Report.

In Proceedings of the Conference on Category Theory and Computer Science. https://doi.org/10.1.1.41.7807

Paul M. Cohn. 1981. Universal Algebra. Springer Dordrecht. https://doi.org/10.1007/978-94-009-8399-1

Brian Day. 1970. On Closed Categories of Functors. In Reports of the Midwest Category Seminar IV, S. MacLane, H. Applegate,

M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street, M. Tierney, and S. Swierczkowski (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 1–38.

Andrzej Filinski. 1994. Representing Monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Portland, Oregon, USA) (POPL ’94). Association for Computing Machinery, New York, NY,

USA, 446–457. https://doi.org/10.1145/174675.178047

Andrzej Filinski. 1999. Representing Layered Monads. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (San Antonio, Texas, USA) (POPL ’99). Association for Computing Machinery, New

York, NY, USA, 175–188. https://doi.org/10.1145/292540.292557

Marcelo Fiore. 2008. Second-Order and Dependently-Sorted Abstract Syntax. In Proceedings of the 2008 23rd Annual IEEE

Symposium on Logic in Computer Science (LICS ’08). IEEE Computer Society, USA, 57–68. https://doi.org/10.1109/LICS.

2008.38

Marcelo Fiore and Chung-Kil Hur. 2007. Equational Systems and Free Constructions. In Proceedings of the 34th International

Conference on Automata, Languages and Programming (Wrocław, Poland) (ICALP’07). Springer-Verlag, Berlin, Heidelberg,

607–618. https://doi.org/10.1007/978-3-540-73420-8_53

Marcelo Fiore and Chung-Kil Hur. 2009. On the Construction of Free Algebras for Equational Systems. Theoretical Computer

Science 410, 18 (2009), 1704–1729. https://doi.org/10.1016/j.tcs.2008.12.052

Marcelo Fiore and Ola Mahmoud. 2014. Functorial Semantics of Second-Order Algebraic Theories. https://doi.org/10.48550/

ARXIV.1401.4697

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In Proceedings. 14th Symposium

on Logic in Computer Science. 193–202. https://doi.org/10.1109/LICS.1999.782615

Marcelo Fiore and Philip Saville. 2017. List Objects with Algebraic Structure. In 2nd International Conference on Formal

Structures for Computation and Deduction (FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 84),

Dale Miller (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 16:1–16:18. https://doi.org/

10.4230/LIPIcs.FSCD.2017.16

Marcelo Fiore and Sam Staton. 2014. Substitution, jumps, and algebraic effects. Proceedings of the Joint Meeting of the 23rd

EACSL Annual Conference on Computer Science Logic, CSL 2014 and the 29th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2014 (2014). https://doi.org/10.1145/2603088.2603163

Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal Metatheory of Second-Order Abstract Syntax. Proc. ACM Program.

Lang. 6, POPL, Article 53 (Jan 2022), 29 pages. https://doi.org/10.1145/3498715

Neil Ghani and Patricia Johann. 2007. Monadic Augment and Generalised Short Cut Fusion. Journal of Functional

Programming 17, 6 (2007), 731–776. https://doi.org/10.1017/S0956796807006314

Neil Ghani and Tarmo Uustalu. 2004. Coproducts of Ideal Monads. RAIRO - Theoretical Informatics and Applications 38, 4

(Oct 2004), 321–342. https://doi.org/10.1051/ita:2004016

Neil Ghani, Tarmo Uustalu, and Makoto Hamana. 2006. Explicit Substitutions and Higher-Order Syntax. Higher-Order and

Symbolic Computation (2006). https://doi.org/10.1007/s10990-006-8748-4

Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrijvers, and Nicolas Wu. 2022. Breadth-First Traversal via Staging. In

Mathematics of Program Construction, Ekaterina Komendantskaya (Ed.). Springer International Publishing, Cham, 1–33.

https://doi.org/10.1007/978-3-031-16912-0_1

Andy Gill and Edward Kmett. 2012. mtl: Monad classes, using functional dependencies. https://hackage.haskell.org/package/

mtl.

AndrewGill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Proceedings of the Conference

on Functional Programming Languages and Computer Architecture (Copenhagen, Denmark) (FPCA ’93). Association for

Computing Machinery, New York, NY, USA, 223–232. https://doi.org/10.1145/165180.165214

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

http://eudml.org/doc/16649
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/3571255
https://doi.org/10.1.1.41.7807
https://doi.org/10.1007/978-94-009-8399-1
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/292540.292557
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1007/978-3-540-73420-8_53
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.48550/ARXIV.1401.4697
https://doi.org/10.48550/ARXIV.1401.4697
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1145/3498715
https://doi.org/10.1017/S0956796807006314
https://doi.org/10.1051/ita:2004016
https://doi.org/10.1007/s10990-006-8748-4
https://doi.org/10.1007/978-3-031-16912-0_1
https://hackage.haskell.org/package/mtl
https://hackage.haskell.org/package/mtl
https://doi.org/10.1145/165180.165214

208:30 Zhixuan Yang and Nicolas Wu

Claudio Hermida. 2000. Representable Multicategories. Advances in Mathematics 151, 2 (2000), 164–225. https://doi.org/10.

1006/aima.1999.1877

Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Mathematics of

Program Construction, Jeremy Gibbons and Pablo Nogueira (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 324–362.

https://doi.org/10.1007/978-3-642-31113-0_16

John Hughes. 1986. A Novel Representation of Lists and its Application to the Function "reverse". Inf. Process. Lett. 22 (01

1986), 141–144.

John Hughes. 2000. Generalising Monads to Arrows. Science of Computer Programming 37, 1 (2000), 67–111. https:

//doi.org/10.1016/S0167-6423(99)00023-4

Martin Hyland. 2017. Classical Lambda Calculus in Modern Dress. Mathematical Structures in Computer Science 27, 5 (2017),

762–781. https://doi.org/10.1017/S0960129515000377

Bart Jacobs. 1999. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics.

North Holland, Amsterdam.

Bart Jacobs, Chris Heunen, and Ichiro Hasuo. 2009. Categorical Semantics for Arrows. Journal of Functional Programming

19, 3-4 (2009), 403–438. https://doi.org/10.1017/S0956796809007308

Mauro Jaskelioff and Eugenio Moggi. 2010. Monad Transformers as Monoid Transformers. Theoretical Computer Science 411

(12 2010), 4441–4466. https://doi.org/10.1016/j.tcs.2010.09.011

Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics of Effect Systems. In Proceedings of the 41st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for

Computing Machinery, New York, NY, USA, 633–645. https://doi.org/10.1145/2535838.2535846

Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu, and Nicolas Wu. 2022. Flexible Presentations of Graded Monads.

Proc. ACM Program. Lang. 6, ICFP, Article 123 (Aug 2022), 29 pages. https://doi.org/10.1145/3547654

G.M. Kelly and John Power. 1993. Adjunctions whose counits are coequalizers, and presentations of finitary enriched

monads. Journal of Pure and Applied Algebra 89, 1 (1993), 163–179. https://doi.org/10.1016/0022-4049(93)90092-8

G. M. Kelly. 1982. Structures defined by finite limits in the enriched context, I. Cahiers de Topologie et Géométrie Différentielle

Catégoriques 23, 1 (1982), 3–42.

Donnacha Oisín Kidney and Nicolas Wu. 2021. Algebras for Weighted Search. Proc. ACM Program. Lang. 5, ICFP, Article 72

(Aug 2021), 30 pages. https://doi.org/10.1145/3473577

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. SIGPLAN Not. 50, 12 (Aug 2015), 94–105.

https://doi.org/10.1145/2887747.2804319

Anders Kock. 1972. Strong Functors and Monoidal Monads. Archiv der Mathematik 23 (12 1972), 113–120. https:

//doi.org/10.1007/BF01304852

Satoshi Kura. 2020. Graded Algebraic Theories. In Foundations of Software Science and Computation Structures, Jean Goubault-

Larrecq and Barbara König (Eds.). Springer International Publishing, Cham, 401–421. https://doi.org/10.1007/978-3-030-

45231-5_21

J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic. Cambridge University Press.

F. William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Proceedings of the National Academy of Sciences 50, 5

(1963), 869–872. https://doi.org/10.1073/pnas.50.5.869

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’95). ACM, 333–343.

https://doi.org/10.1145/199448.199528

F. E. J. Linton. 1966. Some Aspects of Equational Categories. In Proceedings of the Conference on Categorical Algebra,

S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 84–94.

https://doi.org/10.1007/978-3-642-99902-4_3

Fosco Loregian. 2021. (Co)end Calculus. Cambridge University Press. https://doi.org/10.1017/9781108778657

Saunders Mac Lane. 1998. Categories for the Working Mathematician, 2nd edn. Springer, Berlin.

Conor Mcbride and Ross Paterson. 2008. Applicative Programming with Effects. Journal of Functional Programming 18, 1

(Jan. 2008), 1–13. https://doi.org/10.1017/S0956796807006326

Dylan McDermott and Tarmo Uustalu. 2022a. Flexibly Graded Monads and Graded Algebras. In Mathematics of Program

Construction, Ekaterina Komendantskaya (Ed.). Springer International Publishing, Cham, 102–128. https://doi.org/10.

1007/978-3-031-16912-0_4

Dylan McDermott and Tarmo Uustalu. 2022b. What Makes a Strong Monad? Electronic Proceedings in Theoretical Computer

Science 360 (Jun 2022), 113–133. https://doi.org/10.4204/EPTCS.360.6

Eugenio Moggi. 1989a. An Abstract View of Programming Languages. Technical Report ECS-LFCS-90-113. Edinburgh

University, Department of Computer Science.

Eugenio Moggi. 1989b. Computational Lambda-Calculus and Monads. In Proceedings. Fourth Annual Symposium on Logic in

Computer Science. 14–23. https://doi.org/10.1109/LICS.1989.39155

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1016/j.tcs.2010.09.011
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3547654
https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.1145/3473577
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1007/BF01304852
https://doi.org/10.1007/BF01304852
https://doi.org/10.1007/978-3-030-45231-5_21
https://doi.org/10.1007/978-3-030-45231-5_21
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1145/199448.199528
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1017/9781108778657
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/978-3-031-16912-0_4
https://doi.org/10.1007/978-3-031-16912-0_4
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.1109/LICS.1989.39155

Modular Models of Monoids with Operations 208:31

Eugenio Moggi. 1991. Notions of Computation and Monads. Information and Computation 93, 1 (1991), 55 – 92. https:

//doi.org/10.1016/0890-5401(91)90052-4 Selections from 1989 IEEE Symposium on Logic in Computer Science.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems à La Carte. Proc. ACM Program. Lang. 2, ICFP,

Article 79 (Jul 2018), 29 pages. https://doi.org/10.1145/3236774

Ross Paterson. 2012. Constructing applicative functors. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) 7342 LNCS (2012), 300–323. https://doi.org/10.1007/978-3-

642-31113-0_15

Ruben P. Pieters, Exequiel Rivas, and Tom Schrijvers. 2020. Generalized Monoidal Effects and Handlers. Journal of Functional

Programming 30 (2020), e23. https://doi.org/10.1017/S0956796820000106

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics for Operations with Scopes. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,

2018, Anuj Dawar and Erich Grädel (Eds.).

Gordon Plotkin and John Power. 2001. Semantics for Algebraic Operations. Electronic Notes in Theoretical Computer Science

45 (2001), 332–345. https://doi.org/10.1016/S1571-0661(04)80970-8

Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Foundations of Software Science and

Computation Structures, 5th International Conference (FOSSACS 2002), Mogens Nielsen and Uffe Engberg (Eds.). Springer,

342–356. https://doi.org/10.1007/3-540-45931-6_24

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1 (Feb.

2003), 69–94. https://doi.org/10.1023/A:1023064908962

Gordon Plotkin and John Power. 2004. Computational Effects and Operations: An Overview. Electr. Notes Theor. Comput.

Sci. 73 (10 2004), 149–163. https://doi.org/10.1016/j.entcs.2004.08.008

Gordon Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (Dec 2013).

https://doi.org/10.2168/lmcs-9(4:23)2013

John Power. 1999. Enriched Lawvere Theories. Theory and Applications of Categories 6, 7 (1999), 83–93.

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress.

Exequiel Rivas and Mauro Jaskelioff. 2017. Notions of Computation as Monoids. Journal of Functional Programming 27,

September (Oct 2017). https://doi.org/10.1017/S0956796817000132 arXiv:1406.4823

Ian Stark. 2008. Free-algebra models for the 𝜋-calculus. Theoretical Computer Science 390, 2 (2008), 248–270. https:

//doi.org/10.1016/j.tcs.2007.09.024 Foundations of Software Science and Computational Structures.

Wouter Swierstra. 2008. Data types à la carte. Journal of Functional Programming 18, 4 (2008), 423–436. https://doi.org/10.

1017/S0956796808006758

Robert D Tennent. 1991. Semantics of programming languages. Vol. 1. Prentice Hall New York.

Janis Voigtländer. 2008. Asymptotic Improvement of Computations over Free Monads. In Mathematics of Program Construc-

tion, Philippe Audebaud and Christine Paulin-Mohring (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 388–403.

https://doi.org/10.1007/978-3-540-70594-9_20

Philip Wadler. 1995. Monads for Functional Programming. In Advanced Functional Programming, First International

Spring School on Advanced Functional Programming Techniques-Tutorial Text. Springer-Verlag, Berlin, Heidelberg, 24–52.

https://doi.org/10.5555/647698.734146

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell - Haskell ’14 (2014), 1–12. https://doi.org/10.1145/2633357.2633358

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. 2022. Structured Handling of Scoped

Effects. Springer-Verlag, Berlin, Heidelberg, 462–491. https://doi.org/10.1007/978-3-030-99336-8_17

Zhixuan Yang and Nicolas Wu. 2021. Reasoning about Effect Interaction by Fusion. Proc. ACM Program. Lang. 5, ICFP,

Article 73 (Aug. 2021), 29 pages. https://doi.org/10.1145/3473578

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3236774
https://doi.org/10.1007/978-3-642-31113-0_15
https://doi.org/10.1007/978-3-642-31113-0_15
https://doi.org/10.1017/S0956796820000106
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1017/S0956796817000132
https://arxiv.org/abs/1406.4823
https://doi.org/10.1016/j.tcs.2007.09.024
https://doi.org/10.1016/j.tcs.2007.09.024
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.5555/647698.734146
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1007/978-3-030-99336-8_17
https://doi.org/10.1145/3473578

208:32 Zhixuan Yang and Nicolas Wu

A PROOFS WITH MORE DETAILS
This appendix contains more detailed proofs or proof sketches of some claims in this paper.

Lemma A.1. For a cocomplete category C , every functorial translation 𝑇 : ¤Σ → ¤Ψ in Eqs𝑐 (C)
induces a functor𝑇 : Ψ-Alg→ Σ-Alg such that it restricts to𝑇 : ¤Ψ-Alg→ ¤Σ-Alg on ¤Ψ-Alg ⊆ Ψ-Alg.

Proof of Lemma A.1. Given any Ψ-algebra ⟨𝐴, 𝛼 : Ψ𝐴→ 𝐴 ⟩, there is a free ¤Ψ-algebra over 𝐴 with

structure map 𝑜 : Ψ(F ¤Ψ𝐴) → F ¤Ψ𝐴. It is mapped by 𝑇 to a ¤Σ-algebra 𝑇𝑜 : Σ(F ¤Ψ𝐴) → (F ¤Ψ𝐴). We

now define the functor 𝑇 : Ψ-Alg→ Σ-Alg by

𝑇 ⟨𝐴, 𝛼 ⟩ = ⟨𝐴, Σ𝐴
Σ𝜂𝐴−−−→ Σ(F ¤Ψ𝐴)

𝑇𝑜−−→ F ¤Ψ𝐴
𝜖𝐴,𝛼−−−→ 𝐴⟩.

To see that 𝑇 restricts to 𝑇 on ¤Ψ-Alg, suppose ⟨𝐴, 𝛼 ⟩ ∈ ¤Ψ. The functorial translation maps the

counit 𝜖𝐴,𝛼 : ⟨F ¤Ψ𝐴,𝑜 ⟩ → ⟨𝐴, 𝛼 ⟩ to the following commutative diagram:

Σ(F ¤Ψ𝐴) F ¤Ψ𝐴

Σ𝐴 𝐴

𝑇𝑜

𝜖

𝑇𝛼

Σ𝜖

Therefore 𝑇 maps 𝛼 to the algebra 𝜖 ·𝑇𝑜 · Σ𝜂𝐴 = 𝑇𝛼 · Σ𝜖 · Σ𝜂𝐴 = 𝑇𝛼 since 𝜖𝐴,𝛼 · 𝜂𝐴 = id. □

Theorem 3.12. For cocomplete C , every functorial translation 𝑇 : ¤Σ→ ¤Ψ in Eqs𝑐 (C) as a functor
𝑇 : ¤Ψ-Alg→ ¤Σ-Alg has a left adjoint 𝐹 : ¤Σ-Alg→ ¤Ψ-Alg.

Proof of Theorem 3.12. The idea of the proof is to construct the left adjoint 𝐹 via the initial algebra

some other equational system, which is essentially the same idea as the standard result that the free

algebra for a functor Σ : C → C over an object 𝐴 ∈ C can be constructed via the initial algebra of

the functor 𝐴 + Σ−, except that we need to take equations into account.

Let ¤Σ = (Σ ⊲𝐺 ⊢ 𝐿 = 𝑅). To construct the free ¤Ψ-algebra over a ¤Σ-algebra ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴 ⟩, we
consider the equational system

¤Ψ𝐴 B ¤Ψ ↰op K𝐴 ↰eq (KΣ𝐴 ⊢ 𝐿′ = 𝑅′) (29)

where K𝑋 is the constant functor mapping to 𝑋 , and 𝐿′, 𝑅′ : (Ψ + K𝐴)-Alg→ K𝐺𝐴-Alg are

𝐿′⟨𝐵, 𝛽 : Ψ𝐵 → 𝐵, 𝑖 : 𝐴→ 𝐵 ⟩ = (Σ𝐴 Σ𝑖−→ Σ𝐵
𝑇 ⟨𝐵,𝛽 ⟩
−−−−−−→ 𝐵),

𝑅′⟨𝐵, 𝛽 : Ψ𝐵 → 𝐵, 𝑖 : 𝐴→ 𝐵 ⟩ = (Σ𝐴 𝛼−→ 𝐴
𝑖−→ 𝐵).

where 𝑇 : Ψ-Alg → Σ-Alg is induced by 𝑇 : ¤Ψ-Alg → ¤Σ-Alg by Lemma A.1. Since constant

functors K𝐴 and K𝐺𝐴 trivially preserves all colimits, the equational system ¤Ψ𝐴 is in Eqs𝑐 (C) and
thus has an initial algebra ⟨𝐵0, 𝛽 : Ψ𝐵0 → 𝐵0, 𝑖 : 𝐴→ 𝐵0 ⟩.

Note that the functorial equation 𝐿′ = 𝑅′ encodes a Σ-algebra homomorphism:

Σ𝐴 Σ𝐵

𝐴 𝐵

𝛼

𝑖

Σ𝑖

𝑇 ⟨𝐵,𝛽 ⟩ (30)

Since 𝑇 and 𝑇 coincides on ¤Ψ algebras, 𝑇 ⟨𝐵0, 𝛽 ⟩ is the same as 𝑇 ⟨𝐵0, 𝛽 ⟩. Therefore 𝑖 : 𝐴→ 𝐵0 is a

¤Σ-algebra homomorphism from ⟨𝐴, 𝛼 ⟩ to 𝑇 ⟨𝐵0, 𝛽 ⟩.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:33

Next we show that the arrow 𝑖 : ⟨𝐴, 𝛼 ⟩ → 𝑇 ⟨𝐵0, 𝛽 ⟩ is a universal arrow from ⟨𝐴, 𝛼 ⟩ to the

functor 𝑇 : ¤Ψ-Alg → ¤Σ-Alg. For every ⟨𝐶, 𝛿 ⟩ ∈ ¤Ψ-Alg and an arrow 𝑓 : ⟨𝐴, 𝛼 ⟩ → 𝑇 ⟨𝐶, 𝛿 ⟩, we
need to find a unique ℎ : ⟨𝐵0, 𝛽 ⟩ → ⟨𝐶, 𝛿 ⟩ such that 𝑇ℎ · 𝑖 = 𝑓 :

⟨𝐴, 𝛼 ⟩ 𝑇 ⟨𝐵0, 𝛽 ⟩ ⟨𝐵0, 𝛽 ⟩

𝑇 ⟨𝐶, 𝛿 ⟩ ⟨𝐶, 𝛿 ⟩

𝑖

𝑇ℎ
𝑓

ℎ

Recall that by definition the translation 𝑇 preserves carriers and homomorphisms, so 𝑇 ⟨𝐶, 𝛿 ⟩ =
⟨𝐶, 𝛿 ′ ⟩ for some 𝛿 ′ : Σ𝐶 → 𝐶 . We observe that ⟨𝐶, 𝛿, 𝑓 ⟩ is a model of ¤Ψ𝐴 (29), and thus by the

initiality of ⟨𝐵0, 𝛽 ⟩, there is a ℎ : ⟨𝐵0, 𝛽, 𝑖 ⟩ → ⟨𝐶, 𝛿, 𝑓 ⟩. Since ℎ is a ¤Ψ𝐴-homomorphism, we have

ℎ · 𝑖 = 𝑓 . Hence 𝑇ℎ · 𝑖 = 𝑓 as the translation 𝑇 preserves homomorphisms.

It remains to show the uniqueness of such ℎ : ⟨𝐵0, 𝛽 ⟩ → ⟨𝐶, 𝛿 ⟩ ∈ ¤Ψ-Algwith ℎ · 𝑖 = 𝑓 . Assuming

there is such an ℎ′, then ℎ′ is also a ¤Ψ𝐴-homomorphism from ⟨𝐵0, 𝛽, 𝑖 ⟩ to ⟨𝐶, 𝛿, 𝑖 ⟩. Therefore ℎ′ = ℎ
by the initiality of ⟨𝐵0, 𝛽, 𝑖 ⟩.
We have shown that for every ¤Σ-algebra ⟨𝐴, 𝛼 ⟩, there is a universal arrow from ⟨𝐴, 𝛼 ⟩ to

𝑇 : ¤Ψ-Alg→ ¤Σ-Alg. This extends to an adjunction 𝐹 ⊣ 𝑇 by [Mac Lane 1998, §IV.1 Theorem 2]. □

Theorem 3.13. The category Eqs𝑐 (C) is cocomplete if C is cocomplete.

Proof sketch of Theorem 3.13. Arbitrary colimits can be constructed from coproducts and coequalis-

ers. Thus it is sufficient to show that Eqs𝑐 (C) has set-indexed coproducts and coequalisers. We

sketch the constructions here and omit the proof of the universal properties.

(i) The coproduct of a set of equational systems is obtained by taking the coproduct of signatures

and equations. Precisely, the coproduct

∐
𝑖∈𝐼 ¤Σ𝑖 has signature

∐
𝑖 Σ𝑖 and equation

∐
𝑖∈𝐼 Γ𝑖 ⊢ 𝐿 = 𝑅

where 𝐿 and 𝑅 : (∐𝑖∈𝐼 Σ𝑖)-Alg→ (
∐
𝑖∈𝐼 Γ𝑖)-Alg are

𝐿⟨𝐴, 𝛼 :

∐
𝑖∈𝐼 Σ𝑖𝐴→ 𝐴 ⟩ = [𝐿𝑖 (𝛼 · 𝜄𝑖)]𝑖∈𝐼 and 𝑅⟨𝐴, 𝛼 :

∐
𝑖∈𝐼 Σ𝑖𝐴→ 𝐴 ⟩ = [𝑅𝑖 (𝛼 · 𝜄𝑖)]𝑖∈𝐼 .

(ii) Let𝑇1,𝑇2 : ¤Ψ→ ¤Σ be a pair of translations. The codomain ¤Σ′ of their coequaliser is ¤Σ extended

with an additional equation 𝑇1 = 𝑇2, where 𝑇1,𝑇2 : Σ-Alg→ Ψ-Alg are obtained from 𝑇1 and 𝑇2 by

Lemma A.1. The coequaliser ¤Σ→ ¤Σ′ is the inclusion functor: ¤Σ′-Alg ↩→ ¤Σ-Alg. □

Lemma 3.14. Let ¤Σ ∈ Eqs(C) for C a category with finite coproducts, and for 𝑖 ∈ {1, 2}, let
Θ𝑖 : C → C be a functorial signature and 𝐸𝑖 = (Θ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖) be an equation. Let 𝑇1 and 𝑇2 in the

diagram below be the inclusion translations, then the following is a pushout diagram of 𝑇1 and 𝑇2:

¤Σ ¤Σ ↰op Φ2 ↰eq 𝐸2

¤Σ ↰op Φ1 ↰eq 𝐸1
¤Σ ↰op (Φ1 + Φ2) ↰eq 𝐸

𝑇2

𝑇1

where 𝐸 = (Θ1+Θ2 ⊢ [𝐿1◦𝛼1, 𝐿2◦𝛼2] = [𝑅1◦𝛼1, 𝑅2◦𝛼2]) and 𝛼𝑖 : (Σ+(Φ1+Φ2))-Alg→ (Σ+Φ𝑖)-Alg
is the projection functor.

Proof of Lemma 3.14. First of all, there are evident inclusion translations 𝑃𝑖 (which are the unlabelled

arrows in the pushout diagram):

𝑃𝑖 : (¤Σ ↰op (Φ1 + Φ2) ↰eq 𝐸
′)-Alg → (¤Σ ↰op Φ𝑖 ↰eq 𝐸𝑖)-Alg

such that𝑇1 ◦𝑃1 = 𝑇2 ◦𝑃2. Now for every equational system ¤Ψ ∈ Eqs(C) with translations functors

𝑄𝑖 : ¤Ψ-Alg→ (¤Σ ↰op Φ𝑖 ↰eq 𝐸𝑖)-Alg

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:34 Zhixuan Yang and Nicolas Wu

such that 𝑇1 ◦𝑄1 = 𝑇2 ◦𝑄2, we can define a translation functor

𝑈 : ¤Ψ-Alg→ (¤Σ ↰op (Φ1 + Φ2) ↰eq 𝐸
′)-Alg

by sending every ¤Ψ-algebra ¤𝐴 = ⟨𝐴, 𝛼 ⟩ to the algebra on 𝐴 with structure map:

[𝑇1 (𝑄1
¤𝐴), 𝑄1

¤𝐴 · 𝜄2, 𝑄2
¤𝐴 · 𝜄2] : (Σ + Φ1 + Φ2)𝐴→ 𝐴

It can be checked that such𝑈 is the unique one making 𝑃𝑖 ◦𝑈 = 𝑄𝑖 . □

Theorem 4.3. For a cordial monoidal category E , there is an equivalence ALG(E) � Mon(E)
between the category ALG(E) and the category Mon(E) of monoids in E .

Proof of Theorem 4.3. The directionALG(E) → Mon(E) of the equivalence sends every theory ¥Σ =

⟨ ¤Σ,𝑇Σ ⟩ in ALG(E) to its initial algebra ⟨𝜇 ¤Σ, 𝛼Σ ⟩ regarded as a monoid 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ ⟩. To extend the

mapping to a functor, every translation𝑇 : ¥Σ→ ¥Ψ ∈ ALG(E) induces the unique ¥Σ-homomorphism

out of the initial algebra:

ℎ : ⟨𝜇 ¤Σ, 𝛼Σ ⟩ → 𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ ⟩.
Then the arrow mapping is 𝑇 ↦→ 𝑇Σℎ where

𝑇Σℎ : 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ ⟩ → 𝑇Σ (𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ ⟩) = 𝑇Ψ⟨𝜇 ¤Ψ, 𝛼Ψ ⟩.
The equality 𝑇Σ ◦𝑇 = 𝑇Ψ : ¤Ψ-Alg→ Mon(E) is by the definition of arrows in ALG(E).

For the other direction, every monoid ¤𝑀 = ⟨𝑀, 𝜇𝑀 , 𝜂𝑀 ⟩ in E is sent to the theory ¤𝑀-Act of
¤𝑀-actions on monoids, which is the theory of (𝑀 □ −)-Mon extended with equations

· ⊢ op(𝜂𝑀 , 𝜂𝜏) = 𝜂𝜏 : 𝜏

𝑥 : 𝑀,𝑦 : 𝑀 ⊢ op(𝜇𝑀 (𝑥,𝑦), 𝜂𝜏) = op(𝑥, op(𝑦, 𝜂𝜏)) : 𝜏

saying that op : 𝑀 □𝜏 → 𝜏 is a monoid action on 𝜏 . Every monoid morphism 𝑓 : ¤𝑀 → ¤𝑁 is mapped

to the translation ¤𝑀-Act→ ¤𝑁 -Act sending ¤𝑁 -actions (note the contra-variance of translations)

⟨𝐴 ∈ E , 𝛼 : (𝑁 □𝐴) + ΣMon𝐴→ 𝐴 ⟩
to ¤𝑀-actions ⟨𝐴, [𝛼 · 𝜄1 · (𝑓 □𝐴), 𝛼 · 𝜄2] : (𝑀 □𝐴) + ΣMon𝐴→ 𝐴 ⟩.

It remains to show that the mappings above are a pair of equivalence:

• Starting from a monoid ¤𝑀 , it can be shown that the category (¤𝑀-Act)-Alg is equivalent to

the coslice category ¤𝑀/Mon(E) (see e.g. [Fiore and Saville 2017, Proposition 5.5]). Thus the initial

algebra of ¤𝑀-Act is ¤𝑀 as required.

• Starting from a theory ⟨ ¤Σ,𝑇Σ ⟩ ∈ ALG(E) where
¤Σ = (𝑆 □ −)-Mon ↰eq (K𝐵 ⊢ 𝐿 = 𝑅),

it is mapped to the monoid 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ ⟩, which is then mapped back to the theory 𝜇 ¤Σ-Act with
the inclusion translation. We need to construct an isomorphism translation 𝑇 : ¤Σ→ 𝜇 ¤Σ-Act that
preserves monoid operations. Given a monoid𝐴 with 𝛼 : 𝜇 ¤Σ□𝐴→ 𝐴 satisfying the laws of 𝜇 ¤Σ-Act,
𝑇 maps it to the ¤Σ-algebra on 𝐴 with operation

𝑆 □𝐴
𝑆□𝜂𝜇

¤Σ□𝐴
−−−−−−−→ 𝑆 □ 𝜇 ¤Σ □𝐴 𝛼𝜇 ¤Σ□𝐴−−−−−→ 𝜇 ¤Σ □𝐴 𝛼−→ 𝐴

where 𝛼𝜇
¤Σ

: 𝑆 □ 𝜇 ¤Σ → 𝜇 ¤Σ is the structure map of the initial algebra. For the inverse of 𝑇 , every

tuple ⟨𝐴, 𝛽 : 𝑆 □𝐴→ 𝐴 ⟩ ∈ ¤Σ-Alg is mapped to the following 𝜇 ¤Σ-Act-algebra on 𝐴:

𝜇 ¤Σ □𝐴
L𝛽M□𝐴
−−−−−→ 𝐴 □𝐴

𝜇𝐴

−−→ 𝐴

where L𝛽M is the unique homomorphism from the initial ¤Σ-algebra 𝜇 ¤Σ to the ¤Σ-algebra ⟨𝐴, 𝛽 ⟩.
□

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:35

Lemma A.2. Let E be a cordial monoidal category, and ¥Ψ ∈ ALG(E) and ¥Σ ∈ Mon/Eqs𝑐 (E). Then
Mon/Eqs𝑐 (¥Ψ, ¥Σ) is in natural bijection to monoid morphisms 𝜇 ¥Ψ→ 𝜇 ¥Σ.

Proof of Lemma A.2. For one direction of the bijection 𝜙 , given a translation 𝑇 : ¥Ψ→ ¥Σ, 𝑇 sends

the initial algebra 𝜇 ¥Σ of ¥Σ to a ¥Ψ-algebra carried by 𝜇 ¥Σ. Then by the initiality of 𝜇 ¥Ψ, there is a
¥Ψ-homomorphism, which is also a monoid morphism, 𝑢 : 𝜇 ¥Ψ→ 𝜇 ¥Σ. We set 𝜙 (𝑇) = 𝑢.
For the back direction of the bijection 𝜙 , given a monoid morphism ℎ : 𝜇 ¥Ψ→ 𝜇 ¥Σ. We define a

translation 𝑇 : ¥Ψ→ ¥Σ, i.e. a functor 𝑇 : ¥Σ-Alg→ ¥Ψ-Alg as follows. Recall that ¥Ψ ∈ ALG(E) must

be of the form ¤Ψ = (𝐺 □ −)-Mon ↰eq (K𝐵 ⊢ 𝐿 = 𝑅), for some 𝐺 ∈ E . The functor 𝑇 maps every

¥Σ-algebra ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴 ⟩ to the ¤Ψ-algebra carried by 𝐴 with

𝐺 □𝐴
𝐺□𝜂𝜇

¥Ψ

−−−−−→ 𝐺 □ 𝜇 ¥Ψ □𝐴 𝛼𝜇 ¥Ψ
−−−→ 𝜇 ¥Ψ □𝐴 ℎ−→ 𝜇 ¥Σ □𝐴

L𝛼M
−−→ 𝐴 □𝐴

𝜇𝐴

−−→ 𝐴

where 𝛼𝜇
¥Ψ

: 𝐺 □ 𝜇 ¥Ψ→ 𝜇 ¥Ψ is the structure map of the initial ¥Ψ-algebra, L𝛼M : 𝜇 ¥Σ→ 𝐴 is the unique

¥Σ-homomorphism from the initial algebra 𝜇 ¥Σ to ⟨𝐴, 𝛼 ⟩. It can be checked that 𝜙 is a bijection. □

Theorem 4.4. Let E be a cordial monoidal category. (i) The category ALG(E) is a coreflective

subcategory ofMon/Eqs𝑐 (E), i.e. there is an adjunction ALG(E) Mon/Eqs𝑐 (E).⊢

(ii) Moreover,

the coreflector ⌊−⌋ preserves initial algebras: for every ⟨ ¤Σ ∈ Eqs𝑐 (E),𝑇 : Mon→ ¤Σ ⟩, the initial ¤Σ-
algebra (viewed as a monoid using 𝑇) is isomorphic to the initial algebra of

⌊
⟨ ¤Σ,𝑇 ⟩

⌋
as monoids.

Proof of Theorem 4.4. For part (i) of the theorem, every theory ⟨ ¤Σ,𝑇Σ ⟩ ∈ Mon/Eqs𝑐 (E) always has
an initial algebra carried by 𝜇 ¤Σ ∈ E by Theorem 3.13, and 𝜇 ¤Σ carries a monoid structure by the

translation𝑇Σ : Mon→ ¤Σ. The coreflector ⌊−⌋ maps the theory ⟨ ¤Σ,𝑇Σ ⟩ to 𝜇 ¤Σ-Act ∈ ALG(E) as in
the proof of Theorem 4.3. For every theory ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ ALG(E), by Lemma A.2, each translation in

the hom-setMon/Eqs𝑐 (⟨ ¤Ψ,𝑇Ψ ⟩, ⟨ ¤Σ,𝑇Σ ⟩) is equivalently a monoid morphism 𝜇 ¤Ψ→ 𝜇 ¤Σ, which is

also equivalently a translation in ALG(⟨ ¤Ψ,𝑇Ψ ⟩,
⌊
⟨ ¤Σ,𝑇Σ ⟩

⌋
) by Theorem 4.3.

For part (ii), the coreflector maps each ⟨ ¤Σ,𝑇 ⟩ ∈ Mon/Eqs𝑐 (E) to the theory 𝜇 ¤Σ-Act. It can be

shown that the category algebras of 𝜇 ¤Σ-Act is equivalent to the coslice category 𝜇 ¤Σ/Mon(E) of
monoids under 𝑇 ⟨𝜇 ¤Σ, 𝛼Σ ⟩, so the initial algebra of 𝜇 ¤Σ-Act is still the same monoid 𝜇 ¤Σ. □

Definition A.3. For a category C and two (strict) functors 𝐹,𝐺 : C → CAT, a lax transformation

𝛼 : 𝐹 → 𝐺 consists of a family of functors 𝛼𝑋 : 𝐹𝑋 → 𝐺𝑋 for every𝑋 ∈ C and for every 𝑓 : 𝑋 → 𝑌

in C , a natural transformation 𝛼 𝑓 : 𝐺𝑓 ◦ 𝛼𝑋 → 𝛼𝑌 ◦ 𝐹 𝑓 :

𝐹𝑋 𝐹𝑌

𝐺𝑋 𝐺𝑌

𝛼𝑋

𝐺𝑓

𝐹 𝑓

𝛼𝑌
𝛼𝑓

such that 𝛼id𝑋
= id : 𝛼𝑋 → 𝛼𝑋 for all 𝑋 ∈ 𝐶 , and for all 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 ,

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺𝑓

𝐹 𝑓

𝛼𝑌
𝛼𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔 =

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺𝑓

𝐹 𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔·𝑓

An oplax transformation from 𝐹 to 𝐺 is similar to a lax transformation except that the direction of

the 2-cells 𝛼 𝑓 becomes 𝛼𝑌 ◦ 𝐹 𝑓 → 𝐺𝑓 ◦𝐺𝑓 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:36 Zhixuan Yang and Nicolas Wu

Definition A.4 (Grothendieck constructions). Given a functor 𝐹 : Bop → CAT, the Grothendieck
construction yields a split fibration 𝑃 : ∫ 𝐹 → B where the category ∫ 𝐹 has as objects tuples

⟨ 𝐼 ∈ B, 𝑎 ∈ 𝐹𝐼 ⟩, and arrows ⟨ 𝐼 , 𝑎 ⟩ → ⟨ 𝐽 , 𝑎′ ⟩ are pairs ⟨ 𝑓 , 𝑔 ⟩ for 𝑓 : 𝐼 → 𝐽 in B and 𝑔 : 𝑎 → 𝐹 𝑓 𝑎′

in the category 𝐹𝐼 . Identity arrows are ⟨ id, id⟩ and composition ⟨ 𝑓 ′, 𝑔′ ⟩ · ⟨ 𝑓 , 𝑔 ⟩ is ⟨ 𝑓 ′ · 𝑓 , 𝑔′ · 𝐹 𝑓 ′𝑔 ⟩.
The fibration 𝑃 : ∫ 𝐹 → B is simply the projection functor ⟨ 𝐼 , 𝑎 ⟩ ↦→ 𝐼 for the first component. The

split cleavage 𝜅⟨ 𝐼 , 𝑎 ⟩, 𝑢 for some 𝑢 : 𝐽 → 𝐼 is ⟨𝑢, id⟩ : ⟨ 𝐽 , (𝐹𝑢)𝑎 ⟩ → ⟨ 𝐼 , 𝑎 ⟩.

Lemma A.5. For a category C and two strict functors 𝐹,𝐺 : C op → CAT, oplax transformations

𝐹 → 𝐺 are in bijection with functors ∫ 𝐹 → ∫ 𝐺 in the over category CAT/C .

Proof of Lemma A.5. Denote by 𝑝 : ∫ 𝐹 → C and 𝑞 : ∫ 𝐺 → C the split fibrations obtained from 𝐹

and 𝐺 by the Grothendieck construction (Definition A.4).

For one direction, given an oplax transformation 𝛼 : 𝐹 → 𝐺 , we define a functor 𝐾 : ∫ 𝐹 → ∫ 𝐺 :
On objects 𝐾 sends every object ⟨ 𝐼 ∈ C , 𝑎 ∈ 𝐹𝐼 ⟩ to ⟨ 𝐼 , 𝛼𝐼𝑎 ∈ 𝐺𝐼 ⟩;
On arrows 𝐾 sends every arrow ⟨ 𝑓 : 𝐼 → 𝐽 , 𝑔 : 𝑎 → (𝐹 𝑓)𝑏 ⟩ : ⟨ 𝐼 , 𝑎 ⟩ → ⟨ 𝐽 , 𝑏 ⟩ in ∫ 𝐹 to ⟨ 𝑓 , 𝑔′ ⟩

where 𝑔′ is the following vertical arrow in the fiber category 𝐺𝐼 :

𝛼𝐼𝑎
𝛼𝐼𝑔−−→ 𝛼𝐼 (𝐹 𝑓 𝑏)

𝛼𝑓 ,𝑏−−−→ (𝐺𝑓)𝛼 𝐽𝑏.
The functor is well defined following the unity and composition axioms of oplax transformations.

For the other direction, given a functor 𝐾 : ∫ 𝐹 → ∫ 𝐺 with 𝑞 ◦ 𝐹 = 𝑝 , we define an oplax

transformation 𝛼 : 𝐹 → 𝐺 as follows. For every object 𝐼 ∈ C , we define the functor 𝛼𝐼 : 𝐹𝐼 → 𝐺𝐼

to be 𝐾 restricted to the fiber category of ∫ 𝐹 over 𝐼 . For every 𝑓 : 𝐼 → 𝐽 in C , we need to define

a natural transformation 𝛼 𝑓 : 𝛼𝐼 ◦ 𝐹 𝑓 → 𝐺𝑓 ◦ 𝛼 𝐽 : 𝐹 𝐽 → 𝐺𝐼 . For each object 𝑏 ∈ 𝐹 𝐽 , there is an
arrow ⟨ 𝑓 , id⟩ : ⟨ 𝐼 , (𝐹 𝑓)𝑏 ⟩ → ⟨ 𝐽 , 𝑏 ⟩ in the total category ∫ 𝐹 , and this arrow is mapped by 𝐾 to

some arrow ⟨ 𝑓 , 𝑔 ⟩ : ⟨ 𝐼 , 𝛼𝐼 (𝐹 𝑓 𝑏) ⟩ → ⟨ 𝐽 , 𝛼 𝐽𝑏 ⟩, we define the natural transformation 𝛼 𝑓 to be

𝛼 𝑓 ,𝑏 = 𝑔 : 𝛼𝐼 (𝐹 𝑓 𝑏) → 𝐺𝑓 (𝛼 𝐽𝑏)
in the fiber category 𝐹𝐼 . For every ℎ : 𝑏 → 𝑏′ in 𝐹 𝐽 , the naturality of 𝛼 𝑓 follows from the fact that

the following diagram commutes in ∫ 𝐹 :

𝐼 , 𝐹 𝑓 𝑏 𝐽 , 𝑏

𝐼, 𝐹 𝑓 𝑏′ 𝐽 , 𝑏′

𝑓 ,𝑖𝑑

𝑖𝑑,ℎ𝑖𝑑,𝐹 𝑓 ℎ

𝑓 ,𝑖𝑑

and 𝐾 maps this diagram to ∫ 𝐺 , which is the back square in

𝐼 , 𝛼𝐼 (𝐹 𝑓)𝑏 𝐽 , 𝛼 𝐽𝑏

𝐼,𝐺 𝑓 𝛼 𝐽𝑏

𝐼, 𝛼𝐼 (𝐹 𝑓)𝑏′ 𝐽 , 𝛼 𝐽𝑏
′

𝐼 ,𝐺 𝑓 𝛼 𝐽𝑏
′

𝐾 ⟨ 𝑓 ,id ⟩

id,𝛼 𝐽 ℎid,𝛼𝐼 (𝐹 𝑓)ℎ

𝐾 ⟨ 𝑓 ,id ⟩

𝑓 ,idid,𝛼𝑓 𝑏
′

id,𝛼𝑓 𝑏 𝑓 ,id

id,𝐺 𝑓 (𝛼 𝐽 ℎ)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:37

We observe that in this diagram the two triangles commute by the definition of 𝛼 𝑓 𝑏 and 𝛼 𝑓 𝑏
′
; the

right diagram commute by the definition of arrow composition in ∫ 𝐺 . Hence the following diagram
commute, which implies the naturality of 𝛼 𝑓 :

𝐼 , 𝛼𝐼 (𝐹 𝑓)𝑏

𝐼,𝐺 𝑓 𝛼 𝐽𝑏

𝐼, 𝛼𝐼 (𝐹 𝑓)𝑏′ 𝐽 , 𝛼 𝐽𝑏
′

𝐼 ,𝐺 𝑓 𝛼 𝐽𝑏
′

id,𝛼𝐼 (𝐹 𝑓)ℎ

𝑓 ,idid,𝛼𝑓 𝑏
′

id,𝛼𝑓 𝑏

id,𝐺 𝑓 𝛼 𝐽 ℎ

It can be checked that this natural transformations satisfies the axioms of oplax transformations

and that the two directions define a bijection. □

Theorem 5.4. Modular models𝑀 of some ¥Ψ ∈ F as in Definition 5.2 are in bijection with functors

�̄� : F -Alg → (F + ¥Ψ)-Alg such that 𝑄 ◦ �̄� = 𝑃 with 𝑃 and 𝑄 as in (24). A modular model 𝑀 is

strong (resp. strict) iff �̄� is a morphism of fibrations (resp. split fibrations) from 𝑃 to 𝑄 .

Proof of Theorem 5.4. The bijection between modular models and functors follows from Lemma A.5.

The bijection between strong (resp. strict) modular models, which are strong transformations (resp.

natural transformations) between CAT-valued functors, and morphisms of fibrations (resp. split

fibrations) is standard [Jacobs 1999, §1.10]. □

Theorem 6.1. Let F = ALG(E) for a cordial monoidal category E . For each ¥Ψ = ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ F ,
a functor 𝐻 : Mon(E) → ¤Ψ-Alg and a natural transformation 𝜏 : Id → 𝑇Ψ ◦ 𝐻 as depicted in the

diagram on the left below can be extended to a strict modular model �̄� of ¤Ψ such that the diagram on

the right below commutes, and �̄� has a lifting
¯𝑙⟨ ⟨ ¤Σ,𝑇Σ ⟩, 𝐴, 𝛼 ⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼 ⟩ :

¤Ψ-Alg

Mon(E) Mon(E)

𝐻 𝑇Ψ

Id

𝜏

F -Alg (F + ¥Ψ)-Alg

Mon(E) ¤Ψ-Alg

�̄�

𝐻

(28)

where the unlabelled vertical arrows are the evident projection functors.

Proof sketch of Theorem 6.1. For each object ⟨ ¤Σ,𝑇Σ, 𝐴, 𝛼 ⟩ of F -Mon with

¤Σ = (𝑆 ◦ −)-Mon ↰eq (K𝐺 ⊢ 𝐿 = 𝑅)
we define𝑀 to send it to an (F + ¤Ψ)-algebra with the same carrier of 𝐻 ⟨𝐴,𝑇Σ𝛼 ⟩ ∈ ¤Ψ-Alg. Since
𝐻 ⟨𝐴,𝑇Σ𝛼 ⟩ already carries a ¤Ψ-algebra, we only need to equip it with an (𝑆 ◦ −)-operation. In
other words, we need to ‘lift’ the algebraic operation on 𝐴 to 𝐻 ⟨𝐴,𝑇Σ𝛼 ⟩. This can be done with

Jaskelioff and Moggi [2010, Theorem 3.4]’s result that algebraic operations can be lifted along

monoid morphisms, since each component 𝜏⟨𝐴,𝑇Σ𝛼 ⟩ is a monoid morphism. Namely, the lifting is

𝛼♯ = J𝑠 : 𝑆, ℎ : 𝐻𝐴 ⊢ 𝜇𝐻 (𝜏𝐴 (𝛼𝑆 (𝑠, 𝜂𝐴)), ℎ) : 𝐻𝐴K (31)

where 𝐻𝐴 and 𝜏𝐴 stand for the carrier of 𝐻 ⟨𝐴, 𝑇Σ𝛼 ⟩ and 𝜏⟨𝐴,𝑇Σ𝛼 ⟩ : 𝐴 → 𝐻𝐴 respectively, and

𝛼𝑆 : 𝑆 ◦ 𝐴 → 𝐴 is the component of 𝛼 for the algebraic operation on 𝐴. We also need to show

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

208:38 Zhixuan Yang and Nicolas Wu

that the operation (31) satisfies the equation K𝐺 ⊢ 𝐿 = 𝑅. This follows from the functoriality of

𝐿, 𝑅 : ((𝑆 ◦ −) + ΣMon)-Alg→ 𝐺-Alg, which implies that the following diagrams commute

𝐺 𝐴

𝐻𝐴

𝐿⟨𝐴, 𝛼 ⟩

𝜏𝐴
𝐿⟨𝐻𝐴, 𝛼

♯ ⟩
and

𝐺 𝐴

𝐻𝐴

𝑅⟨𝐴, 𝛼 ⟩

𝜏𝐴
𝑅⟨𝐻𝐴, 𝛼

♯ ⟩

If 𝛼 satisfies the equation 𝐿 = 𝑅 (i.e. 𝐿⟨𝐴, 𝛼 ⟩ = 𝑅⟨𝐴, 𝛼 ⟩), so does 𝛼♯. It can be checked that the above

𝑀 (with an evident arrow mapping) and 𝑙 defined as 𝑙⟨ ⟨ ¤Σ,𝑇Σ ⟩,𝐴,𝛼 ⟩ = 𝜏⟨𝐴,𝑇Σ𝛼 ⟩ satisfy the conditions

for being a modular model. □

Theorem 6.4. For each ⟨ ¤Ψ,𝑇Ψ ⟩ ∈ SCP(E) over a cordial and closed monoidal category E , a functor

𝐻 : Mon(E) → ¤Ψ-Alg and a natural transformation 𝜏 : Id → 𝑇Ψ ◦ 𝐻 such that there is some

𝐹 : E → E and 𝜎 : Id→ 𝐹 satisfying U ◦𝑇Ψ ◦𝐻 = 𝐹 ◦U and 𝜏 ◦U = 𝜎 ◦𝑈 can be extended to a strict

modular model𝑀 of ⟨ ¤Ψ,𝑇Ψ ⟩ with a lifting 𝑙 such that (28) commutes and 𝑙⟨ ⟨ ¤Σ,𝑇Σ ⟩, 𝐴, 𝛼 ⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼 ⟩ .

¤Ψ-Alg

Mon(E) Mon(E)

E E

𝐻 𝑇Ψ

Id

Id

𝐹U U

𝜏

𝜎

Proof sketch of Theorem 6.4. Compared to Theorem 6.1, what is essentially new is how scoped

operations 𝛼 : 𝑆 ◦𝐴 ◦𝐴→ 𝐴 on existing monoids ⟨𝐴,𝜂𝐴, 𝜇𝐴 ⟩ are lifted to

U(𝑇Ψ (𝐻 ⟨𝐴,𝜂𝐴, 𝜇𝐴 ⟩)) = 𝐹𝐴.
The lifting given by Jaskelioff and Moggi [2010] can be denoted as follows, which makes use of the

Cayley embedding of monoids 𝐴→ 𝐴/𝐴 (Example 2.2):

𝜖 = (𝑓 : 𝐴/𝐴 ⊢ 𝑓 𝜂𝐴 : 𝐴)
𝛼 = (𝑠 : 𝐴 ⊢ 𝜆𝑥 . 𝛼 (𝑠, 𝑥, 𝜂𝐴) : 𝐴/𝐴) 𝑔 = (𝑎 : 𝐴 ⊢ 𝜆𝑥 . 𝜇𝐴 (𝑎, 𝑥) : 𝐴/𝐴)

𝑠 : 𝑆, 𝑎 : 𝐹𝐴,𝑏 : 𝐹𝐴 ⊢ 𝜇 ((𝐹𝜖) (𝜇𝐹 (𝐴/𝐴) (𝜎 (𝛼), 𝐹𝑔)), 𝑏) : 𝐹𝐴

It can be shown that this lifting preserves functorial equations 𝐸 ⊢ 𝐿 = 𝑅 satisfied by 𝛼 with

constant contexts 𝐸 by the same argument as for Theorem 6.1. □

Theorem 6.11 (Dependent Combination). Let E be ⟨Endo𝜅 (Set),★, Id⟩ and F be ALG(E) or
SCP(E). For each ¥Ψ ∈ F , every ordinary model ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular model 𝑀 of ¥Ψ
such that𝑀 ¥Σ⟨𝐵, 𝛽 ⟩ is carried by 𝐴 ◦ 𝐵, and𝑀 has a lifting 𝑙 ¥Σ,⟨𝐵,𝛽 ⟩ = 𝜂

𝐴 ◦ 𝐵.

Proof sketch of Theorem 6.11. Given two applicative functors 𝐴 and 𝐵, their composition 𝐴 ◦ 𝐵 can

be equipped with an applicative structure 𝜂𝐴◦𝐵 = 𝜂𝐴 ◦ 𝜂𝐵 and the following multiplication:

((𝐴 ◦ 𝐵) ★ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐴(𝐵𝑚) ×𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

𝑓
−→

∫ 𝑚,𝑘
𝐴(𝐵𝑚) ×𝐴(𝐵𝑘) × (𝐵𝑛)𝐵𝑚×𝐵𝑘

→
∫ 𝑚′,𝑘 ′

𝐴𝑚′ ×𝐴𝑘 × (𝐵𝑛)𝑚′×𝑘 ′

� (𝐴★𝐴) (𝐵𝑛)
𝜇𝐴

−−→ 𝐴(𝐵𝑛)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

Modular Models of Monoids with Operations 208:39

where the step 𝑓 makes use of the arrow 𝑛𝑚×𝑘 → (𝐵𝑛)𝐵𝑚×𝐵𝑘 that is the transpose of the following:

𝑛𝑚×𝑘 × 𝐵𝑚 × 𝐵𝑘 →
∫ 𝑚,𝑘

𝐵𝑚 × 𝐵𝑘 × 𝑛𝑚,𝑘 � (𝐵 ★ 𝐵)𝑛
𝜇𝐵

−−→ 𝐵𝑛.

To lift a scoped operation 𝛼 : 𝑆 ★𝐴 ★𝐴 → 𝐴 to 𝐴 ◦ 𝐵, we need the fact that there is a canonical

morphism 𝑠 : 𝑆 ★ (𝐴 ◦ 𝐵) → (𝑆 ★𝐴) ◦ 𝐵:

(𝑆 ★ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝑆𝑚 ×𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝑆𝑚 ×𝐴(𝐵𝑘) × (𝐵𝑛)𝑚×𝐵𝑘 →
∫ 𝑚,𝑘 ′

𝑆𝑚 ×𝐴𝑘 ′ × (𝐵𝑛)𝑚×𝑘 ′ � (𝑆 ★𝐴) (𝐵𝑛)
We define the lifting of 𝛼 to 𝐴 ◦ 𝐵 by

𝑆 ★ (𝐴 ◦ 𝐵) ★ (𝐴 ◦ 𝐵) 𝑠−→ ((𝑆 ★𝐴) ◦ 𝐵) ★ (𝐴 ◦ 𝐵)
(𝛼◦𝐵)★(𝐴◦𝐵)
−−−−−−−−−−→ (𝐴 ◦ 𝐵) ★ (𝐴 ◦ 𝐵)

𝜇
−→ 𝐴 ◦ 𝐵

where 𝛼 = (𝑆 ★𝐴
𝑆★𝐴★𝜂𝐴

−−−−−−→ 𝑆 ★𝐴★𝐴
𝛼−→ 𝐴).

To lift a scoped operation 𝛽 : 𝐺 ★𝐵★𝐵 → 𝐵 to𝐴★𝐵, we need the following canonical morphism

𝑡 : 𝐺 ★ (𝐴 ◦ 𝐵) → 𝐴 ◦ (𝐺 ★ 𝐵):

(𝐺 ★ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐺𝑚 ×𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝐴(𝐺𝑚 × 𝐵𝑘 × 𝑛𝑚×𝑘)

→
∫ 𝑚,𝑘

𝐴((𝐺 ★ 𝐵)𝑛)
� 𝐴((𝐺 ★ 𝐵)𝑛)

With 𝑡 we can define the lifting:

𝐺 ★ (𝐴 ◦ 𝐵) ★ (𝐴 ◦ 𝐵) 𝑡−→ (𝐴 ◦ (𝐺 ★ 𝐵)) ★ (𝐴 ◦ 𝐵)
(𝐴◦𝛽)★(𝐴◦𝐵)
−−−−−−−−−−−→ (𝐴 ◦ 𝐵) ★ (𝐴 ◦ 𝐵)

𝜇
−→ 𝐴 ◦ 𝐵

where 𝛽 = (𝐺 ★ 𝐵
𝑆★𝐺★𝜂𝐺

−−−−−−−→ 𝐺 ★ 𝐵 ★ 𝐵
𝛽
−→ 𝐺). □

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 208. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Monoids, Monoidal Categories, and a Metalanguage
	2.1 Notions of Computation as Monoids in Monoidal Categories
	2.2 A Metalanguage for Monoidal Categories

	3 Equational Systems and Translations
	3.1 Equational Systems
	3.2 Free Algebras of Equational Systems
	3.3 Equational Systems for Monoids with Operations
	3.4 Functorial Translations

	4 Monoidal Theory Families
	5 Modular Models of Monoids
	5.1 Modular Models
	5.2 Interpretation with Modular Models

	6 Constructions of Modular Models
	6.1 Modular Models from Monoid Transformers
	6.2 Free Modular Models
	6.3 Composition and Fusion of Modular Models
	6.4 Modular Models in Symmetric Monoidal Categories

	References
	A Proofs with More Details

