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Abstract

Inspired by Plotkin and Power’s algebraic treatment of computational effects and the principle of
notions of computations as monoids, we propose a categorical framework for equational theories
and models of monoids equipped with operations. This framework generalises Plotkin and Power’s
algebraic treatment of effectful operations taking or returning values as input or output to operations
that may take or return computations as input or output. Additionally, to give semantic models of
computational effects in a modular way, we introduce a formal theory of modular constructions of
algebraic structures based on the framework of lifting functors along fibrations.

1 Introduction

In his seminal work, Moggi (1989, 1991, 1989) pioneered modelling notions of computation,
which are now more commonly referred to as computational effects, using monads and
monad transformers. The understanding of this approach is later deepened by Plotkin and
Power (2002, 2001, 2004), who characterise many monads that model computational effects
as arising from equational theories of some primitive effectful operations and equational
laws characterising their interaction.

In parallel with these developments in denotational semantics, Spivey (1990) independently
applied monads to the treatment of exceptions, anticipating their use as a general abstraction
for effectful computation. Building on Moggi’s theoretical foundation, Wadler (1990)
explored a wider range of examples and played a key role in popularising monads within the
functional programming community.

Later, variations of monads were proposed to model more forms of computational effects,
including arrows (Hughes, 2000; Jacobs et al., 2009), applicative functors (McBride and
Paterson, 2008; Paterson, 2012), parameterised monads (Atkey, 2009), graded monads
(Katsumata, 2014). All these notions can be unified in the framework of monoids in monoidal
categories, leading up to the principle of notions of computation as monoids (Rivas and
Jaskelioff, 2017; Pieters et al., 2020).
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Many refinements have been proposed for making programming with effects more
modular. A fundamental idea is to separate syntax from semantics, so syntactic effectful
programs can be written without resorting to a specific semantics, and (possibly many kinds
of) semantics can be given later. Building on this, there are further two kinds of modularity
that are both desirable but are sometimes conflated:

Syntactic modularity is where the syntactic specification of two languages Σ1 and Σ2 can
be combined into a larger language Σ1 +syn Σ2.

Semantic modularity is where semantic models 𝑀1 and 𝑀2 for the sub-languages can be
combined into a model 𝑀1 +sem 𝑀2 of the larger language Σ1 +syn Σ2.

In terms of this classification, free monads and their variants provide syntactic modularity
(Kiselyov and Ishii, 2015; Swierstra, 2008). Typeclasses of monads with operations in
Haskell (Gill and Kmett, 2012; Liang et al., 1995) also achieve syntactic modularity.

On the other hand, monad transformers (Moggi, 1989; Jaskelioff and Moggi, 2010),
layered monads (Filinski, 1999), and combining monads by coproducts (Ghani and Uustalu,
2004) are about semantic modularity.

Effect Handlers Notably, effect handlers, introduced by Plotkin and Pretnar (2013) and
further developed by many people, achieve both kinds of modularity, which explains
their quick adoption. In this approach, effectful operations are described by an algebraic
theory (sometimes without any equations), whose free-algebra monad is used as the
monad for effectful computations. Effect handlers are (not necessarily free) algebras of this
theory, so they can ‘handle’ effectful computations, i.e. the free algebra, using the unique
homomorphism out of the free algebra. Algebraic theories and handlers are both composable
so syntactic and semantic modularity are both achieved.

However, effectful operations in this framework necessarily fall into a kind of effectful
operation known as algebraic operations (Plotkin and Power, 2003). An algebraic operation
on a monad 𝑀 : C →C is a natural transformation 𝛼 : 𝐴 ◦𝑀→𝑀 for an endofunctor 𝐴 :
C →C , typically a polynomial functor, such that it is compatible with monad multiplication:

𝜇𝑀 · (𝛼 ◦𝑀) = 𝛼 · (𝐴 ◦ 𝜇𝑀 ) : 𝐴 ◦𝑀 ◦𝑀→𝑀.

This intuitively says that the operation 𝛼 commutes with sequential composition.
Not all effectful operations have this property though: for example, exception catching in

Haskell catch :: IO a→ (Exc→ IO a) → IO a does not satisfy

(catch p h) >>= k = catch (p >>= k) (h >=> k)

since the left-hand side only catches the exception in p while the right-hand side catches the
exception in p and k. Such non-algebraic operations can be programmed as handlers (Plotkin
and Pretnar, 2013), but they do not have the benefit of (syntactic or semantic) modularity,
since as handlers they themselves cannot be handled to give alternative semantics (Wu et al.,
2014; Yang et al., 2022).

A line of research seeks to lift the expressivity of effect handlers (Yang et al., 2022;
Wu et al., 2014; Piróg et al., 2018; Bach Poulsen and van der Rest, 2023) by considering
signatures/theories of broader ranges of operations and their models. The leading example
is scoped operations considered by Piróg et al. (2018), which are operations on monads 𝑀
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of the following form for some 𝐴 : C →C :

𝑠 :
∫ 𝑋∈C

𝐴(𝑀𝑋) × (𝑀−)𝑋 � 𝐴 ◦𝑀 ◦𝑀→𝑀, (1.1)

where the isomorphism is by the co-Yoneda lemma. Typically, the functor 𝐴 is (−)𝑛 for some
natural number 𝑛. The intuition is that 𝑠 is an operation delimiting 𝑛 scopes: the coend ∫𝑋
is like an existential type ∃𝑋 , and 𝐴(𝑀𝑋) = (𝑀𝑋)𝑛 is the computation inside the scopes,
returning some type 𝑋 , and (𝑀−)𝑋 is the computation after these scopes. For example, the
operation of exception catching delimits two scopes, one for ‘try’ and the other for ‘catch’,
so 𝐴 = (−)2 � (− × −).

However, existing work in this direction only considers syntactic modularity (with the
exception (Wu et al., 2014)). The root of the difficulty with semantic modularity is that
only algebraic operations have a canonical lifting along a monad morphism: given a monad
morphism 𝑓 : 𝑀→ 𝑁 and an algebraic operation 𝛼 : 𝐴 ◦𝑀→𝑀 on 𝑀, there is a unique
algebraic operation 𝛼 : 𝐴 ◦ 𝑁→ 𝑁:

𝛼 = ( 𝐴 ◦ 𝑁 𝐴 ◦𝑀 ◦ 𝑁 𝑀 ◦ 𝑁 𝑁 ◦ 𝑁 𝑁
𝐴◦𝜂𝑀 ◦𝑁 𝛼◦𝑁 𝜇𝑀𝑓 ◦𝑁 ) (1.2)

making 𝑓 : 𝑀→ 𝑁 an algebra homomorphism from 𝛼 to 𝛼. In contrast, if the operation
takes the form Equation 1.1 or more generally the form 𝛼 : Σ𝑀→𝑀 for a functor Σ :
Endo(C ) → Endo(C ), we do not have a formula to define a meaningful 𝛼 : Σ𝑁→ 𝑁 from
𝑓 : 𝑀→ 𝑁 and 𝛼 : Σ𝑀→𝑀 .

Overview Motivated by the lack of semantic modularity in existing frameworks, the
present paper has two aims/parts: the first one is to develop a unifying account of equational
theories of (algebraic and non-algebraic) effectful operations; the second one is to develop a
framework of modular models that provide semantic modularity for non-algebraic operations.
These two parts together achieve both modularities in the style of effect handlers, but for a
much wider range of operations.

In the first part (Sections 2 to 6), we start by developing a convenient way of presenting
equational theories over monoidal categories by using equational systems proposed by Fiore
and Hur (2009) and the internal language of monoidal categories, which we call monoidal
algebraic theories. Then we study operation families, which are subcategories of equational
theories of monoids with operations. Examples include the family of algebraic operations,
and the family of scoped operations, and the family of variable-binding operations. Syntactic
modularity is achieved by taking colimits in operation families.

In the second part (Sections 7 to 8), we propose a general theory for modularity in
algebraic structures. The main idea is to define a modular model 𝑀 of an algebraic theory
Σ to be a lifting of the functor (− + Σ) : T →T along the fibration 𝑃 : A →T

A A

T T

𝑀

𝑃

−+Σ

𝑃

where T is the category of algebraic theories in question and 𝑃 : A →T is the fibration
given by the Grothendieck construction for (−)-Alg : T op→CAT, so A is the category
contains all models of all theories in T . This idea is then generalised to considering liftings
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𝑀 : A →A ′ of an arbitrary functor 𝑇 : T →T ′ along two possibly different fibrations
𝑃 : A →T and 𝑃′ : A ′→T ′. The informal intuition is that the functor 𝑇 is a theory 𝑇Γ
parameterised by a generic ‘future extension’ Γ to the theory, and the functor 𝑀 : A →A ′

is then a model of 𝑇 that parameterised by a generic model of Γ, so we call the lifting 𝑀 a
model transformers of 𝑇 . A number of universal constructions and concrete constructions of
model transformers are then given.

Example We sketch a small concrete example here to demonstrate the ideas. Let E be the
monoidal category ⟨Endo 𝑓 (Set), ◦, Id⟩ of finitary endofunctors on sets. The equational
theory Ec of monads 𝑀 with exception catching has two operations besides those of monads:

throw : 1→𝑀 and catch : (Id × Id) ◦𝑀 ◦𝑀 � (𝑀 ×𝑀) ◦𝑀→𝑀,

and for now let us ignore equations on these operations. The operation throw is for throwing
an exception. The operation catch is for catching an exception in a scope and handling it,
which is an instance of Equation 1.1 with 𝐴 = Id × Id. As we briefly mentioned earlier, the
product 𝑀 ×𝑀 in the signature of catch is a pair of computations, one for the program 𝑝

whose exceptions are caught, the other one for the program ℎ handling the exception; the
◦𝑀 after 𝑀 ×𝑀 in the signature of catch is an explicit continuation argument 𝑘 . Thus
catch (⟨𝑝, ℎ⟩, 𝑘) is understood as handling the exception in 𝑝 using ℎ, and then continues
as 𝑘 . The explicit continuation is exactly the trick to workaround the limitation of algebraic
operations (we will say more about it in Section 6).

All theories of monads with some scoped operations are collected as a category Scp(E ),
which we call the monoidal theory family of scoped operations over E , whose arrows are
translations of theories. The category Scp(E ) has finite coproducts by taking the coproduct
of the signatures and equations. Moreover, each theory in Scp(E ) has free algebras, in
particular initial algebras. For example, the initial algebra of Ec is the initial one among
all monads with throw and catch. The carrier of the initial algebra 𝜇Ec : Set→ Set can be
characterised as the initial solution to

𝑋 � Id + 1 + (𝑋 × 𝑋) ◦ 𝑋 ∈ Endo 𝑓 (Set).

The monad 𝜇Ec models syntactic programs with exception throwing and catching.
A (strict) modular model of the theory Ec is a family of functors 𝑀 ¥Σ : ¥Σ-Alg→
( ¥Σ + Ec)-Alg, natural in ¥Σ ∈ Scp(E ). Here (−)-Alg is the functor Scp(E ) →CAT sending
each theory to the category of its models. One possible modular model of Ec is to send every
¥Σ-algebra carried by 𝐴 to 𝐴 ◦ (1 + Id) equipped with operations in ¥Σ and Ec. In the same
way that there may be many handlers of the same algebraic operation, we also have choices
over how catch and throw act on 𝐴 ◦ (1 + Id). Besides the ‘standard’ semantics (detailed in
Example 8.4∗6), we may also have non-standard semantics such as re-trying the program
after the handling program is executed, or the semantics that the exceptions thrown by the
handling program are recursively handled.

The advantage of a modular model 𝑀 of Ec over an ordinary model of Ec is that 𝑀
allows us to interpret syntactic programs 𝜇( ¥Σ + Ec) involving throwing and catching mixed
with any other operations ¥Σ in Scp(E ). By the initiality of 𝜇( ¥Σ + Ec), there is a morphism

ℎ : 𝜇( ¥Σ + Ec) →𝑀 ¥Σ (𝜇 ¥Σ) in ( ¥Σ + Ec)-Alg,
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which interprets Ec but leaves ¥Σ-operations uninterpreted. In this way, we achieve syntactic
and semantic modularity in the style of effect handlers of algebraic operations, but for the
non-algebraic operation catch.

Paper Organisation For the first part of the paper,

• in Section 2, we review the concept of monoids in monoidal categories and their
applications in computational effects;

• in Section 3, we develop Fiore and Hur (2009)’s equational systems, a convenient
framework for presenting algebraic theories. In particular, we study morphisms
between equational systems and their colimits, allowing us to construct equational
systems by ‘gluing’ smaller ones;

• in Section 4, we develop a type theory for describing constructions and equational
systems over monoidal categories;

• in Section 5, we come back to theories of monoids with operations and see some
concrete examples;

• in Section 6, we classify operations on monoids into finer families and study the
connections between these families.

For the second part of the paper,

• in Section 7, we introduce modular models of a theory the more general concept of
model transformers;

• in Section 8, we show general constructions and examples of modular models.

Along these lines, the contribution that we make is a unified general framework for defining
both theories and models of effectful operations in a modular way.

Changes from the Conference Version This paper is the extended version of the paper
Modular Models of Monoids with Operations (Yang and Wu, 2023) presented at the 28th
ACM SIGPLAN International Conference on Functional Programming (ICFP 2023). The
main differences between this version and the conference version are as follows:

1. Proofs omitted in the conference version are included, along with some new theorems,
remarks, and examples throughout the paper.

2. Definitions and theorems in Sections 2 to 6 are revised to assume only the existence
of the free algebras of the relevant equational systems, instead of assuming chain-
cocontinuity of signature functors globally as in the conference version. Consequently,
these results apply to small-complete small category, which is useful when working
in type theories with impredicative universes.

3. The introduction to the metalanguage of monoidal categories is refactored to a
separate section, and they are treated more carefully under the name monoidal
algebraic theories. The main technical change is that in Section 4.3 we identify a class
of monoidal algebraic theories that corresponds to equational systems, while in the
conference version, we use the metalanguage to present the components of equational
systems in an ad-hoc way.

4. The development of modular models in Sections 7 to 8 is greatly revised and extended.
The ad-hoc definition in the conference version is replaced by a definition based on
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lifting functors along fibrations, which increases the applicability of the theory. Also,
morphisms between modular models are now discussed, which allows us to show
several new constructions with universal properties and (co)limits of modular models.

Since this extended version has become rather long, we opt in a more fine-grained
numbering system to help the reader navigate in the paper more easily: (1) all theorem-like
environments share the same counter of the format ‘ABC∗XYZ’ where ‘ABC’ is the
current section number and ‘XYZ’ is the number of the environment within that section;
(2) text paragraphs explaining one idea are grouped together and also numbered by an
anonymous environment; (3) the materials that are new or received significant changes from
the conference version are numbered in green, such as Lemma 5∗13 and Lemma 6∗13
(although the colour of these hyperlinks are still the same as others for consistency).

1.1 Related Work

1.1∗1 (Effect Handlers). The most closely related work is the line of research on handlers of
algebraic effects introduced by Plotkin and Pretnar (2009, 2013). Semantically, handlers are
models of first-order algebraic theories, and are used for interpreting free algebras. As a
programming construct, handlers offer a composable approach to user-defined algebraic
effects, essentially relying on the fact that algebraic operations can be lifted canonically.
Many implementations of handlers have been developed, both as libraries (e.g. Kammar et al.
(2013)) and languages (e.g. Bauer and Pretnar (2015)). Our work is inspired by Schrĳvers
et al. (2019)’s modular handlers, which are handlers polymorphic in the unhandled effects.

Handlers of algebraic effects have been generalised in several directions. Wu et al. (2014)
observe that implementing scoped operations as handlers leads to non-modularity issues, and
they propose modelling these operations with higher-order abstract syntax and generalising
handlers to this setting. Later, the categorical foundation of handlers of scoped operations
were studied by Piróg et al. (2018) and Yang et al. (2022). In another direction, Pieters
et al. (2020) generalised handlers from algebraic operations on monads to monoids. In
comparison to the present work, Piróg et al. (2018) and Yang et al. (2022) do not consider
modularity of models, and Pieters et al. (2020) only consider algebraic operations. Hence
our initial motivation of the present work was to develop a clear categorical formulation of
equational theories of not necessarily algebraic operations and their modular models in the
generality of monoids.

A notable deviation of our definition of modular models from the standard notion of effect
handlers is that our modular models are required to have a monoid structure, rather than
only modelling the operations. The distinction is analogous to Arkor and Fiore (2020)’s
models of simply typed syntax versus simple type theories. We believe that our deviation
is a reasonable choice since (i) many practical examples of modular handler have monoid
structures anyway; and (ii) many theories of non-algebraic operations inherently involve
monoid operations in their equational laws, such as Example 5∗15, so a handler for such a
theory without a monoid structure makes little sense.

1.1∗2 (Monad Transformers). Moggi (1989), Spivey (1990), and Wadler (1990) pioneered
using monads to model computational effects in programming languages. To achieve
modularity, Moggi (1989) introduced monad transformers. Later, Jaskelioff (2009) showed
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how to lift Σ̂-operations along functorial monad transformers, and this result was generalised
to monoid transformers by Jaskelioff and Moggi (2010). Our notion of modular models is a
conceptual development of monoid transformers: besides transforming monoids into new
ones, how to equip them with new operations and lift existing operations are also part of the
definition. Thus philosophically, modular models are more like Plotkin and Pretnar (2013)’s
handlers, since they are meant to interpret initial algebras of equational theories that model
computational effects, rather than modelling the effects themselves.

Liang et al. (1995) introduced monad transformers in Haskell to overcome the problem
that monads do not straightforwardly compose. Their implementation includes type classes
of monads with certain operations, which can be seen as a Haskell realisation of algebraic
theories, but they need to lift existing operations along monad transformers in ad-hoc ways.

1.1∗3 (Theories and Syntax). Algebraic theories and their connections to Lawvere theories
and monads have been studied for decades (see e.g. (Adamek et al., 2010)). In this paper,
we use Fiore and Hur (2009)’s equational systems to define equational theories for their
generality and simplicity. Abstract syntax can be modelled as initial algebras of theories
(Goguen et al., 1977), and Fiore et al. (1999) show that abstract syntax with variable bindings
can be modelled as initial algebras in a presheaf category, and they introduce Σ-monoids.
Building on their work, we have investigated connections between families of theories of
Σ-monoids, and their modular models.

Their work leads to the line of research on second-order algebraic theories (Fiore and
Hur, 2010; Fiore and Mahmoud, 2010; Fiore, 2008; Fiore and Szamozvancev, 2022). Ghani
et al. (2006) also model the syntax of explicit substitution in a functorial category, which
Piróg et al. (2018) base on to model scoped operations. In comparison, the focus of the
present work is (modular) models of abstract syntax, rather than syntax itself.

Another line of work that is very closely related to Σ-monoids is the work on using
modules of monads/monoids as the signatures of operations; see e.g. the recent exposition
by Lamiaux and Ahrens (2024).

2 Notions of Computation as Monoids in Monoidal Categories

2∗1. A monoidal category is a category E equipped with a functor □ : E × E → E , called
the monoidal product (and sometimes the tensor product), an object 𝐼 ∈ E , called the
monoidal unit, and three natural isomorphisms

𝛼𝐴,𝐵,𝐶 : 𝐴□ (𝐵□𝐶) � (𝐴□ 𝐵) □𝐶, 𝜆𝐴 : 𝐼 □ 𝐴 � 𝐴, 𝜌𝐴 : 𝐴□ 𝐼 � 𝐴

satisfying some coherence axioms (Mac Lane, 1998, §VII.1) that guarantee there is a unique
way using 𝛼, 𝜆, and 𝜌 to re-bracket an expression involving 𝐼 and □ to another (Mac Lane,
1998, §VII.2) . A monoidal category is strict if the isomorphisms are identity morphisms. A
monoidal category is (left) closed if all functors −□ 𝐴 have right adjoints −/𝐴 : E → E .

2∗2. A monoid ⟨𝑀, 𝜇, 𝜂⟩ in a monoidal category E is an object 𝑀 ∈ E with two morphisms:
a multiplication 𝜇 : 𝑀 □𝑀→𝑀 and a unit 𝜂 : 𝐼→𝑀 making the following commute:

(𝑀 □𝑀) □𝑀 𝑀 □ (𝑀 □𝑀)

𝑀 □𝑀 𝑀 𝑀 □𝑀

𝜇□𝑀

𝜇

𝛼𝑀,𝑀,𝑀

𝑀□𝜇

𝜇
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𝐼 □𝑀 𝑀 □𝑀

𝑀

𝜂□𝑀

𝜆𝑀

𝜇

𝑀 □ 𝐼 𝑀 □𝑀

𝑀

𝑀□𝜂

𝜌𝑀
𝜇

2∗3. In the rest of this section, we present a collection of examples of monoidal categories,
in which monoids model different flavours of notions of computations, and will serve as the
main application of the theory developed in this paper. The main messages are that

1. monoids in monoidal categories are an expressive abstraction that unifies different
notions of computations;

2. by imposing suitable conditions, these monoidal categories for computations can be
made closed and (co)complete, so are suitable for doing algebraic theories over them.

Some of the following examples are quite technical and my description is sketchy, but the
reader does not need to fully understand the details in the examples to proceed to Section 3.

2.1 Monads and Size Issues

2.1∗1 (Monads). The category Endo(C ) of endofunctors C →C on a category C can
be turned into a monoidal category by equipping it with functor composition 𝐹 ◦𝐺 as
the monoidal product and the identity functor Id : C →C as the unit. Monoids in this
category are called monads on C , and they are used to model computational effects, also
called notions of computation, in programming languages (Moggi, 1991, 1989), where
the unit 𝜂 : Id→𝑀 is understood as embedding pure values into computations, and the
multiplication 𝜇 : 𝑀 ◦𝑀→𝑀 is understood as flattening computations of computations
into computations by sequentially executing them. The understanding of 𝜇 as sequential
composition is better exhibited by the following co-Yoneda isomorphism:

(𝐹 ◦𝐺)𝐴 = 𝐹 (𝐺𝐴) �
∫ 𝑋∈C ∐

C (𝑋,𝐺𝐴) 𝐹𝑋

where
∫ 𝑋 denotes a coend and

∐
C (𝑋,𝐺𝐴) denotes a C (𝑋, 𝐺𝐴)-fold coproduct. The informal

reading of the coend is that 𝐹𝑋 is the first computation, returning a value of type 𝑋 , and
the second computation is determined by the result of 𝐹𝑋 , given as a function 𝑋→𝐺𝐴.
So 𝜇 : 𝑀 ◦𝑀→𝑀 is sequential composition of two computations in which the second is
determined by the first one.

2.1∗2. However, the category Endo(C ) is usually not as well behaved as we would like
for doing algebraic theories in it, even when C itself is a very nice category such as Set.
In particular, Endo(Set) is not closed with respect to either cartesian products or functor
composition. Moreover, Endo(Set) is not a nice category for doing algebraic theories; for
example, some objects in Endo(Set), such as the covariant powerset functor P , do not
have free monads over them.

These issues about Endo(Set) are fundamentally related to sizes of sets. For instance,
if P : Set→ Set were to have a free monad 𝐹, then 𝐹 would also be algebraically free
(nLab, 2024, Theorem 3.2), which entails that 𝐹∅ would carry the initial P-algebra. By
Lambek’s lemma (Lambek, 1968), we would then have a set 𝐹∅ satisfying 𝐹∅ �P (𝐹∅),
contradicting Cantor’s theorem (nLab, 2024).
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There are two ways to rectify the size issues: (1) we can consider some ‘extremely nice’
categories C , namely, (small-) complete small categories, or (2) we can restrict our attention
to ‘reasonably nice endofunctors’ on a ‘reasonably nice’ category C , namely, 𝜅-accessible
functors on locally 𝜅-presentable categories. We will describe both approaches below.

2.1∗3. When C is a small category that is also small-complete, the monoidal structure
⟨◦, Id⟩ on Endo(C ) is closed, with the right adjoint −/𝐺 to − ◦𝐺 for every 𝐺 : C →C

given by right Kan extension (Mac Lane, 1998, §X):

(𝐹/𝐺)𝐴 =
∫
𝐵∈C

∏
Set(𝐴,𝐺𝐵) 𝐹𝐵, (2.1)

which exists since the ‘bound of the end’ 𝐵 ∈ C is small and C is small-complete. The unit
of the adjunction − ◦𝐺 ⊣ −/𝐺 is given by the natural transformations 𝜂𝐹 : 𝐹→ (𝐹 ◦𝐺)/𝐺
whose component at every 𝐴 ∈ C

𝜂𝐹,𝐴 : 𝐹𝐴→
∫
𝐵∈C

∏
Set(𝐴,𝐺𝐵) 𝐹 (𝐺𝐵)

is the mediating morphism induced by the wedge

𝜂𝐹,𝐴,𝐵 := ⟨𝐹𝑘⟩𝑘∈Set(𝐴,𝐺𝐵) : 𝐹𝐴→∏
Set(𝐴,𝐺𝐵) 𝐹 (𝐺𝐵)

for all 𝐵 ∈ C . The counit 𝜖 of the adjunction − ◦𝐺 ⊣ −/𝐺 is given by the composite

((𝐹/𝐺) ◦𝐺)𝐴 =
∫
𝐵∈C

∏
Set(𝐺𝐴,𝐺𝐵) 𝐹𝐵

𝜋𝐴−−→∏
Set(𝐺𝐴,𝐺𝐴) 𝐹𝐴

𝜋id:𝐺𝐴→𝐺𝐴−−−−−−−−−→ 𝐹𝐴

for all 𝐹 ∈ Endo(C ) and 𝐴 ∈ C .
Moreover, Endo(C ) is also a small-complete small category: it is small because its

domain and codomain categories C are both small; it is small-complete because limits in
functor categories are computed pointwise and C is small-complete. We will see later in
Theorem 3.1∗19 that it implies that all objects in Endo(C ) have free monads (and many
other free algebraic structures).

2.1∗4. However, it is long known that in classical logic the only examples of small-complete
small categories C are complete preorders (nLab, 2024). Therefore C being small and
small-complete is classically too strong for the purpose of modelling computational effects,
since we certainly want to have more than one programs for a type in general.

However, a stunning result in categorical logic is that if we carry out category theory
internally in the effective topos Eff, or more generally realizability toposes (Hyland, 1988;
Oosten, 2008), the category Mset of modest sets, also known as partial equivalence relations
(PERs), is a non-trivial small-complete small-categories, internally. The effective topos and
modest sets find many application in programming language theory: for one, they provide
semantics for type theories with impredicative polymorphism, such as System F (Girard,
1986) and the calculus of inductive constructions (Coquand and Huet, 1988; Luo, 1994) with
an impredicative universe of sets, which is the type theory underlying the Rocq (previously
known as Coq) proof assistant with the -impredicative-set option.

2.1∗5 Remark. Mathematics carried out internally in a category can also be externalised
to the ambient meta-theory (Jacobs, 1999; Streicher, 2023; Phoa, 1992), telling us what
an internal construction ‘really means’ from the external point of view. In particular, if
we externalise the internal category Endo(Mset), we obtain a fibration [Mset] → Eff;
taking its fiber over 1 ∈ Eff, we obtain an ordinary category of realizable endofunctors
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Endo𝑟 (Mset), which are roughly endofunctors whose mapping on morphisms are realised
by Turing machines; see Jaskelioff and Moggi (2010, Example 2.20) or Bainbridge et al.
(1990) for more information.

2.2 Finitary and Accessible Monads

2.2∗1. We have seen the approach of rectifying the size issues in Endo(C ) by assuming an
‘extremely nice’ C that exists only in non-classical settings. Now let us describe an alternative,
classically valid, approach – restricting our attention to ‘reasonably nice’ endofunctors.

First we observe that the reason why the formula (2.1) does not work for arbitrary
endofunctors 𝐹, 𝐺 : Set→ Set is that the bound of the end 𝐵 ∈ Set would be large while
Set is only small-complete. Therefore we can consider functors that allow us to cut 𝐵 ∈ Set
to a small bound. An endofunctor 𝐹 ∈ Endo(Set) is called finitary if it preserves filtered
colimits. An informal description of finitariness is that we lose no information if we restrict
𝐹 to finite sets. Precisely, 𝐹 is finitary if we first restrict 𝐹 to 𝐹 ◦𝑉 : Fin→ Set on the full
subcategory of finite sets, where 𝑉 : Fin→ Set is the inclusion functor, and then take the
left Kan extension of 𝐹 ◦𝑉 along 𝑉 , the resulting functor is still isomorphic to 𝐹. In other
words, we have the following equivalence, where Endo 𝑓 (Set) ⊆ Endo(Set) denotes the
full subcategory of finitary endofunctors:

Endo 𝑓 (Set) SetFin

−◦𝑉

Lan𝑉−
� (2.2)

2.2∗2. The category Endo 𝑓 (Set) inherits the monoidal structure ⟨◦, Id⟩ of Endo(Set),
which under the equivalence (2.2) corresponds to the monoidal structure ⟨•, 𝑉⟩ on SetFin

(Kelly and Power, 1993; Fiore et al., 1999) where

𝑉𝑛 = 𝑛 and (𝐹 •𝐺)𝑛 =
∫ 𝑚∈Fin

𝐹𝑚 × (𝐺𝑛)𝑚. (2.3)

For every 𝐺 ∈ SetFin, the functor − •𝐺 has a right adjoint

(𝐹/𝐺)𝑛 =
∫
𝑚∈Fin

∏
Set(𝑛,𝐺𝑚) 𝐹𝑚

with unit and counit similar to those in 2.1∗3. The end
∫
𝑚∈Fin exists because the category

Fin of finite sets is essentially small and Set is small complete.
Moreover, the functor ◦ : Endo 𝑓 (Set) × Endo 𝑓 (Set) → Endo 𝑓 (Set) is also finitary, i.e.

preserving filtered colimits in Endo 𝑓 (Set) × Endo 𝑓 (Set). This is equivalent to preserving
filtered colimits in both of its arguments separately: functor composition preserves (all)
colimits in the first argument

((colim𝑖𝐹𝑖) ◦𝐺)𝑛 = (colim𝑖𝐹𝑖) (𝐺𝑛) � colim𝑖 (𝐹𝑖 (𝐺𝑛))

because colimits of functors can be computed pointwise. It preserves filtered colimits in the
second argument by the finitariness of its first argument:

(𝐹 ◦ (colim𝑖𝐺𝑖))𝑛 = 𝐹 ((colim𝑖𝐺𝑖)𝑛) � 𝐹 (colim𝑖𝐺𝑖𝑛) � colim𝑖𝐹 (𝐺𝑖𝑛)

In particular, the diagram of an 𝜔-chain is filtered, so functor composition preserves colimits
of 𝜔-chains of functors; we will use this property to construct free monads over finitary
endofunctors in Section 3.1.
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2.2∗3. Monoids in ⟨Endo 𝑓 (Set), ◦, Id⟩ are called finitary monads on Set, and they
are equivalent to (finitary) Lawvere theories [Power 1999, Theorem 4.2; Adamek et al.
2010, Theorem A.38] and the closely related abstract clones [Cohn 1981, page 132; Fiore
et al. 1999, Section 3]. Computational effects modelled by Lawvere theories are usually
called algebraic effects (Plotkin and Power, 2004, 2002).

Apart from modelling computational effects, a related but slightly different application
of monoids in Endo 𝑓 (Set), or equivalently SetFin, is modelling abstract syntax with
variable binding (Fiore et al., 1999; Fiore and Szamozvancev, 2022). In this case, a monoid
𝑀 ∈ SetFin is understood as a family of sets of terms indexed by the number of variables
in the context. The monoid unit 𝑉→𝑀 is then embedding variables as 𝑀-terms, and the
monoid multiplication 𝑀 •𝑀→𝑀 is simultaneous substitution of terms for variables.

Yet another interesting reading of monoids of ⟨•, 𝑉⟩ due to Fiore and Staton (2014) is
computations supporting (i) binding a piece of code to a code pointer and (ii) jumping to
a code pointer. Based on this reading, the monoidal category ⟨SetFin, •, 𝑉⟩ provides an
adequate denotational semantics of a calculus of substitution/jumps, on which algebraic
effects can be encoded.

2.2∗4. The adjunction Endo 𝑓 (Set) � SetFin can be generalised to endofunctors on cate-
gories other than Set: we can replace (1) Set with any locally 𝜅-presentable (l𝜅p) category
C for a regular cardinal 𝜅, (2) Fin with the subcategory C𝜅 of 𝜅-presentable objects in C ,
and (3) finitary functors with 𝜅-accessible functors Endo𝜅 (C ) (Adámek and Rosicky, 1994).
This results in a cocomplete closed monoidal category ⟨Endo𝜅 (C ), ◦, Id⟩, on which ◦ is
𝜅-accessible. The 𝜅-accessibility of ◦ implies that there is a sufficiently large limit ordinal
𝛼 such that ◦ : Endo𝜅 (C ) × Endo𝜅 (C ) → Endo𝜅 (C ) preserves colimits of all 𝛼-chains, a
property we will later use for constructing free monoids.

2.2∗5. All l𝜅p categories are necessarily (small-) complete and cocomplete, and they cover
a wide range of categories that are used for modelling programming languages. Examples
of l𝜅p categories include:

• all presheaf categories SetD for small categories D and 𝜅 = ℵ0 (an l𝜅p category is
called locally finitely presentable when 𝜅 = ℵ0), and more generally all Grothendieck
toposes for some 𝜅 (Borceux, 1994, 3.4.16);

• categories of models for essentially algebraic theories (Adámek and Rosicky, 1994,
§3.D), which include the category Cat of small categories for 𝜅 = ℵ0, the category
ωCpo of 𝜔-complete partial orders for 𝜅 = ℵ1 (however, the category of directed
complete partial orders is not l𝜅p for any 𝜅);

• functor categories C D for small categories D and l𝜅p C ;
• moreover, when C is l𝜅p, it is automatically l𝜆p for any 𝜆 > 𝜅.

Therefore, l𝜅p categories provide a nice setting for algebraic theories in the context of
programming language semantics.

2.2∗6 Remark. Let 𝜅 < 𝜆 be two regular cardinals and C be an l𝜅p category. As we
mentioned above C is also l𝜆p, and every 𝜅-accessible endofunctor on C is also going to
be 𝜆-accessible because every 𝜆-filtered colimit is also 𝜅-filtered. The monoidal structure
⟨◦, Id⟩ in Endo𝜅 (C ) coincides with ⟨◦, Id⟩ in Endo𝜆 (C ), so they can be both denoted by ◦
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unproblematically. However, the closed structure 𝐹/𝐺 in Endo𝜅 (C ), given by

(𝐹/𝐺)𝑛 =
∫
𝑥∈C𝜅

∏
C (𝑛, 𝐺𝑥). 𝐹𝑥

in fact depends on 𝜅, and it has its universal property with respect to only 𝜅-accessible
functors, so it may not coincide with the closed structure in Endo𝜆 (C ). In the same way,
𝐹/𝐺 computed in Endo𝜅 (C ) does not have to be the right Kan extension of 𝐹 along 𝐺
among the bigger category Endo(C ) of all endofunctors or the category Endoacc (C ) of all
accessible endofunctors, in which every object may have a different choice of 𝜅. Therefore
if we were pedantic about the notation, we should write 𝐹/𝜅𝐺 instead of just 𝐹/𝐺.

2.3 Strong Monads

2.3∗1. The multiplication 𝜇 : 𝑀 ◦𝑀→𝑀 of a monad 𝑀 : C →C allows one to compose
two effectful computations 𝑓 : 𝐴→𝑀𝐵 and 𝑔 : 𝐵→𝑀𝐶 by

𝐴
𝑓
−−→𝑀𝐵

𝑀𝑔
−−−→𝑀 (𝑀𝐶)

𝜇𝐶−−→𝑀𝐶.

However, to give semantics to effectful programming languages with a structural context
of variables as done by Moggi (1991, 1989), what we need is slightly stronger: for all
objects Γ ∈ C (thought of as variable contexts) and morphisms 𝑓 : Γ × 𝐴→𝑀𝐵 and
𝑔 : Γ × 𝐵→𝑀𝐶 (two computations under a context Γ), we would like to have a morphism
Γ × 𝐴→𝑀𝐶 (the sequential composition of 𝑓 and 𝑔). The structure of monads ⟨𝑀, 𝜇, 𝜂⟩
is not sufficient for doing this, and we need additionally a natural transformation

𝑠Γ,𝐵 : Γ ×𝑀𝐵→𝑀 (Γ × 𝐵),

with which we have the composite

Γ × 𝐴
⟨𝜋1 , 𝑓 ⟩−−−−−→ Γ ×𝑀𝐵

𝑠Γ,𝐵−−−→𝑀 (Γ × 𝐵)
𝑀𝑔
−−−→𝑀 (𝑀𝐶)

𝜇𝐶−−→𝑀𝐶.

To make this way of composing effectful computations associative and the pure computa-
tion (𝜂𝐴 · 𝜋2) : Γ × 𝐴→𝑀𝐴 an identity, the natural transformation 𝑠 must satisfy certain
coherence conditions (see (Moggi, 1991, Definition 3.2)). The natural transformation 𝑠 is
called a strength for the monad 𝑀 , and the tuple ⟨𝑀, 𝜇, 𝜂, 𝑠⟩ is called a strong monad.

2.3∗2. Strong monads are monoids in the monoidal category of strong endofunctors. A
strong endofunctor ⟨𝐹, 𝑠⟩ on a category C with finite products is a functor 𝐹 : C →C with
a natural transformation 𝑠Γ,𝐵 : Γ × 𝐹𝐵→ 𝐹 (Γ × 𝐵) making the following commute:

1 × 𝐹𝐵

𝐹 (1 × 𝐵) 𝐹𝐵

𝑠1,𝐵
𝜆𝐹𝐵

𝐹𝜆𝐵

(2.4)

(Γ′ × Γ) × 𝐹𝐵 Γ′ × (Γ × 𝐹𝐵) Γ′ × 𝐹 (Γ × 𝐵)

𝐹 ((Γ′ × Γ) × 𝐵) 𝐹 (Γ′ × (Γ × 𝐵))

𝛼Γ′ ,Γ,𝐹𝐵

𝑠Γ′×Γ,𝐵

Γ′×𝑠Γ,𝐵

𝑠Γ′ ,Γ×𝐵

𝐹𝛼Γ′ ,Γ,𝐵

(2.5)
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where 𝜆 and 𝛼 are the left unitor and associator for the cartesian monoidal structure
⟨×, 1⟩. Moreover, strong natural transformations between ⟨𝐹, 𝑠𝐹⟩ and ⟨𝐺, 𝑠𝐺⟩ are natural
transformations 𝜏 : 𝐹→𝐺 making the following commute:

Γ × 𝐹𝐵 Γ ×𝐺𝐵

𝐹 (Γ × 𝐵) 𝐺 (Γ × 𝐵)

Γ×𝜏𝐵

𝑠𝐺
Γ,𝐵

𝑠𝐹
Γ,𝐵

𝜏Γ×𝐵

2.3∗3. Strong endofunctors on C and strong natural transformations can be collected into
a category Endo𝑠 (C ). The category Endo𝑠 (C ) has a monoidal structure ⟨◦𝑠 , Id𝑠⟩ where
Id𝑠 is the identity functor equipped with the identity strength, and ◦𝑠 is the composition of
strong functors given by

⟨𝐹, 𝑠𝐺⟩ ◦𝑠 ⟨𝐺, 𝑠𝐹⟩ = ⟨𝐹 ◦𝐺, (𝐹𝑠𝐺Γ,𝐵 · 𝑠
𝐹
Γ,𝐺𝐵)Γ,𝐵∈C ⟩.

Strong monads on C are precisely monoids in this monoidal category. When C is a cartesian
closed category, strong functors and natural transformation are the same as C -enriched
functors and natural transformations (McDermott and Uustalu, 2022; Kock, 1972).

2.3∗4. When C is Set, or slightly more generally a full subcategory of Set closed under
finite products of Set, every 𝐹 : C →C has a strength:

𝑠Γ,𝐵 : Γ × 𝐹𝐵→ 𝐹 (Γ × 𝐵)
𝑠Γ,𝐵 ⟨𝛾, 𝑓 ⟩ = 𝐹 (𝜆𝑏. ⟨𝛾, 𝑏⟩) 𝑓

(2.6)

which can be readily checked to satisfy the laws of strengths (2.4, 2.5). In fact, this is the
only strength for 𝐹: let 𝑡Γ,𝐵 : Γ × 𝐹𝐵→ 𝐹 (Γ × 𝐵) be any strength for 𝐹, for all 𝛾 ∈ Γ and
𝑓 ∈ 𝐹𝐵, the naturality of 𝑡 implies the commutativity of

1 × 𝐹𝐵 𝐹 (1 × 𝐵)

Γ × 𝐹𝐵 𝐹 (Γ × 𝐵)

𝑡1,𝐵

𝛾×𝐹𝐵 𝐹 (𝛾×𝐵)

𝑡Γ,𝐵

Evaluating the two paths at ⟨∗, 𝑓 ⟩ ∈ 1 × 𝐹𝐵, we have

𝑡Γ,𝐵⟨𝛾, 𝑓 ⟩ = 𝐹 (𝛾 × 𝐵) (𝑡1,𝐵 ⟨∗, 𝑓 ⟩).

However, by the law (2.4), 𝑡1,𝐵 ⟨∗, 𝑓 ⟩ has to be 𝐹𝜆−1
𝐵
⟨∗, 𝑓 ⟩. Hence 𝑡Γ,𝐵⟨𝛾, 𝑓 ⟩ is equal to

the canonical strength 𝑠 (2.6) above. However, functors on a general category C may have
no or non-unique strengths; see McDermott and Uustalu (2022) for some counter-examples.

2.3∗5. As a side remark to readers who know fibred category theory, the fact that functors
on sets are canonically strong is not so much about sets, but more about the ability to use
the value 𝛾 in the current ‘context of variables’ when defining (𝜆𝑏. ⟨𝛾, 𝑏⟩) : 𝐵→ Γ × 𝐵 in
(2.6). Indeed, for every C with finite limits and a fibred endofunctor 𝐹 : C→→C→ on the
fundamental fibration Cod : C→→C , the restriction of 𝐹 to the fiber over 1 ∈ C induces a
functor 𝐹 : C � C→1 →C→1 � C . The functor 𝐹 has a strength similar to (2.6): firstly we
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have the following morphism in the fiber over every Γ ∈ C ,

Γ × 𝐵 Γ × (Γ × 𝐵)

Γ

⟨𝜋1 ,id⟩

𝜋1 𝜋1

which plays the same role as (𝜆𝑏. ⟨𝛾, 𝑏⟩) : 𝐵→ Γ × 𝐵 in (2.6), and then this morphism is
mapped by the fibred functor 𝐹 to a morphism still over Γ:

𝐹 (Γ × 𝐵) 𝐹 (Γ × (Γ × 𝐵))

Γ

𝐹 ⟨𝜋1 ,id⟩

(2.7)

Because 𝜋1 : Γ × 𝐵→ Γ is the pullback of 𝐵→ 1 along Γ→ 1, and 𝐹 as a fibred functor
preserves pullbacks, 𝐹 (Γ × 𝐵) → Γ is also a pullback of 𝐹𝐵→ 1 (i.e. 𝐹𝐵→ 1) along Γ→ 1.
Another choice of the pullback of 𝐹𝐵→ 1 along Γ→ 1 is just 𝜋1 : Γ × 𝐹𝐵→ Γ. Hence
there is a canonical isomorphism 𝐹 (Γ × 𝐵) � Γ × 𝐹𝐵, and similarly 𝐹 (Γ × (Γ × 𝐵)) �
Γ × 𝐹 (Γ × 𝐵), so the morphism 𝐹⟨𝜋1, id⟩ in (2.7) gives us a morphism Γ × 𝐹𝐵→ 𝐹 (Γ × 𝐵).
This can be checked to be a strength for 𝐹. However, from the other direction we cannot
necessarily obtain a fibred endofunctor on Cod : C→→C from a strong functor on C

in general. Instead, strong functors on C are equivalent to fibred endofunctors on the
simple fibration over C (Jacobs, 1999, Proposition 2.6.9) (and fibred endofunctors over the
fundamental fibration restrict to fibred endofunctors over the simple fibration).

2.3∗6. Similar to the setting of ordinary monads, to have a ‘nice’ monoidal category of
strong monads, we need to either (1) consider small-complete small categories C or (2)
𝜅-accessible strong monads. More precisely, denote by Endo𝑠𝜅 (C ) the full subcategory of
Endo𝑠 (C ) that contains strong functors whose underlying functors are 𝜅-accessible.

When C is l𝜅p as a cartesian closed category, which means that C is l𝜅p and cartesian
closed, and that the 𝜅-presentable objects of C are closed under finite products, the category
Endo𝑠𝜅 (C ) is also l𝜅p and has a closed monoidal structure of functor composition and the
identity functor. The primary example of such setting is C =ωCpo for modelling general
recursion. We refer the reader to Kelly and Power (1993, §4) and Kelly (1982) for details.

2.4 Graded Monads

2.4∗1. Another generalisation of monads is to index the monad with some grades that track
quantitative information about the effects performed by a computation (Katsumata, 2014;
Katsumata et al., 2022; McDermott and Uustalu, 2022). Precisely, let ⟨G , ·, 1⟩ be any small
strict monoidal category, whose objects we call grades. A G -graded monad on a category
C is a functor 𝑀 : G → Endo(C ) equipped with natural transformations

𝜂 : Id→𝑀1 𝜇𝑎,𝑏 : (𝑀𝑎) ◦ (𝑀𝑏) →𝑀 (𝑎 · 𝑏) (2.8)

natural in 𝑎, 𝑏 ∈ G , satisfying laws similar to those of monads (Katsumata, 2014).
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2.4∗2. For example, for tracking operations performed by a computation, G can be the
poset of sets of operation names, ordered by inclusion, with the monoidal structure 1 = ∅
and 𝑎 · 𝑏 = 𝑎 ∪ 𝑏. And for tracking the number of nondeterministic choices made by a
computation, G can be the poset ⟨N,⩽⟩ with monoidal structure ⟨0, +⟩.

2.4∗3. Again, to avoid the size issues when doing algebraic theories (2.1∗2), we can either
require C to be small and small-complete or consider only 𝜅-accessible G -graded monads
𝑀 : G → Endo𝜅 (C ) for l𝜅p C .

2.4∗4. Similar to the ungraded situation, 𝜅-accessible graded monads are equivalent to
monoids in the functor category Endo𝜅 (C )G equipped with the following monoidal structure
similar to the Day tensor:

𝐼 =
∐

G (1,−) Id 𝐹 ∗𝐺 =
∫ 𝑎,𝑏∈G ∐

G (𝑎·𝑏,−) (𝐹𝑎 ◦𝐺𝑏). (2.9)

This monoidal product has right adjoints given by

(𝐺 −−∗ 𝐹)𝑎 =
∫
𝑏∈G

∫
𝑚∈C𝜅

∏
C (−, (𝐺𝑏)𝑚) 𝐹 (𝑎 · 𝑏)𝑚.

2.4∗5. The equivalence between 𝜅-accessible graded monads (2.8) and monoids for the
monoidal structure (2.9) seems to be unwritten folklore, so we here show a sketch of the
proof using (co)end calculus (Loregian, 2021). The correspondence between 𝜂 : 𝐼→𝑀 for
the monoidal structure (2.9) and 𝜂 : Id→𝑀1 (2.8) is

Hom(𝐼, 𝑀)
� {We write [𝐴, 𝐵] for C (𝐴, 𝐵) below}∫

𝑐∈G

∫
𝑥∈C𝜅
[∐G (1,𝑐) 𝑥, (𝑀𝑐)𝑥]

�
∫
𝑐∈G

∫
𝑥∈C𝜅
[G (1, 𝑐) × 𝑥, (𝑀𝑐)𝑥]

�
∫
𝑐∈G

∫
𝑥∈C𝜅
[G (1, 𝑐), [𝑥, (𝑀𝑐)𝑥]]

� {[G (1, 𝑐), −] preserves limits}∫
𝑐∈G [G (1, 𝑐),

∫
𝑥∈C𝜅
[𝑥, (𝑀𝑐)𝑥]]

� { Yoneda lemma }∫
𝑥∈C𝜅
[𝑥, (𝑀1)𝑥]

� Hom(Id, 𝑀1)

The correspondence between 𝜇 : 𝑀 ∗𝑀→𝑀 (2.8) and families of natural transformations
𝜇𝑎,𝑏 : (𝑀𝑎) ◦ (𝑀𝑏) →𝑀 (𝑎 · 𝑏) (2.9) natural in 𝑎, 𝑏 ∈ G is

Hom(𝑀 ∗𝑀, 𝑀)
�

∫
𝑐∈G Hom((𝑀 ∗𝑀)𝑐, 𝑀𝑐)

�
∫
𝑐∈G

∫
𝑥∈C𝜅
[
∫ 𝑎,𝑏∈G ∐

G (𝑎·𝑏,−) (𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]

�
∫
𝑐∈G

∫
𝑥∈C𝜅

∫
𝑎,𝑏∈G [G (𝑎 · 𝑏, −), [(𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]]

�
∫
𝑥∈C𝜅

∫
𝑎,𝑏∈G

∫
𝑐∈G [G (𝑎 · 𝑏, −), [(𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]]

�
∫
𝑥∈C𝜅

∫
𝑎,𝑏∈G [𝑀𝑎(𝑀𝑏𝑥), (𝑀 (𝑎 · 𝑏))𝑥]

�
∫
𝑎,𝑏∈G Hom(𝑀𝑎 ◦𝑀𝑏, 𝑀 (𝑎 · 𝑏))
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We will not torture the reader with checking the correspondence of the laws here.

2.4∗6. We have seen monads and several variations – realizable, accessible, strong, graded
– all formulated as monoids in monoidal categories. Despite their differences, they all model
notions computations that support sequential compositions in a sense. In the following, let
us have a look at some other monoids that are conceptually quite different from monads.

2.5 Cartesian Monoids

2.5∗1. Every cartesian category C , i.e. a category with finite products, can be equipped
with the product × as the monoidal product and the terminal object 1 ∈ C as the monoidal
unit. When C has all exponentials 𝐵𝐴, C is then a cartesian closed category. Particularly,
the category Set is a closed monoidal category in this way. Monoids in Set are precisely
the usual notion of monoids, such as the set of lists with concatenation and empty list.

2.5∗2. For l𝜅p and cartesian closed C , the category Endo𝜅 (C ) is cartesian closed. The
cartesian unit and product in Endo𝜅 (C ) are defined pointwise:

1𝑛 = 1C (𝐹 ×𝐺)𝑛 = 𝐹𝑛 ×𝐺𝑛

The exponential is given by

(𝐹𝐺)𝑛 =
∫
𝑚∈C𝜅

∏
C (𝑛,𝑚) (𝐹𝑚)𝐺𝑚.

A computational interpretation of cartesian monoids in Endo𝜅 (C ) is that they model
notions of independent computations: cartesian multiplication 𝑀 ×𝑀→𝑀 composes
two computations that have no dependency, whereas monadic multiplication 𝑀 ◦𝑀→𝑀

composes a computation with another that depends on the result of the former.

2.6 Applicative Functors

2.6∗1. Between the two extremes of 𝑀 ◦𝑀 and 𝑀 ×𝑀, there are monoidal structures
on Endo𝜅 (C ) that allow computations to have restricted dependency. One of them is the
Day convolution (Day, 1970) induced by cartesian products: the Day monoidal structure
on Endo𝜅 (Set) has as unit the identity functor, and the monoidal product is given by the
following coend formula:

(𝐹 ∗𝐺)𝑛 =
∫ 𝑚,𝑘∈Set𝜅×Set𝜅

𝐹𝑚 ×𝐺𝑘 × 𝑛(𝑚×𝑘 ) . (2.10)

Informally, 𝐹 ∗𝐺 models two computations 𝐹𝑛 and 𝐺𝑚 that are almost independent except
that their return values are combined by a pure function 𝑛(𝑚×𝑘 ) . This structure is symmetric
and closed, with the right adjoint to − ∗𝐺 given by

𝐺 −−∗ 𝐹 =
∫
𝑛∈Set𝜅

(𝐹 (− × 𝑛))𝐺𝑛.

More generally, we can replace Set with any l𝜅p as a cartesian closed category V (Kelly,
1982) and also the coend in (2.10) with a V -enriched coend, which allows us to give a
more accurate formulation of applicatives in functional languages with general recursion by
setting V =ωCpo. Alternatively, we can consider small-complete small C to work around
the size issues as in 2.1∗3.
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2.6∗2. Monoids for ⟨∗, Id⟩ are called applicative functors or simply applicatives. They are
equivalent to lax monoidal functors ⟨Set, ×, 1⟩ → ⟨Set, ×, 1⟩ (McBride and Paterson, 2008;
Paterson, 2012). A practical application of them is build systems (Mokhov et al., 2018),
since usually the result of a building task does not affect what the next building task is.

2.6∗3. Applicatives are a weaker notion than strong monads, as intuitively independence is
a special case of dependence. Precisely, for any two functors 𝐹, 𝐺 ∈ Endo𝜅 (Set), there are
canonical strengths (2.6):

𝑠𝐹
𝑋𝑌

: 𝐹𝑋 ×𝑌→ 𝐹 (𝑋 ×𝑌 ), 𝑠𝐺
𝑋𝑌

:𝐺𝑋 ×𝑌→𝐺 (𝑋 ×𝑌 ),

and then there is a natural transformation 𝑒 : 𝐹 ∗𝐺→ 𝐹 ◦𝐺 as follows:

(𝐹 ∗𝐺)𝑛 =
∫ 𝑚𝑘

𝐹𝑚 ×𝐺𝑘 × 𝑛(𝑚×𝑘 )→
∫ 𝑚𝑘

𝐹 (𝐺 (𝑚 × 𝑘 × 𝑛(𝑚×𝑘 ) ))

→
∫ 𝑚𝑘

𝐹 (𝐺𝑛) � 𝐹 (𝐺𝑛)

where the first arrow is repeated uses of the strengths of 𝐹 and 𝐺, and the second arrow is
function evaluation. Consequently, for any monad ⟨𝑀, 𝜇, 𝜂⟩ on Set, it induces an applicative
functor with unit 𝜂 and multiplication

𝑀 ∗𝑀 𝑒−→𝑀 ◦𝑀
𝜇
−→𝑀.

However, there are many applicative functors that are not obtained from monads in this way
(Paterson, 2012; McBride and Paterson, 2008).

2.7 Hughes Arrows

2.7∗1. Between applicatives and monads, there is a middle ground of notions of computations
that allows data dependency but not control dependency, known as Hughes arrows, or
simply arrows (Hughes, 2000; Lindley et al., 2011; Jacobs et al., 2009), or strong promonads
(Román, 2022). Unlike monads and applicatives, arrows are not monoids in Endo(C ), but
in the category of strong endoprofunctors.

An endoprofunctor 𝑃 on a small category C is just a functor 𝑃 : C op ×C → Set.
Informally, the set 𝑃(𝑎, 𝑏) is 𝑃-computations from type 𝑎 to type 𝑏. Assuming C has
finite products, a strong endoprofunctor on C is additionally equipped with a family 𝑠 of
morphisms, called a strength,

𝑠𝑎𝑏𝑐 : 𝑃(𝑎, 𝑏) → 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐),

natural in 𝑎, 𝑏 and dinatural in 𝑐 satisfying certain coherence conditions (Rivas and Jaskelioff,
2017, Def. 7.1). The strength 𝑠𝑎𝑏𝑐 informally means every computation in 𝑃(𝑎, 𝑏) can also
be run alongside some unused data 𝑐. A strong natural transformation 𝜏 : ⟨𝑃, 𝑠𝑃⟩ → ⟨𝑄, 𝑠𝑄⟩
is a natural transformation 𝜏 : 𝑃→𝑄 making the following diagram commute:

𝑃(𝑎, 𝑏) 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐)

𝑄(𝑎, 𝑏) 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐)

𝑠𝑃
𝑎𝑏𝑐

𝜏𝑎,𝑏 𝜏𝑎×𝑐,𝑏×𝑐

𝑠
𝑄

𝑎𝑏𝑐
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2.7∗2. Strong endoprofunctors and strong natural transformations between them form
a category EndoPro𝑠 (C ) (Rivas and Jaskelioff, 2017), which can be equipped with a
monoidal structure ⟨𝐼, ⊗⟩:

𝐼 (𝑎, 𝑏) =C (𝑎, 𝑏) (𝑃 ⊗𝑄) (𝑎, 𝑏) =
∫ 𝑥∈C

𝑃(𝑎, 𝑥) ×𝑄(𝑥, 𝑏) (2.11)

where the associated strength of 𝐼 is

𝑠𝐼𝑎𝑏𝑐 := (− × 𝑐) : C (𝑎, 𝑏) →C (𝑎 × 𝑐, 𝑏 × 𝑐),

and the strength of 𝑃 ⊗𝑄 is the composite∫ 𝑥
𝑃(𝑎, 𝑥) ×𝑄(𝑥, 𝑏) −→

∫ 𝑥
𝑃(𝑎 × 𝑐, 𝑥 × 𝑐) ×𝑄(𝑥 × 𝑐, 𝑏 × 𝑐)

−→
∫ 𝑦

𝑃(𝑎 × 𝑐, 𝑦) ×𝑄(𝑦, 𝑏 × 𝑐)

where the first arrow is
∫ 𝑥

𝑠𝑃
𝑎𝑥𝑏
× 𝑠𝑄

𝑥𝑏𝑐
and the second arrow is the coprojection morphism

for 𝑥 × 𝑐 of the coend.
Informally, the product 𝑃 ⊗𝑄 are two computations 𝑃 and 𝑄 with some type of data 𝑥

flowing from 𝑃 to 𝑄, so it allows more dependency than applicatives, but unlike 𝑀 ◦𝑀 , it
does not allow the second computation to dynamically depend on the return value of 𝑃 (see
Pieters et al. (2020) and Lindley et al. (2011) for more detailed comparisons).

2.7∗3. While the category of endoprofunctors without strengths has a closed monoidal
structure ⟨𝐼, ⊗⟩ with the same definition of 𝐼 and ⊗ as those in (2.11), with the right adjoints
𝑃⊸ − to − ⊗ 𝑃 given by

(𝑃⊸𝑄) (𝑎, 𝑏) =
∫
𝑥∈C [𝑃(𝑏, 𝑥), 𝑄(𝑎, 𝑥)],

We do not know whether endofunctors with strengths EndoPro𝑠 (C ) is also closed.

2.7∗4 Remark. In this section, we have paid special attention to the cocompleteness and
closedness of monoidal categories. However, in this paper cocompleteness will play a much
more predominant role than closedness: we need cocompleteness to construct free algebras
of algebraic theories, while closedness will only be used for a few concrete constructions,
such as the concrete construction of the free monoid over 𝐴 as the list object 𝜇𝑋. 1 + 𝐴□ 𝑋 .

3 Equational Systems and Translations

3∗1. We have seen monoids in various monoidal categories, but if the only thing that we
know about a monoid is its unit and multiplication, then it is barely interesting. Instead,
monoids in practice usually come with operations: for example, the state monad (− × 𝑆)𝑆
comes with operations for reading and writing the mutable state; the exception monad − + 𝐸
has operations for throwing and catching exceptions; the ordinary monoid in Set of lists
with concatenation has the operation of appending an element to a list.

Therefore, we shall have a way to talk about algebraic theories in monoidal categories
systematically. In this paper, we will use Fiore and Hur’s [2007; 2009] equational systems, a
simple but powerful framework subsuming (enriched) algebraic theories. Importantly, the
model theory of equational systems is well developed: Fiore and Hur established conditions
for the existence of free algebras, cocompleteness of the category of models, and monadicity.



Modular Models of Monoids with Operations by Lifting Functors along Fibrations 19

3∗2. In the following, we first briefly introduce equational systems and Fiore and Hur’s
theorem for the existence of free algebras of equational systems, and we also show a
constructively valid proof of the theorem for small-complete small categories (Section 3.1).
We then introduce functorial translations between equational systems, making them a
category, and discuss some basic properties of this category (Sections 3.2 and 3.3).

3.1 Equational Systems

3.1∗1. Generally speaking, an algebraic theory consists of the signature and equations of
its operations. A concise way to specify a signature over a category C is just a functor
Σ : C →C , and then a Σ-algebra is an object 𝐴 ∈ C , called the carrier, together with a
structure map 𝛼 : Σ𝐴→ 𝐴. For example, the signature functor of the theory of monoids
in a monoidal category E with binary coproducts is ΣMon = (−□ −) + 𝐼. A ΣMon-algebra
⟨𝐴, 𝛼⟩ is an object 𝐴 with a morphism 𝛼 : (𝐴□ 𝐴) + 𝐼→ 𝐴, or equivalently two morphisms
𝐴□ 𝐴→ 𝐴 and 𝐼→ 𝐴.

3.1∗2. We denote the category of Σ-algebras by Σ-Alg, whose morphisms from ⟨𝐴, 𝛼⟩ to
⟨𝐵, 𝛽⟩ are algebra homomorphisms, i.e. morphisms ℎ : 𝐴→ 𝐵 in C such that ℎ · 𝛼 = 𝛽 · Σℎ :
Σ𝐴→ 𝐵. The forgetful functor dropping the structure map is denoted by UΣ : Σ-Alg→C

or just U when it is not ambiguous.

3.1∗3. Equations on a signatureΣ : C →C are typically presented as commutative diagrams,
such as the diagrams in 2∗2 for monoids. Pictorially, a diagram looks like the following:

Γ𝐴

𝐴

𝑅𝛼

𝐿𝛼

which contains a pair of paths 𝐿𝛼 and 𝑅𝛼 from some formal object Γ𝐴 to some formal
object 𝐴, parameterised by a formal morphism 𝛼 : Σ𝐴→ 𝐴 of the operation. The starting
node Γ𝐴 can be called the context of the diagram.

A categorical way to make precise such as a diagram is a functor Γ : C →C and a pair
of functors 𝐿, 𝑅 : Σ-Alg→ Γ-Alg. For example, let ⟨E ,□, 𝐼⟩ be a monoidal category and
Σ = (−□ −) : E → E be the signature of a binary operation. To encode the associativity
diagram in 2∗2 for Σ-algebras, we let the functor Γ : E → E be (−□ −) □ −, and the two
paths are represented by two functors 𝐿, 𝑅 : (−□ −)-Alg→ ((−□ −) □ −)-Alg:

𝐿⟨𝐴, 𝜇 : 𝐴□ 𝐴→ 𝐴⟩ = ⟨𝐴, 𝜇 · (𝜇□ 𝐴)⟩
𝑅⟨𝐴, 𝜇 : 𝐴□ 𝐴→ 𝐴⟩ = ⟨𝐴, 𝜇 · (𝐴□ 𝜇) · 𝛼𝐴,𝐴,𝐴⟩

The functors 𝐿, 𝑅 : Σ-Alg→ Γ-Alg must satisfy UΓ ◦ 𝐿 =UΣ and UΓ ◦ 𝑅 =UΣ.

3.1∗4 Definition (Fiore and Hur (2009)). An equational system on a category C

¤Σ := (Σ ⊲ Γ ⊢ 𝐿 = 𝑅)

consists of four functors: a (functorial) signature Σ : C →C , a (functorial) context Γ :
C →C , and a pair of two (functorial) terms 𝐿, 𝑅 : Σ-Alg→ Γ-Alg making the following
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diagrams commute:

Σ-Alg Γ-Alg Σ-Alg Γ-Alg

C C

𝐿

UΣ UΓ

𝑅

UΣ UΓ

(3.1)

An algebra, or a model, of ¤Σ is a Σ-algebra ⟨𝐴 ∈ C , 𝛼 : Σ𝐴→ 𝐴⟩ such that

𝐿⟨𝐴, 𝛼⟩ = 𝑅⟨𝐴, 𝛼⟩ ∈ Γ-Alg.

We denote by ¤Σ-Alg the full subcategory of Σ-Alg containing ¤Σ-algebras.

3.1∗5 Notation. In the definition above, the functors 𝐿, 𝑅 : Σ-Alg→ Γ-Alg always send
objects ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴⟩ to ⟨𝐴, 𝛽 : Γ𝐴→ 𝐴⟩, keeping carriers 𝐴 unchanged, so we will
simply write 𝐿𝛼 : Γ𝐴→ 𝐴 to mean 𝜋2 (𝐿⟨𝐴, 𝛼⟩).

3.1∗6 Example. Let E be a monoidal category with binary coproducts. The concept of
monoids in E (2∗2) can be defined as an equational system on E

Mon := (ΣMon ⊲ ΓMon ⊢ 𝐿Mon = 𝑅Mon) (3.2)

with functorial signature and contexts

ΣMon 𝑀 = (𝑀 □𝑀) + 𝐼
ΓMon 𝑀 = ((𝑀 □𝑀) □𝑀) + (𝐼 □𝑀) + (𝑀 □ 𝐼),

and 𝐿Mon, 𝑅Mon : ΣMon-Alg→ ΓMon-Alg given by

𝐿Mon 𝛽 = [𝐿1, 𝐿2, 𝐿3] 𝑅Mon 𝛽 = [𝑅1, 𝑅2, 𝑅3],

where we define 𝜇 := (𝛽 · 𝜄1) : 𝑀 □𝑀→𝑀 , 𝜂 := (𝛽 · 𝜄2) : 𝐼→𝑀 and

𝐿1 := 𝜇 · (𝜇□𝑀) 𝑅1 := 𝜇 · (𝑀 □ 𝜇) · 𝛼𝑀,𝑀,𝑀
𝐿2 := 𝜇 · (𝜂□𝑀) 𝑅2 := 𝜆𝑀
𝐿3 := 𝜇 · (𝑀 □ 𝜂) 𝑅3 := 𝜌𝑀

Each pair 𝐿𝑖 and 𝑅𝑖 encodes a commutative diagram for monoids in 2∗2. An algebra of this
equational system is precisely a monoid in E .

3.1∗7 Notation. From the example above we see that although the definition of equational
systems has exactly one operation and one equation, multiple operations/equations can
be encoded via coproducts. We will say an equational system with a set of operations
{Σ𝑜 : C →C }𝑜∈𝑂 and a set of equations {Γ𝑒 ⊢ 𝐿𝑒 = 𝑅𝑒}𝑒∈𝐸 , where Γ𝑒 : C →C and 𝐿𝑒, 𝑅𝑒 :
(∐𝑜∈𝑂 Σ𝑜)-Alg→ Γ𝑒-Alg, provided that C has 𝑂-indexed and 𝐸-indexed coproducts.

Given an equational system ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) on a category C with binary coproducts,
we denote by ¤Σ ↰ Σ′ the extension of ¤Σ with a new operations of signature Σ′ : C →C :

¤Σ ↰ Σ′ B (Σ + Σ′ ⊲ Γ ⊢ 𝐿 ◦U = 𝑅 ◦U)

where U : (Σ + Σ′)-Alg→ Σ-Alg is the forgetful functor dropping Σ′ operations. Similarly,
we denote by ¤Σ ↰ (Γ′ ⊢ 𝐿′ = 𝑅′) the extension of ¤Σ with a new equation:

¤Σ ↰ (Γ′ ⊢ 𝐿′ = 𝑅′) B (Σ ⊲ Γ + Γ′ ⊢ [𝐿, 𝐿′] = [𝑅, 𝑅′]),
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where [𝐿, 𝐿′] : Σ-Alg→ (Γ + Γ′)-Alg is the functor mapping 𝛼 : Σ𝑋→ 𝑋 to [𝐿𝛼, 𝐿′𝛼] :
(Γ + Γ′)𝑋→ 𝑋 , and [𝑅, 𝑅′] is similar.

3.1∗8 Example. The concept of Eilenberg-Moore algebras of a monad can be defined as an
equational system. Let 𝑀 be a monad on some C with coproducts. The equational system
𝑀-Alg has as signature 𝑀 itself and two equations: IdC ⊢ 𝐿1 = 𝑅1 and 𝑀 ◦𝑀 ⊢ 𝐿2 = 𝑅2
where for all ⟨𝑋 ∈ C , 𝛼 : 𝑀𝑋→ 𝑋⟩,

𝐿1𝛼 = (𝑋
𝜂𝑋−−→𝑀𝑋

𝛼−→ 𝑋) 𝑅1𝛼 = id𝑋

𝐿2𝛼 = (𝑀 (𝑀𝑋)
𝜇𝑋−−→𝑀𝑋

𝛼−→ 𝑋) 𝑅2𝛼 = (𝑀 (𝑀𝑋) 𝑀𝛼−−−→𝑀𝑋
𝛼−→ 𝑋)

The category of algebras for this equational system is precisely the Eilenberg-Moore category
of the monad 𝑀 .

3.1∗9. Equational systems can also express inequations using a standard trick in enriched
algebraic theories (Robinson, 2002). Let C be a category with an enrichment over Poset,
which means that every hom-set C (𝐴, 𝐵) is equipped with a partial order and composition
of C -morphisms C (𝐴, 𝐵) ×C (𝐵, 𝐶) →C (𝐴, 𝐶) is monotone, such that C is copowered
(also called tensored) over Poset, which means that for every 𝐴 ∈ C and 𝑃 ∈ Poset, there
is an object 𝑃 · 𝐴 ∈ C and a natural isomorphism between posets:

C (𝑃 · 𝐴, 𝐵) � Poset(𝑃, C (𝐴, 𝐵)).

Let 𝔖 be the two-element poset {⊥ ⊑ ⊤}. For every endofunctor Σ : C →C (not necessarily
a Poset-enriched functor), an operation 𝛼 : 𝔖 · Σ𝐴→ 𝐴 is then two operations 𝛼⊥, 𝛼⊤ :
Σ𝐴→ 𝐴 such that 𝛼⊥ ⊑ 𝛼⊤ in the poset C (Σ𝐴, 𝐴). Therefore in this case we can impose
orders on operations of an equational system. Moreover, we can encode an inequational axiom
𝑙 (𝑥) ⊑ 𝑟 (𝑥) by introducing two operations 𝑙 ⊑ 𝑟 and equations stating that 𝑙 (𝑥) = 𝑙 (𝑥) and
𝑟 (𝑥) = 𝑟 (𝑥). This trick can also be generalised to Cat-enriched categories, i.e. 2-categories,
to express lax-equations or pseudo-equations.

3.1∗10 Example. The category Poset is enriched over itself with the pointwise order on
Poset(𝐴, 𝐵), and it is tensored with 𝑃 · 𝐴 given by cartesian product 𝑃 × 𝐴. The equational
system Bot over the category Poset expresses posets with a bottom element: it has the
signature functor ΣBot := 1 + (𝔖 · −) and two equations {Id ⊢ 𝐿𝑖 = 𝑅𝑖}𝑖=1,2 where for every
𝛼 : 1 +𝔖 · 𝐴→ 𝐴 the functors 𝐿𝑖 and 𝑅𝑖 are given by

𝐿1𝛼 = (𝐴 𝜄⊥−−→𝔖 · 𝐴 𝛼· 𝜄2−−−→ 𝐴) 𝑅1𝛼 = (𝐴→ 1
𝛼· 𝜄1−−−→ 𝐴)

𝐿2𝛼 = (𝐴 𝜄⊤−−→𝔖 · 𝐴 𝛼· 𝜄2−−−→ 𝐴) 𝑅2𝛼 = (𝐴 id𝐴−−→ 𝐴)

An algebra of Bot is a preorder ⟨𝐴, ⊑⟩ with an element 𝑏 ∈ 𝐴 and two monotone functions
𝑙 : 𝐴→ 𝐴, and 𝑟 : 𝐴→ 𝐴 such that 𝑙 ⊑ 𝑟. The two equations of Bot state that 𝑙 (𝑥) = 𝑏 and
𝑟 (𝑥) = 𝑥 for all 𝑥 ∈ 𝐴, so an algebra of Bot is exactly a preorder with a bottom element 𝑏.

3.1∗11. Among the algebras of an equational system ¤Σ over C , the free algebras are
particularly useful since they represent abstract syntax of terms built from variables and
operations of the theory. The abstract syntax can be interpreted with another model using
the free-forgetful adjunction:

𝜙 : C (𝑋, 𝐴) � ¤Σ-Alg(F 𝑋, ⟨𝐴, 𝛼⟩)
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Given any model ⟨𝐴, 𝛼⟩ of ¤Σ and 𝑔 : 𝑋→ 𝐴, the morphism 𝜙(𝑔) : F 𝑋→ ⟨𝐴, 𝛼⟩ interprets
the free algebra with the semantic model ⟨𝐴, 𝛼⟩, with generators 𝑋 interpreted by 𝑔 : 𝑋→ 𝐴.
Fiore and Hur (2009) showed several sufficient conditions for the existence of free algebras,
which we record below.

3.1∗12 Theorem (Fiore and Hur (2009)). Let ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) be an equational system
over C . If C is (small-) cocomplete and one of the following holds:

• Σ and Γ preserve colimits of 𝛼-chains for a limit ordinal 𝛼;
• Σ preserves colimits of 𝛼-chains for a limit ordinal 𝛼, and both Σ and Γ preserve

epimorphisms in C ;
• Σ preserves colimits of 𝛼-chains for a limit ordinal 𝛼, and Σ preserves epimorphisms,

and C has no transfinite chains of proper epimorphisms,

then there are left adjoints to the inclusion functor ¤Σ-Alg ↩→ Σ-Alg and the forgetful
functor Σ-Alg→C :

¤Σ-Alg Σ-Alg C⊣ ⊣ (3.3)

Moreover, ¤Σ-Alg is cocomplete and the composite of the adjunction is monadic.

3.1∗13 Notation. We denote the composite adjunction of (3.3) by F ¤Σ ⊣U ¤Σ, or F ⊣U when
¤Σ is clear from context. Moreover, the initial ¤Σ-algebra is denoted by ⟨𝜇 ¤Σ, 𝛼 ¤Σ : Σ𝜇 ¤Σ→ 𝜇 ¤Σ⟩.

3.1∗14. Fiore and Hur’s proof of this result is quite technical, but we will not rely on the
specifics of their construction. For concreteness, we provide some basic intuition here: the
free Σ-algebra on some 𝐴 ∈ C is first constructed by a transfinite iteration of 𝐴 + Σ− on 0

0 𝐴 + Σ0 𝐴 + Σ(𝐴 + Σ0) · · ·! 𝐴+Σ!

and taking colimits for limit ordinals. The iteration will stop at some 𝑋 � 𝐴 + Σ𝑋 in 𝛼
steps, giving the carrier of the free Σ-algebra (Adámek, 1974). Then it is quotiented by
the equation 𝐿 = 𝑅 and the congruence rule, using Fiore and Hur’s algebraic coequalisers.
The quotienting may also need to be repeated 𝛼 times when Σ or Γ does not preserve
epimorphisms. The result of quotienting is the free ¤Σ-algebra.

3.1∗15 Example. Let E be a small-cocomplete monoidal category such that□ : E × E → E

preserves 𝛼-chains for some limit ordinal 𝛼. For example, E can be ⟨Endo𝜅 (C ), ◦, Id⟩ for
an l𝜅p C from Section 2.2 or ⟨Endo𝜅 (Set), ∗, Id⟩ from Section 2.6. Then the first condition
of Theorem 3.1∗12 is applicable to the equational system Mon from Example 3.1∗6, so
every 𝐴 ∈ E has a free monoid.

Moreover, Fiore and Hur (2009) showed that when E is left closed, there is a simple
formula for free monoids: for every 𝐴 ∈ E , the free monoid over 𝐴 is the initial algebra
𝜇𝑋. 𝐼 + 𝐴□ 𝑋 (sometimes called the list object for 𝐴) equipped with appropriate monoid
operations. This formula is useful in practice: when E is ⟨Set, ×, 1⟩, it is exactly the
usual definition 𝜇𝑋. 1 + 𝐴 × 𝑋 of lists of 𝐴-elements; and when E is ⟨Endo𝜅 (C ), ◦, Id⟩
or ⟨Endo𝜅 (Set), ∗, Id⟩, this gives formulas for free monads and free applicatives that are
suitable for implementation (Rivas and Jaskelioff, 2017). Note that this formula needs
closedness to work: to define the monoid multiplication

(𝜇𝑋. 𝐼 + 𝐴□ 𝑋) □ (𝜇𝑋. 𝐼 + 𝐴□ 𝑋) → (𝜇𝑋. 𝐼 + 𝐴□ 𝑋),
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we need closedness to shift one (𝜇𝑋. 𝐼 + 𝐴□ 𝑋) to the right-hand side

(𝜇𝑋. 𝐼 + 𝐴□ 𝑋) → (𝜇𝑋. 𝐼 + 𝐴□ 𝑋)/(𝜇𝑋. 𝐼 + 𝐴□ 𝑋)

and then we can use the universal property of the initial algebra.

3.1∗16 Remark. When E is not closed, the initial algebra 𝜇𝑋. 1 + 𝐴□ 𝑋 may not be
the free monoid over 𝐴. For a counterexample, let E be the cartesian monoidal category
⟨Mon, ×, 1⟩ of monoids in ⟨Set, ×, 1⟩. By the Eckmann-Hilton argument, a monoid object
in the monoidal category ⟨Mon, ×, 1⟩ is precisely an ordinary commutative monoid in sets
(so the structure of a monoid object degenerates into a property in this case). The free
monoid object over some 𝑀 ∈Mon is then obtained by quotienting 𝑀 with commutativity.

On the other hand, the initial algebra 𝜇𝑋. 1 +𝑀 × 𝑋 in Mon is the monoid whose
elements are finite lists ⟨𝑚1, 𝑚2, . . . , 𝑚𝑛⟩ of 𝑀-elements, considered up to trailing zeros,
by which we mean ⟨𝑚1, 𝑚2, . . . , 𝑚𝑛⟩ and ⟨𝑚1, 𝑚2, . . . , 𝑚𝑛, 𝑒, . . . , 𝑒⟩ are considered the
same, where 𝑒 is the unit element of 𝑀 . Its unit element is the empty sequence ⟨⟩, and its
multiplication is the pairwise multiplication using the multiplication of 𝑀 (after padding
with enough trailing zeros):

⟨𝑚1, 𝑚2, . . . , 𝑚𝑛⟩ · ⟨𝑚′1, 𝑚
′
2, . . . , 𝑚

′
𝑛⟩ = ⟨𝑚1 ·𝑀 𝑚′1, . . . , 𝑚𝑛 ·𝑀 𝑚′𝑛⟩. (3.4)

The associated (1 +𝑀 × −)-algebra is still given by the empty list and cons as usual. Now
we observe that the multiplication (3.4) is not commutative when 𝑀 is not commutative, so
the initial algebra 𝜇𝑋. 1 +𝑀 × 𝑋 may not be a monoid object in ⟨Mon, ×, 1⟩, let alone the
free monoid object over 𝑀 .

3.1∗17. An appealing aspect of Theorem 3.1∗12 is that the base category C is only required
to be cocomplete rather than locally 𝜅-presentable. Therefore the theorem applies to the
category dCpo of directed complete partial orders, generalising the construction of free
dcpo-algebras for operations of finite arities and (in)equations (Abramsky and Jung, 1995,
Theorem 6.1.2). Allowing an endofunctor Σ : dCpo→ dCpo as the signature comes in handy:
in particular, it allows us to express operations that takes an ascending chain 𝑥0 ⊑ 𝑥1 ⊑ 𝑥2 · · ·
as arguments by choosing Σ := (−)𝜔 where 𝜔 := {0 ⊑ 1 ⊑ 2 ⊑ · · ·}. This functor preserves
colimits of all Ω-chains, where Ω is the first uncountable ordinal.

3.1∗18. We do not know if any of the sufficient conditions for the existence of free algebras
given by Theorem 3.1∗12 (or possibly some of their classically equivalent conditions) is
constructively true, and in particular, whether they are applicable to small-complete small
categories in realizability toposes (2.1∗4). Anyway, we have an alternative constructive
proof for small-complete small categories using impredicative encodings (Awodey et al.,
2018), a refinement of the well known Church encoding of inductive datatypes.

Remarkably, the theorem below imposes no constraints on the functorial signature Σ and
context Γ, generalising the result that every endofunctor on a small-complete small category
has an initial algebra (Hyland, 1988, §3.1).

3.1∗19 Theorem. Let C be a small-complete small category. For every equational system
¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) over C , there is a monadic adjunction F ¤Σ ⊣U ¤Σ. Moreover, the category
¤Σ-Alg is a small-complete-and-cocomplete small category.
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Proof. An easy proof goes by first noticing that ¤Σ-Alg is also a small-complete small
category for all equational systems ¤Σ-Alg over C , and then the free algebra of ¤Σ over an
object 𝑋 ∈ C can be constructed from the initial algebra of ¤Σ ↰K𝑋, where K𝑋 : C →C is
the constant functor mapping to 𝑋 . The initial algebra of ¤Σ ↰K𝑋 can be then constructed
as the limit of the identity functor Id : ( ¤Σ ↰K𝑋)-Alg→ ( ¤Σ ↰K𝑋)-Alg (Mac Lane, 1998,
§X.1 Lemma 1), which exists since ( ¤Σ ↰K𝑋)-Alg is a small-complete small category. □

3.1∗20. Theorem 3.1∗12 and Theorem 3.1∗19 give different sufficient conditions for the
existences of free algebras of equational systems, and there are some other constructive
techniques such as the one by Fiore et al. (2022). In this paper, we only rely on the existence
of free algebras but not those specific conditions guaranteeing the existence of free algebras.
The following definition will be used for abstracting over those different conditions.

3.1∗21 Definition. Let C be a category. A relation A ⊆ Endo(C ) × Endo(C ) of endofunc-
tors is called a freeness condition if every equational system Σ ⊲ Γ ⊢ 𝐿 = 𝑅 with ⟨Σ, Γ⟩ ∈A

has the free-forgetful adjunction.
We denote by EqsA (C ) the full subcategory of Eqs(C ) containing equational systems

whose functorial signature and context are in A .

3.1∗22 Example. (1) If C is l𝜅p then the relation Endo𝜅 (C ) × Endo𝜅 (C ) containing all
pairs of 𝜅-accessible endofunctors (Section 2.2) is a freeness condition by the first item
of Theorem 3.1∗12. (2) If C is small-complete and small, the entire relation Endo(C ) ×
Endo(C ) is a freeness condition (2.1∗3) by Theorem 3.1∗19. (3) For every C , there is
always the largest freeness condition F containing all pairs ⟨Σ, Γ⟩ such that all equational
systems with signature Σ and context Γ have the free-forgetful adjunction. However, F is
less useful than it may appear: we may not know whether F has good closure properties,
for example, whether ⟨Σ + Σ′, Γ + Γ′⟩ is in F when ⟨Σ, Γ⟩ and ⟨Σ′, Γ′⟩ are in F .

3.2 Functorial Translations

3.2∗1. Morphisms between equational systems are not studied by Fiore and Hur (2007,
2009), but we need them later for talking about combinations of equational systems. A
natural idea for morphisms from an equational system ¤Σ to another ¤Ψ is translations, which
map operations in ¤Σ to terms of ¤Ψ, preserving equations in a suitable sense. However, a
technical difficulty is that equational systems ¤Ψ may not have terms, i.e. free algebras.

In the following, we avoid this by introducing a more indirect definition which we
call functorial translations between equational systems. For some motivation, consider
Lawvere theories: every morphism 𝑇 : 𝐿→ 𝐿′ between Lawvere theories induces a functor
− ◦𝑇 : 𝐿′-Mod→ 𝐿-Mod between their category of models from the opposite direction.
Moreover this functor commutes with the forgetful functors from models of 𝐿 and 𝐿′ to sets:

𝐿-Mod 𝐿′-Mod

Set
U𝐿

−◦𝑇

U𝐿′

This mapping from morphisms 𝑇 between Lawvere theories to functors − ◦𝑇 between the
categories of models (from the opposite direction) that commute with U𝐿 and U𝐿′ is in fact
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an equivalence of categories (Adamek et al., 2010, 11.38). Mimicking this situation, we will
define morphisms between equational systems also as functors between their categories of
models from the opposite direction that commute with the forgetful functors.

From a more informal viewpoint, this is justified by that if we can ‘translate’ operations
of an equational system Σ to terms of operations of another equational system Σ′, then given
a model of Σ′, we can construct a model of Σ.

3.2∗2. In the rest of this section, we fix a category C and a freeness condition A ⊆
Endo(C ) × Endo(C ) of endofunctors (Definition 3.1∗21).

3.2∗3 Definition. A functorial translation of equational systems on C from ¤Σ = (Σ ⊲ Γ ⊢
𝐿 = 𝑅) to ¤Σ′ = (Σ′ ⊲ Γ′ ⊢ 𝐿′ = 𝑅′) is a functor 𝑇 : ¤Σ′-Alg→ ¤Σ-Alg such that U ¤Σ ◦𝑇 =U ¤Σ′ ,
where U ¤Σ : ¤Σ-Alg→C and U ¤Σ′ : ¤Σ′-Alg→C are the forgetful functors. Equational systems
on C and translations form a category Eqs(C ) whose identity morphisms are the identity
functors ¤Σ-Alg→ ¤Σ-Alg and composition of translations 𝑇 ◦𝑇 ′ is functor composition.

3.2∗4 Example. Let C be a category with finite coproducts and products. The theory Grp
of groups over C is the theory Mon of monoids in ⟨C , ×, 1⟩ from Example 3.1∗6 extended
with a new operation 𝑖 with signature Id : C →C and a new equation Id ⊢ 𝐿 = 𝑅 where

𝐿⟨𝑀, 𝜂, 𝜇, 𝑖⟩ = ⟨𝑀, 𝑀
⟨id𝑋 ,𝑖⟩−−−−−→𝑀 ×𝑀

𝜇
−→𝑀⟩

𝑅⟨𝑀, 𝜂, 𝜇, 𝑖⟩ = ⟨𝑀, 𝑀 !−→ 1
𝜂
−→𝑀⟩

Then there is a translation 𝑇 : Mon→Grp that maps every ⟨𝑀, 𝜂, 𝜇, 𝑖⟩ in Grp-Alg to an
object ⟨𝑀, 𝜂, 𝜇⟩ in Mon-Alg by forgetting the newly added operation. We call translations
like 𝑇 : Mon→Grp that simply forget some operations and equations inclusion translations.

3.2∗5. For equational systems with free-algebras, the following lemma shows that functorial
translations coincide with the expected notion of translations: maps between monads.

3.2∗6 Lemma. Let ¤Σ, ¤Ψ ∈ EqsA (C ). There is a bĳection between functorial translations
𝑇 : ¤Σ→ ¤Ψ and monad morphisms 𝑚 : U ¤ΣF ¤Σ→U ¤ΨF ¤Ψ.

Proof. By Fiore and Hur (2009, Proposition 6.4), the free-forgetful adjunction for an
equational system is always monadic, so functorial translations 𝑇 : ¤Σ→ ¤Ψ, i.e. functors 𝑇 :
¤Ψ-Alg→ ¤Σ-Alg such that U ¤Σ ◦𝑇 =U ¤Ψ, are in bĳection with functors 𝑆 : C U ¤ΨF ¤Ψ→C U ¤ΣF ¤Σ

between the corresponding Eilenberg-Moore categories that commute with the forgetful
functors. By Borceux (1994, Proposition 4.5.9), those functors 𝑆 are in bĳection with monad
morphisms 𝑚 : U ¤ΣF ¤Σ→U ¤ΨF ¤Ψ. □

3.2∗7 Corollary. The two functorial terms 𝐿, 𝑅 : Σ-Alg→ Γ-Alg of an equational system
can also be viewed as translations between the equational systems of signatures Γ and Σ

without equations. Therefore when Σ and Γ have free algebras, 𝐿 and 𝑅 are in bĳection
with two monad morphisms UΓFΓ→UΣFΣ. When C is locally small and small-complete,
the monad UΓFΓ for free Γ-algebras is also the free monad over the endofunctor Γ (nLab,
2024, Theorem 3.2). In this case, monad morphisms UΓFΓ→UΣFΣ are in bĳection with
natural transformations Γ→UΣFΣ. Moreover, it can be checked that a Σ-algebra 𝛼 : Σ𝐴→ 𝐴
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satisfies a functorial equation Γ ⊢ 𝐿 = 𝑅 if and only if the following commutes:

Γ𝐴 UΣFΣ𝐴 𝐴

�̃�𝐴

�̃�𝐴

UΣ 𝜖⟨𝐴,𝛼⟩

where �̃� and �̃� are the natural transformations corresponding to 𝐿 and 𝑅.

3.2∗8 Theorem. Let C be a category with binary coproducts and Eqs 𝑓 (C ) ⊆ Eqs(C )
be the full subcategory containing all equational systems admitting the free-forgetful
adjunction. Then we have an equivalence of categories

Eqs 𝑓 (C ) � Mon(C ),

where Mon(C ) is the category of monads over C and monad morphisms.

Proof. Example 3.1∗8 shows that every monad 𝑀 induces an equational system 𝑀-Alg
whose category of algebras is precisely the Eilenberg-Moore category of 𝑀. Thus the
equational system 𝑀-Alg is in Eqs 𝑓 (C ) since free Eilenberg-Moore algebras always
exist (which are simply ⟨𝑋, 𝜇𝑋 : 𝑀 (𝑀𝑋) →𝑀𝑋⟩ for all 𝑋 ∈ C ). By Lemma 3.2∗6 above,
this construction extends to a fully faithful functor Mon(C ) → Eqs 𝑓 (C ). Moreover, the
forgetful functor for every equational system ¤Σ ∈ Eqs 𝑓 (C ) is monadic (Fiore and Hur,
2009, Proposition 6.4), so ¤Σ is isomorphic to the equational system (F ¤ΣU ¤Σ)-Alg. Therefore
we have an essentially surjective fully faithful functor Mon(C ) → Eqs 𝑓 (C ), and thus an
equivalence Mon(C ) � Eqs 𝑓 (C ). □

3.2∗9. The theorem above shows that equational systems subsume not just monads with
ranks but all monads. Two natural questions are then

• Is the category Eqs(C ) some kind of completion of Mon(C )?
• Given a functor U : D→C , under what conditions U is the forgetful functor for an

equational system on C ?

We leave answering these questions as future work.

3.2∗10. Below, we turn our attention to the property of translations 𝑇 : ¤Σ→ ¤Ψ as functors
𝑇 : ¤Ψ-Alg→ ¤Σ-Alg, and show a condition for 𝑇 to have left adjoints. We start with an
interesting lemma saying that (when ¤Ψ has free algebras) translations 𝑇 : ¤Σ→ ¤Ψ can be
extended in a canonical way to translations 𝑇 : Σ→Ψ between the respective equational
systems without equations. Note, however, such an extension may not be unique: when the
equation of ¤Ψ is inconsistent in the sense that ¤Ψ only has the trivial model 1, there is a
unique trivial 𝑇 , but there can still be different translations Σ→Ψ.

3.2∗11 Lemma. Let C be a category and ¤Σ, ¤Ψ ∈ Eqs(C ) such that ¤Ψ has the free-forgetful
adjunction. Every functorial translation ¤Σ→ ¤Ψ, i.e. a functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg such that
U ¤Σ ◦𝑇 =U ¤Ψ can be extended to a functor 𝑇 : Ψ-Alg→ Σ-Alg such that UΣ ◦𝑇 =UΨ, and
𝑇 coincides with 𝑇 on ¤Ψ-Alg.

Proof. Given anyΨ-algebra ⟨𝐴, 𝛼 : Ψ𝐴→ 𝐴⟩, there is a free ¤Ψ-algebra over 𝐴with structure
map 𝑜 : Ψ(F ¤Ψ𝐴) → F ¤Ψ𝐴. It is mapped by 𝑇 to a ¤Σ-algebra 𝑇𝑜 : Σ(F ¤Ψ𝐴) → F ¤Ψ𝐴. We now
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define the functor 𝑇 : Ψ-Alg→ Σ-Alg by

𝑇 ⟨𝐴, 𝛼⟩ = ⟨𝐴, Σ𝐴
Σ𝜂𝐴−−−→ Σ(F ¤Ψ𝐴)

𝑇𝑜−−→ F ¤Ψ𝐴
𝜖𝐴,𝛼−−−→ 𝐴⟩.

To see that 𝑇 restricts to 𝑇 on ¤Ψ-Alg, supposing ⟨𝐴, 𝛼⟩ ∈ ¤Ψ, 𝑇 maps the counit 𝜖𝐴,𝛼 :
⟨F ¤Ψ𝐴, 𝑜⟩ → ⟨𝐴, 𝛼⟩ to the following commutative diagram:

Σ(F ¤Ψ𝐴) F ¤Ψ𝐴

Σ𝐴 𝐴

𝑇𝑜

𝜖𝐴,𝛼

𝑇𝛼

Σ𝜖𝐴,𝛼

Therefore 𝑇𝛼 = 𝜖𝐴,𝛼 · 𝑇𝑜 · Σ𝜂𝐴 =𝑇𝛼 · Σ𝜖 · Σ𝜂𝐴 =𝑇𝛼 since 𝜖𝐴,𝛼 · 𝜂𝐴 = id. □

3.2∗12. In the adjunction F ¤Σ ⊣U ¤Σ : ¤Σ-Alg→C for free algebras, the category C can be
viewed as the category ∅-Alg for the empty theory ∅ with no operations or equations, and
U ¤Σ : ¤Σ-Alg→∅-Alg is the unique translation from ∅ to ¤Σ. The fact that U ¤Σ always has a
left adjoint can be generalised to any functorial translations, giving us relative free algebras.

3.2∗13 Definition. Letting 𝐽 be a set, we say that the freeness condition A is closed
under 𝐽-indexed coproducts if whenever ⟨Σ 𝑗 , Γ 𝑗⟩ ∈A for all 𝑗 ∈ 𝐽 then

∐
𝑗 Σ 𝑗 and

∐
𝑗 Γ 𝑗

exist and are related by A . Similarly, A is said to be closed under constant functors if
⟨K𝐴,K𝐵⟩ ∈A for all 𝐴, 𝐵 ∈ C .

3.2∗14 Theorem. Assuming that A is closed under binary coproducts and constant func-
tors, every functorial translation 𝑇 : ¤Σ→ ¤Ψ in EqsA (C ) as a functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg
has a left adjoint 𝐹 and the adjunction is monadic:

¤Σ-Alg ¤Ψ-Alg

C C

𝐹

U ¤Σ

𝑇

U ¤ΨF ¤Σ F ¤Ψ

⊣

⊣ ⊣

Proof. The idea of the proof is to construct the left adjoint 𝐹 via the initial algebra of some
other equational system, similarly to how the free algebra for a functor Σ : C →C over an
object 𝐴 ∈ C can be constructed via the initial algebra of the functor 𝐴 + Σ−, except that we
need to take equations into account.

Let ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅). To construct the free ¤Ψ-algebra over a ¤Σ-algebra ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴⟩,
we consider the equational system

¤Ψ𝐴B ¤Ψ ↰K𝐴 ↰ (KΣ𝐴 ⊢ 𝐿′ = 𝑅′) (3.5)

where K𝑋 is the constant endofunctor mapping to 𝑋 ∈ C , and the two functorial terms
𝐿′, 𝑅′ : (Ψ +K𝐴)-Alg→KΣ𝐴-Alg are

𝐿′⟨𝐵, 𝛽 : Ψ𝐵→ 𝐵, 𝑖 : 𝐴→ 𝐵⟩ = ⟨𝐵, Σ𝐴 Σ𝑖−−→ Σ𝐵
�̃�𝛽
−−→ 𝐵⟩,

𝑅′⟨𝐵, 𝛽 : Ψ𝐵→ 𝐵, 𝑖 : 𝐴→ 𝐵⟩ = ⟨𝐵, Σ𝐴 𝛼−→ 𝐴
𝑖−→ 𝐵⟩.
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where 𝑇 : Ψ-Alg→ Σ-Alg is obtained from 𝑇 by Lemma 3.2∗11. Since A is assumed
to closed under binary coproducts and constant functors, the equational system ¤Ψ𝐴 is in
EqsA (C ) and thus has an initial algebra

⟨𝐵0, 𝛽 : Ψ𝐵0→ 𝐵0, 𝑖 : 𝐴→ 𝐵0⟩.

We note that the functorial equation 𝐿′ = 𝑅′ encodes a Σ-algebra homomorphism:

Σ𝐴 Σ𝐵

𝐴 𝐵

𝛼

𝑖

Σ𝑖

�̃�𝛽 (3.6)

Since 𝑇 and 𝑇 coincide on ¤Ψ algebras, 𝑇𝛽 is the same as 𝑇𝛽. Therefore 𝑖 : 𝐴→ 𝐵0 is a
¤Σ-algebra homomorphism from ⟨𝐴, 𝛼⟩ to ⟨𝐵0, 𝑇 𝛽⟩.

Next we show that the arrow 𝑖 : ⟨𝐴, 𝛼⟩ →𝑇 ⟨𝐵0, 𝛽⟩ is a universal arrow from ⟨𝐴, 𝛼⟩ to the
functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg. For every ⟨𝐶, 𝛿⟩ ∈ ¤Ψ-Alg and an arrow 𝑓 : ⟨𝐴, 𝛼⟩ → ⟨𝐶, 𝑇𝛿⟩,
we need to find a unique ¤Ψ-homomorphism ℎ : ⟨𝐵0, 𝛽⟩ → ⟨𝐶, 𝛿⟩ such that 𝑇ℎ · 𝑖 = 𝑓 :

⟨𝐴, 𝛼⟩ 𝑇 ⟨𝐵0, 𝛽⟩ ⟨𝐵0, 𝛽⟩

𝑇 ⟨𝐶, 𝛿⟩ ⟨𝐶, 𝛿⟩

𝑖

𝑇ℎ
𝑓

∃!ℎ

We observe that ⟨𝐶, 𝛿, 𝑓 ⟩ is a model of ¤Ψ𝐴 (3.5), so by the initiality of ⟨𝐵0, 𝛽, 𝑖⟩, there
is an ℎ : ⟨𝐵0, 𝛽, 𝑖⟩ → ⟨𝐶, 𝛿, 𝑓 ⟩. Since ℎ is a ¤Ψ𝐴-homomorphism, we have ℎ · 𝑖 = 𝑓 . Hence
𝑇ℎ · 𝑖 = 𝑓 as the translation 𝑇 preserves homomorphisms.

It remains to show the uniqueness of such ℎ : ⟨𝐵0, 𝛽⟩ → ⟨𝐶, 𝛿⟩ ∈ ¤Ψ-Alg with ℎ · 𝑖 = 𝑓 .
Assuming there is such an ℎ′, then ℎ′ is also a ¤Ψ𝐴-homomorphism from ⟨𝐵0, 𝛽, 𝑖⟩ to ⟨𝐶, 𝛿, 𝑖⟩.
Therefore ℎ′ = ℎ by the initiality of ⟨𝐵0, 𝛽, 𝑖⟩.

We have shown that for every ¤Σ-algebra ⟨𝐴, 𝛼⟩, there is a universal arrow from ⟨𝐴, 𝛼⟩
to the functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg. This extends to an adjunction 𝐹 ⊣𝑇 uniquely by (Mac
Lane, 1998, §IV.1 Theorem 2).

For the monadicity of the adjunction 𝐹 ⊣𝑇 , by Beck’s monadicity theorem (Borceux,
1994, Theorem 4.4.4), we need to show that (1) the functor 𝑇 reflects isomorphisms and (2)
for a pair of morphisms ℎ, 𝑔 : ⟨𝐴, 𝛼⟩ → ⟨𝐵, 𝛽⟩ ∈ ¤Ψ-Alg such that 𝑇ℎ and 𝑇𝑔 have a split
coequaliser in ¤Σ-Alg, ℎ and 𝑔 have a coequaliser in ¤Ψ-Alg and that is preserved by 𝑇 .

For (1), the image of a morphism ℎ : ⟨𝐴, 𝛼⟩ → ⟨𝐵, 𝛽⟩ ∈ ¤Ψ-Alg under the translation
functor 𝑇 is still ℎ (as a ¤Σ-homomorphism). If ℎ has an inverse ℎ−1 in ¤Σ-Alg, then ℎ−1 is a
¤Ψ-homomorphism as well:

ℎ · 𝛼 = 𝛽 ·Ψℎ ⇐⇒ ℎ · 𝛼 ·Ψℎ−1 = 𝛽 ⇐⇒ 𝛼 ·Ψℎ−1 = ℎ−1 · 𝛽

So ℎ is also an isomorphism in ¤Ψ-Alg.
For (2), let 𝑒 : ⟨𝐵, 𝑇 𝛽⟩ → ⟨𝐶, 𝛾⟩ be the split coequaliser of 𝑇ℎ and 𝑇𝑔. By the definition

of split coequalisers, U ¤Σ𝑒 is a split coequaliser of ℎ, 𝑔 : 𝐴→ 𝐵 in C . By the monadicity of
F ¤Ψ ⊣U ¤Ψ, there is a coequaliser 𝑒′ : ⟨𝐵, 𝛽⟩ → ⟨𝐶′, 𝛾′⟩ of ℎ and 𝑔 in ¤Ψ-Alg that is preserved
by U ¤Ψ. Since 𝑇ℎ · 𝑇𝑒′ =𝑇𝑔 · 𝑇𝑒′, there is a morphism 𝑖 : ⟨𝐶, 𝛾⟩ → ⟨𝐶′, 𝑇𝛾′⟩ such that
𝑖 · 𝑒 =𝑇𝑒′ in ¤Σ-Alg. But in the category C , both UΣ𝑒 : 𝐵→𝐶 and UΓ𝑒

′ =UΣ𝑇𝑒 : 𝐵→𝐶′
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are coequalisers of ℎ, 𝑔 : 𝐴→ 𝐵, so UΣ𝑖 is the unique isomorphism between 𝐶 and 𝐶′. As a
monadic functor, UΣ reflects isomorphisms, so 𝑖 is also an isomorphism in ¤Σ-Alg too, and
𝑇𝑒′ is also a coequaliser of 𝑇ℎ and 𝑇𝑔. □

3.2∗15. The two examples of freeness conditions A in Example 3.1∗22 both satisfy the
assumption in the theorem. In particular, the theorem applied to the translation Mon→Grp
in Example 3.2∗4 constructs free groups over monoids. This theorem will later be used for
constructing free modular models.

3.2∗16. The construction of relative free algebras is a special case of the adjoint lifting
problem (Borceux, 1994, §4.5), which asks given functors 𝑄 ◦𝑇 = 𝑅 ◦𝐺 such that 𝑅 has a
left adjoint, whether 𝑇 has a left adjoint as well?

A B

C D

𝑄

𝑇

𝐺

𝐿

𝑅
⊣

⊣

The situation of Theorem 3.2∗14 is then the case where 𝐿 ⊣ 𝑅 is the identity adjunction
Id ⊣ Id : C →C . An answer given by Borceux (1994, Theorem 4.5.6) is that if 𝐺 and 𝑃 are
monadic and B has coequalisers, then 𝑇 has a left adjoint. Therefore Theorem 3.2∗14 can
be generalised as follows.

3.2∗17 Theorem. Let 𝐿 ⊣ 𝑅 : D→C be an adjunction, A be a freeness condition on
D , ¤Σ ∈ Eqs 𝑓 (C ), and ¤Ψ ∈ EqsA (D). A functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg such that U ¤Ψ ◦𝑇 =

𝑅 ◦U ¤Ψ has a left adjoint 𝐹 : ¤Σ-Alg→ ¤Ψ-Alg if either (1) ¤Ψ-Alg has coequalisers or (2)
A is closed under binary coproducts and constant functors.

¤Σ-Alg ¤Ψ-Alg

C D

𝐹

U ¤Σ

𝑇

U ¤ΨF ¤Σ

𝐿

𝑅

F ¤Ψ

⊣
⊣

⊣ ⊣

Proof sketch. Free-forgetful adjunctions of equational systems are always monadic (Fiore
and Hur, 2009, Proposition 6.4), so if ¤Ψ has coequalisers we have the left adjoint 𝐹 by
Borceux (1994, Theorem 4.5.6). Alternatively, if A satisfies the required property, we can
construct the left adjoint in the same way as in the proof of Theorem 3.2∗14, inserting 𝐿
and 𝑅 in suitable places to go back and forth between C and D . For example, the crucial
diagram (3.6) in the proof of Theorem 3.2∗14 should be modified to

Σ𝐴 Σ𝑅𝐵

𝐴 𝑅𝐵

𝛼

𝑖

Σ𝑖

�̃�𝛽
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where ⟨𝐴 ∈ C , 𝛼 : Σ𝐴→ 𝐴⟩ and ⟨𝐵 ∈D , 𝛽 : Ψ𝐵→ 𝐵⟩, and the functor𝑇 : Ψ-Alg→ Σ-Alg
from Lemma 3.2∗11 is modified to

𝑇 ⟨𝐵, 𝛽⟩ = ⟨𝑅𝐵, Σ𝑅𝐵
Σ𝑅𝜂𝐵−−−−−→ Σ𝑅(F ¤Ψ𝐵)

𝑇𝑜−−→ 𝑅F ¤Ψ𝐵
𝑅𝜖𝐵,𝛽−−−−−→ 𝑅𝐵⟩.

where 𝑜 : ¤ΨF ¤Ψ𝐵→ F ¤Ψ𝐵 is the algebra structure on the free ¤Ψ-algebra. □

3.2∗18 Example. Instantiate the adjunction 𝐿 ⊣ 𝑅 in Theorem 3.2∗17 to be + ⊣ Δ : Set→
Set × Set. We have an equational system Ring ∈ Eqs(Set) of rings, and we can define
an equational system AbMon ∈ Eqs(Set × Set) such that an algebra of AbMon is a pair
⟨𝐴, 𝑀⟩ of sets with an abelian group on 𝐴 and a monoid on 𝑀, so we have the following
commutative triangle:

Ab-Alg ×Mon-Alg AbMon-Alg

Set × Set

�

UAb×UMon UAbMon

Let 𝑇 : Ring-Alg→Ab-Alg ×Mon-Alg be the functor that projecting out the additive
group and multiplicative monoid structure of rings. It satisfies UAb ×UMon ◦𝑇 = Δ ◦URing.
By Theorem 3.2∗17, 𝑇 has a left adjoint 𝐹:

Ab-Alg ×Mon-Alg Ring-Alg

Set × Set Set

𝐹

UAb×UMon

𝑇

URingFAb×FMon

+

Δ

FRing

⊣
⊣

⊣ ⊣

The functor 𝐹 generates a free ring simultaneously over an abelian group 𝐴 and a monoid 𝑀 .
Generally, whenever we have a cospan of equational systems ¤Σ→ ¤Ψ← ¤Φ, we can construct
an algebra of ¤Ψ out of a ¤Σ-algebra and a ¤Φ-algebra in a similar fashion. We will later use
this technique to turn an ordinary model of an equational system to a modular model.

3.3 Colimits of Equational Systems

3.3∗1. Colimits in Eqs(C ) allow us to construct bigger equational systems by ‘gluing’
smaller ones. For example, the equational system for rings can be obtained by first taking
the coproduct of Grp and Mon and then taking a suitable coequaliser 𝐿⇒Grp +Mon
encoding the interaction of operations.

3.3∗2 Theorem. The category EqsA (C ) is small-cocomplete when the freeness condition
A is closed under small-coproducts and if ⟨Ψ,Θ⟩ ∈A then ⟨0,Ψ⟩ ∈A .

Proof sketch. Arbitrary colimits can be constructed from coproducts and coequalisers, so
it is sufficient to show that EqsA (C ) has small-set-indexed coproducts and coequalisers.
We sketch the constructions here without proof.

(i) The coproduct of a (small) set of equational systems is obtained by taking the coproduct
of signatures and equations. Precisely, if ⟨Σ𝑖 ⊲ Γ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖⟩𝑖∈𝐼 is a set of equational systems
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with each of them in EqsA (C ), their coproduct is∐
𝑖 Σ𝑖 ⊲

∐
𝑖 Γ𝑖 ⊢ 𝐿 = 𝑅

where 𝐿, 𝑅 : (∐𝑖∈𝐼 Σ𝑖)-Alg→ (∐𝑖∈𝐼 Γ𝑖)-Alg are

𝐿𝛼 = [𝐿𝑖 (𝛼 · 𝜄𝑖)]𝑖∈𝐼 𝑅𝛼 = [𝑅𝑖 (𝛼 · 𝜄𝑖)]𝑖∈𝐼 .

(ii) Let 𝑇1, 𝑇2 : ¤Ψ→ ¤Σ be a pair of translations. Let ¤Σ′ be

¤Σ ↰ (Ψ ⊢𝑇1 =𝑇2),

where 𝑇1, 𝑇2 : Σ-Alg→Ψ-Alg are obtained from 𝑇1 and 𝑇2 by Lemma 3.2∗11. By the
assumption on A , ¤Σ′ is still in EqsA (C ). The inclusion translation ¤Σ→ ¤Σ′ is the coequaliser
of 𝑇1, 𝑇2 : ¤Ψ→ ¤Σ. □

3.3∗3 Corollary. For every l𝜅p category C , the freeness condition A = Endo𝜅 (C ) ×
Endo𝜅 (C ) satisfies the assumption of the theorem, so EqsA (C ) is cocomplete. For a
small-complete small category C , the freeness conditionA = Endo(C ) × Endo(C ) is a
freeness condition so Eqs(C ) is cocomplete.

3.3∗4. Lastly, the following more description of a special case of pushouts of equational
system will be convenient in the future.

3.3∗5 Lemma. Let ¤Σ ∈ Eqs(C ) for a category C with finite coproducts, Θ𝑖 : C →C be an
endofunctor, and 𝐸𝑖 = (Θ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖) an equation for 𝑖 ∈ {1, 2}. Let 𝑇1 and 𝑇2 in the diagram
below be the inclusion translations, then the following is a pushout diagram of 𝑇1 and 𝑇2:

¤Σ ¤Σ ↰Φ2 ↰ 𝐸2

¤Σ ↰Φ1 ↰ 𝐸1 ¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸

𝑇2

𝑇1

where 𝐸 = (Θ1 +Θ2 ⊢ [𝐿1 ◦ 𝛼1, 𝐿2 ◦ 𝛼2] = [𝑅1 ◦ 𝛼1, 𝑅2 ◦ 𝛼2]) and

𝛼𝑖 : (Σ + (Φ1 +Φ2))-Alg→ (Σ +Φ𝑖)-Alg

are the evident forgetful functors.

Proof. First of all, there are evident inclusion translations 𝑃𝑖 (which are the unlabelled
arrows in the pushout diagram):

𝑃𝑖 : ( ¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸)-Alg → ( ¤Σ ↰Φ𝑖 ↰ 𝐸𝑖)-Alg

such that 𝑇1 ◦ 𝑃1 =𝑇2 ◦ 𝑃2. Now for every equational system ¤Ψ ∈ Eqs(C ) with translations
functors 𝑄𝑖 : ¤Ψ-Alg→ ( ¤Σ ↰Φ𝑖 ↰ 𝐸𝑖)-Alg such that 𝑇1 ◦𝑄1 =𝑇2 ◦𝑄2, we can define a
translation functor

𝑈 : ¤Ψ-Alg→ ( ¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸 ′)-Alg

by sending every ¤Ψ-algebra ⟨𝐴, 𝛼⟩ to the algebra on 𝐴 with structure map:

[𝑇1 (𝑄1 ¤𝐴), 𝑄1𝛼 · 𝜄2, 𝑄2𝛼 · 𝜄2] : (Σ +Φ1 +Φ2) 𝐴→ 𝐴

It can be checked that such𝑈 is the unique one making 𝑃𝑖 ◦𝑈 =𝑄𝑖 . □
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4 A Type Theory for Monoidal Categories

4∗1. When categorical constructions get complex, it is beneficial to use type theoretic
internal languages to describe those constructions in a more intuitive manner (Crole, 1994;
Jacobs, 1999; Lambek and Scott, 1986). This technique will be prevalent in this paper. In
this section, we introduce monoidal algebraic theories, which allows us to present equational
systems over monoidal categories and their algebras in a convenient syntactic manner.

4∗2. Monoidal algebraic theories are the linear counterpart of multi-sorted universal
algebra, and the syntactic counterpart of coloured PROs (strict monoidal categories whose
objects are products of a set of base objects) (MacLane, 1965). The presentation of monoidal
algebraic theories below is based on the calculus of Jaskelioff and Moggi (2010), but the
rules of judgemental equality is strengthened here to make terms form a monoidal category.

4.1 Monoidal Algebraic Theories

4.1∗1. A monoidal algebraic theory L is specified by three pieces of data ⟨B,P ,A ⟩ as
follows. Firstly, B is a set, and every element 𝛼 ∈B is called a base type. The types of L

are inductively generated by the rules

𝛼 ∈B

⊢ 𝛼 type ⊢ 𝐼 type

⊢ 𝐴 type ⊢ 𝐵 type

⊢ 𝐴□ 𝐵 type

Then P is a family of sets indexed by pairs of types 𝐴 and 𝐵. Every element 𝑓 ∈P𝐴,𝐵 is
called a primitive operation, and we will write 𝑓 : 𝐴→ 𝐵 for 𝑓 ∈P𝐴,𝐵.

A context Γ is a finite list of variables and types (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛). The concatenation
of two contexts is written as Γ𝑙 , Γ𝑟 .

The (well typed) terms under contexts Γ are generated by the following rules:

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

𝑓 : 𝐴→ 𝐵 ∈P Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑓 𝑡 : 𝐵

·
⊢ ∗ : I

Γ1 ⊢ 𝑡1 : 𝐴 Γ2 ⊢ 𝑡2 : 𝐵

Γ1, Γ2 ⊢ (𝑡1, 𝑡2) : 𝐴□ 𝐵

Γ ⊢ 𝑡1 : I Γ𝑙 , Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ let ∗ = 𝑡1 in 𝑡2 : 𝐴

Γ ⊢ 𝑡1 : 𝐴1 □ 𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2 : 𝐵

Note that the type system is substructural, since the language is to be interpreted in monoidal
categories rather than cartesian categories.

Lastly, A is a set of pairs ⟨Γ ⊢ 𝑡𝑙 : 𝐴, Γ ⊢ 𝑡𝑟 : 𝐴⟩ of terms of the same type and under the
same context. Every element of A is called an axiom of L . We will write (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐴) ∈ 𝐴
when a pair ⟨Γ ⊢ 𝑡𝑙 : 𝐴, Γ ⊢ 𝑡𝑟 : 𝐴⟩ is in A .

4.1∗2 Example. The monoidal algebraic theory of monoids has one base type 𝑀, two
primitive operations 𝜇 : 𝑀 □𝑀→𝑀 and 𝜂 : 𝐼→𝑀 and the following axioms, which
correspond to the laws of monoids (2∗2):

𝑥 : 𝑀 ⊢ 𝜇(𝜂(∗), 𝑥) = 𝑥 : 𝑀 𝑥 : 𝑀 ⊢ 𝜇(𝑥, 𝜂(∗)) = 𝑥 : 𝑀
𝑥 : 𝑀, 𝑦 : 𝑀, 𝑧 : 𝑀 ⊢ 𝜇(𝜇(𝑥, 𝑦), 𝑧) = 𝜇(𝑥, 𝜇(𝑦, 𝑧)) : 𝑀 (4.1)
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Although these axioms above look the same as the usual laws of monoids in Set, we will
see below they can actually be interpreted in all monoidal categories, and a model of this
theory will be exactly a monoid in a monoidal category.

4.1∗3 Lemma. The following substitution rule (or the ‘cut rule’) is admissible:

Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡 : 𝐵 Δ ⊢ 𝑢 : 𝐴

Γ𝑙 , Δ, Γ𝑟 ⊢ 𝑡 [𝑢/𝑥] : 𝐵
Cut

where 𝑡 [𝑢/𝑥] is substituting 𝑢 for 𝑥 in 𝑡.

Proof sketch. The typing rules of terms above all have substitution ‘built-in’ by having
contexts Γ, Γ𝑙 and Γ𝑟 as general as possible. Thus the substitution rule can be shown by a
straightforward induction on 𝑡. □

4.1∗4 Notation. In this paper, when we simultaneously substitute terms 𝑢1, . . . , 𝑢𝑛 for
all the variables in the context of a term 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑡 : 𝐵, we usually just write
𝑡 [𝑢1, . . . , 𝑢𝑛] instead of 𝑡 [𝑢1/𝑥1, . . . , 𝑢𝑛/𝑥𝑛].

4.1∗5. The judgemental equality Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴 of terms of a theory L is generated by the
following rules plus the usual rules for reflexivity, symmetry, transitivity, and congruence
under all term formers and substitution:

(Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐴) ∈A

Γ ⊢ 𝑡𝑙 ≡ 𝑡𝑟 : 𝐴
Ax

Γ ⊢ 𝑡 : 𝐴

Γ ⊢ (let ∗ = ∗ in 𝑡 : 𝐴) ≡ 𝑡 : 𝐴
𝐼-𝛽

Γ ⊢ 𝑡1 : I Γ𝑙 , 𝑥 : 𝐼, Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ (let ∗ = 𝑡1 in 𝑡2 [∗/𝑥]) ≡ 𝑡2 [𝑡1/𝑥] : 𝐴
𝐼-𝜂

Γ1 ⊢ 𝑡1 : 𝐴1 Γ2 ⊢ 𝑡2 : 𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡3 : 𝐵

Γ𝑙 , Γ1, Γ2, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = (𝑡1, 𝑡2) in 𝑡3) ≡ 𝑡3 [𝑡1/𝑥1, 𝑡2/𝑥2] : 𝐵
□-𝛽

Γ ⊢ 𝑡1 : 𝐴1 □ 𝐴2 Γ𝑙 , 𝑥 : 𝐴1 □ 𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2 [(𝑥1, 𝑥2)/𝑥]) ≡ 𝑡2 [𝑡1/𝑥] : 𝐵
□-𝜂

The congruence rule under substitution is

Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡1 ≡ 𝑡2 : 𝐵 Δ ⊢ 𝑢 : 𝐴

Γ𝑙 , Δ, Γ𝑟 ⊢ 𝑡1 [𝑢/𝑥] ≡ 𝑡2 [𝑢/𝑥] : 𝐵

4.1∗6. A model of a monoidal algebraic theory L = ⟨B,P ,A ⟩ in a monoidal category E

consists of (1) an assignment of E -objects J𝛼K ∈Ob(E ) to each base type 𝛼 ∈B, which
induces the interpretation of all types and contexts:

JIK = 𝐼E J𝐴□ 𝐵K = J𝐴K□E J𝐵K
J·K = 𝐼E JΓ, 𝑥 : 𝐴K = JΓK□E J𝐴K

and (2) an assignment of E -morphisms J 𝑓 K : J𝐴K→ J𝐵K to each primitive operation 𝑓 :
𝐴→ 𝐵 ∈P , which determines the interpretation of all terms:

J𝑥K = id J 𝑓 𝑡K = J 𝑓 K · J𝑡K J∗K = id J(𝑡1, 𝑡2)K = J𝑡1K□E J𝑡2K
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Jlet ∗ = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ1K□E J𝑡1K□E JΓ2K)
Jlet (𝑥1, 𝑥2) = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ𝑙K□E J𝑡1K□E JΓ𝑟K)

where the underscores stand for the unique isomorphisms built from associators 𝛼 and
unitors 𝜆, 𝜌 to make the domain and codomain match. Moreover, the assignments J−K of a
model must make J𝑡𝑙K = J𝑡𝑟K for all axioms ⟨𝑡𝑙 , 𝑡𝑟 ⟩ ∈A .

4.1∗7. Let 𝑀 and 𝑁 be two models of a theory L = ⟨B,P ,A ⟩ in a monoidal category E .
A family of E -morphisms ℎ𝛼 : J𝛼K𝑀→ J𝛼K𝑁 for all base types 𝛼 ∈B extends to a family
of morphisms ℎ̃𝐴 : J𝐴K𝑀→ J𝐴K𝑁 for all L -types 𝐴:

ℎ̃𝐼 = id𝐼 ℎ̃𝐴□𝐵 = ℎ̃𝐴□E ℎ̃𝐵 ℎ̃𝛼 = ℎ𝛼 .

Such a family of morphisms ℎ is called a homomorphism from 𝑀 to 𝑁 if for every primitive
operation 𝑓 : 𝐴→ 𝐵 ∈P , the following commutes:

J𝐴K𝑀 J𝐵K𝑀

J𝐴K𝑁 J𝐵K𝑁

J 𝑓 K𝑀

ℎ̃𝐴 ℎ̃𝐵

J 𝑓 K𝑁

Models of L in E and their homomorphisms assemble to a category L -Mod (E ).

4.1∗8 Theorem (Soundness). Let J−K be a model of a monoidal algebraic theory L . If
two L -terms are judgementally equal, Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴, then J𝑡1K = J𝑡2K.

Proof sketch. It is straightforward verification that the rules of judgemental equalities in
4.1∗5 is validated by the axioms of a monoidal category after we show the substitution
lemma: for all Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡 : 𝐵 and Δ ⊢ 𝑢 : 𝐴, we have

J𝑡 [𝑢/𝑥]K = J𝑡K · (Γ𝑙 □ J𝑢K□ Γ𝑟 ) : JΓ𝑙 , Δ, Γ𝑟K→ J𝐵K

which itself can be proven by induction on 𝑡. □

4.1∗9. Given a monoidal category E , its internal language L (E ) is a monoidal algebraic
theory defined as follows:

• The set of base types of L (E ) is exactly Obj E , so we have an interpretation of all
types as objects in E by interpreting every base type as itself.

• The set of primitive operations between two types 𝐴 and 𝐵 is E (J𝐴K, J𝐵K). Again,
by interpreting every primitive operation as itself in the category E , we have an
interpretation of all terms in E as in 4.1∗6.

• The set of axioms of L (E ) is the maximal one containing all pairs of terms ⟨𝑡1, 𝑡2⟩
such that J𝑡1K = J𝑡2K in E .

The canonical interpretation is a model of L (E ) by construction. The internal language
L (E ) of a monoidal category E is sound and complete for reasoning about E : two terms in
L (E ) satisfy 𝑡1 ≡ 𝑡2 if and only if they are equal under the canonical interpretation in E .
Soundness follows from Theorem 4.1∗8 and completeness is by the construction of L (E ).

4.1∗10. What we have above is enough for our purpose of using a convenient syntax to
describe and reason about constructions in monoidal categories, but there are certainly more
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things can be said about monoidal algebraic theories. Following the standard agenda of
categorical logic, we expect the following to be true but leave them as future work:

• Types and terms of L underlie a classifying monoidal category M (L ) there is a
model of L in M (L ), and there is an equivalence of categories

L -Mod (E ) �MonCat𝑠 (M (L ), E ),

where the right-hand side is the category of strict monoidal functors M (L ) → E

and monoidal natural transformations.
• There is a 2-category Mat of monoidal algebraic theories and a 2-equivalence

Mat MonCat𝑠
M

L

�

between Mat and the 2-category of monoidal categories, strict monoidal functor and
monoidal natural transformations.

4.1∗11 Remark. We have defined the syntax and semantics of monoidal algebraic theories
manually. A more modern approach would be directly define monoidal algebraic theories
using the framework of generalised algebraic theories (Cartmell, 1986, 1978) (or the closely
related framework of quotient inductive-inductive types (Altenkirch and Kaposi, 2016;
Altenkirch et al., 2018; Kovács, 2023)). Using these frameworks would then directly give us
a notion of models of monoidal algebraic theories and syntactic models.

4.2 More Type Formers for Monoidal Algebraic Theories

4.2∗1. Sometimes we work in monoidal categories with additional structure, and in this
case we extend monoidal algebraic theories with new syntax for the additional structure. For
example, when we work in left closed monoidal categories, we extend the calculus with a
new type former 𝐵/𝐴 and term formers:

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴
Γ1 ⊢ 𝑡1 : 𝐵/𝐴 Γ2 ⊢ 𝑡2 : 𝐴

Γ1, Γ2 ⊢ 𝑡1 𝑡2 : 𝐵

whose interpretation in a model is given by the corresponding structure of the closed
monoidal category:

J𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴K = abst(J𝑡K) J𝑡1 𝑡2K = ev · (J𝑡1K□E J𝑡2K)

where abst : E (𝐶 □E 𝐴, 𝐵) → E (𝐶, 𝐵/E 𝐴) is the natural isomorphism associated to the
adjunction (−□E 𝐴) ⊣ (−/E 𝐴) and ev : (𝐵/E 𝐴) □E 𝐴→ 𝐵 is its counit. The 𝛽 and 𝜂 rules
characterising the universal property of 𝐵/𝐴 are added to the equational theory routinely.

4.2∗2. Note that the type former 𝐵/𝐴 is contravariant in the position of 𝐴, so in the presence
of /-types, the way in 4.1∗7 of extending a family of morphisms ℎ𝛼 : J𝛼K𝑀→ J𝛼K𝑁 between
interpretations of base types to a family of morphisms ℎ̃𝐴 between interpretations of all
types will not work, and we will not have a category of models and model homomorphisms
for a theory L with /-types. However, we can still have a category L -Mod� (E ) of models
and model isomorphisms by demanding that every ℎ𝛼 must be an E -isomorphism.
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4.2∗3. As a comment on the notation, Jaskelioff and Moggi (2010) used 𝐵𝐴 for the
closed structure, while we use Lambek’s [1958] notation 𝐵/𝐴 to avoid the confusion with
exponentials (which are right adjoints to cartesian products).

4.2∗4 Example. Consider the theory of monoids from Example 4.1∗2 and the extension of
the closed structure 𝐵/𝐴 as in 4.2∗1. Cayley’s theorem from elementary algebra adapted
to this setting says that the monoid ⟨𝑀, 𝜇, 𝜂⟩ embeds into the monoid 𝑀/𝑀 with unit
⊢ 𝜆𝑥. 𝑥 : 𝑀/𝑀 and multiplication

𝑓 : 𝑀/𝑀, 𝑔 : 𝑀/𝑀 ⊢ 𝜆𝑥. 𝑓 (𝑔 𝑥) : 𝑀/𝑀. (4.2)

The embedding is given by 𝑒 = (𝑥 : 𝑀 ⊢ 𝜆𝑦. 𝜇(𝑥, 𝑦) : 𝑀/𝑀), which is a monoid homomor-
phism in the following sense:

𝑒[𝜂 ∗] ≡ 𝜆𝑦. 𝜇(𝜂 ∗, 𝑦) ≡ 𝜆𝑦. 𝑦
𝑒[𝜇(𝑥, 𝑦)] ≡ 𝜆𝑧. 𝜇(𝜇(𝑥, 𝑦), 𝑧) ≡ 𝜆𝑧. 𝜇(𝑥, 𝜇(𝑦, 𝑧)) ≡ 𝜆𝑧. 𝑒[𝑥] (𝑒[𝑦] 𝑧)

where we write 𝑡 [−] for substitution when there is a unique variable in the context of 𝑡. The
embedding 𝑒 has a left inverse 𝑟 = ( 𝑓 : 𝑀/𝑀 ⊢ 𝑓 (𝜂 ∗) : 𝑀) such that

𝑥 : 𝑀 ⊢ 𝑟 [𝑒] ≡ (𝜆𝑦. 𝜇(𝑥, 𝑦)) (𝜂 ∗) ≡ 𝑥 : 𝑀

However, the inverse 𝑟 is in general not a monoid homomorphism: in the context ( 𝑓 :
𝑀/𝑀, 𝑔 : 𝑀/𝑀), we have

𝑟 [𝜆𝑥. 𝑓 (𝑔 𝑥)] ≡ 𝑓 (𝑔 (𝜂 ∗)) . 𝜇( 𝑓 (𝜂 ∗), 𝑔 (𝜂 ∗)) ≡ 𝜇(𝑟 [ 𝑓 ], 𝑟 [𝑔])

This elementary result has many applications in functional programming because the
multiplication (4.2) is usually a kind of function composition with 𝑂 (1) time complexity,
regardless of the possibly expensive multiplication 𝜇. When𝑀 is a free monoid in ⟨Set, ×, 1⟩,
i.e. a list, this optimisation is known as difference lists (Hughes, 1986). In ⟨Endo𝜅 (C ), ◦, Id⟩,
this optimisation is known as codensity transformation (Hinze, 2012).

4.2∗5. Cartesian products and coproducts in monoidal categories can be internalised
similarly: we add type formers 𝐴 × 𝐵 and 𝐴 + 𝐵 with term formers:

Γ ⊢ 𝑡1 : 𝐴1 Γ ⊢ 𝑡2 : 𝐴2

Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴1 × 𝐴2

Γ ⊢ 𝑡1 : 𝐴1 × 𝐴2 Γ𝑙 , 𝑥 : 𝐴𝑖 , Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ 𝑡2 [𝜋𝑖 𝑡1/𝑥] : 𝐵
𝑖 ∈ {1, 2}

Γ ⊢ 𝑡 : 𝐴𝑖
Γ ⊢ 𝜄𝑖 𝑡 : 𝐴1 + 𝐴2

𝑖 ∈ {1, 2}

Γ ⊢ 𝑡 : 𝐴1 + 𝐴2 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑡𝑖 :𝐶, 𝑖 ∈ {1, 2}
Γ ⊢ case 𝑡 of {𝜄1 𝑥𝑖 ↦→ 𝑡1; 𝜄2 𝑥2 ↦→ 𝑡2} :𝐶

as well as their 𝛽 and 𝜂 rules. Sometimes we also write [𝑡1, 𝑡2] 𝑡 instead of case 𝑡 of {𝜄1 𝑥𝑖 ↦→
𝑡1; 𝜄2 𝑥2 ↦→ 𝑡2} for brevity.

These rules straightforwardly generalise to the non-binary cases. Note that the first rule
introduces non-linearity to the syntax as the variables in Γ may appear in both 𝑡1 and 𝑡2.
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4.2∗6 Remark. In the presence of cartesian products, we can borrow the idea of bunched
logic (O’Hearn and Pym, 1999) to introduce a new context former Γ; Γ′ with semantics
JΓ; Γ′K = JΓK × JΓ′K. This would simplify talking about linear functions −/𝐴 (right adjoint
to −□ 𝐴) and non-linear functions −𝐴 (right adjoint to − × 𝐴) at the same time, but we will
not need this extension in this paper.

4.3 Syntactic Presentations of Equational Systems

4.3∗1. In this subsection, we carve out a class of monoidal algebraic theories that can be
defined as equational systems, therefore allowing us to apply the theorems of equational
systems to those monoidal algebraic theories, or from the opposite perspective, allowing us
to define equational systems syntactically use those monoidal algebraic theories.

4.3∗2 Definition. Let L = ⟨B,P ,A ⟩ be a monoidal algebraic theory. When all primitive
operations 𝑓 : 𝐴→ 𝐵 and equations Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐵 of a monoidal algebraic theory L satisfy
that 𝐵 ∈B, we say that L has basic outputs.

4.3∗3. For example, the theory of monoids in Example 4.1∗2 has basic outputs, but the
internal language L (E ) of a monoidal category E does not have basic outputs because not
all axioms of L (E ) have a base type 𝐵.

4.3∗4 Theorem. For every monoidal algebraic theory L = ⟨B,P ,A ⟩ with basic outputs
and every monoidal category E with small-coproducts, there is an equational system ΣL

over the product category E B such that L -Mod (E ) � ΣL -Alg.

Proof. Recall that types 𝐴 of L are generated by 𝐼, □, and 𝛼 ∈B. Therefore the
interpretation of every type 𝐴 in E determines a functor J𝐴K : E B→ E :

J𝐼K𝑋 = 𝐼E J𝐴1 □ 𝐴2K𝑋 = J𝐴1K𝑋 □ J𝐴2K𝑋 J𝛼K𝑋 = 𝑋𝛼

Similarly, every context Γ of L determines a functor JΓK : E B→ E .
We define an endofunctor JPK : E B→ E B by

JPK𝑋 = ⟨∐𝐴

∐
𝑓 :𝐴→𝛼∈PJ𝐴K𝑋⟩𝛼∈B.

It can be seen that an algebra of the endofunctor JPK is precisely an interpretation of base
types B and primitive operations P in E .

Let ↑𝛼 : E → E B be the functor mapping every 𝑋 ∈ E and 𝛽 ∈B to 𝑋 if 𝛼 = 𝛽, or to 0E

if 𝛼 ≠ 𝛽. We write JΓ ⊢ 𝛼K : E B→ E B for ↑𝛼 ◦ JΓK. An algebra of the endofunctor JΓ ⊢ 𝛼K
is then an object 𝑋 ∈ E B with a morphism in E B

⟨↑𝛼 (JΓK𝑋) 𝛽⟩𝛽∈B −→ ⟨𝑋𝛽⟩𝛽∈B,

which amounts to just an E -morphism JΓK𝑋→ 𝑋𝛼, i.e. JΓK𝑋→ J𝛼K𝑋 , since all other
components are the unique 0E → 𝑋𝛽 . Therefore the interpretation of every term Γ ⊢ 𝑡 : 𝛼
of L with 𝛼 ∈B then determines a mapping from a JPK-algebra to a JΓ ⊢ 𝛼K-algebra.
By induction on the term 𝑡 in the style of Reynolds’s [1983] abstraction theorem, it can
be shown that this mapping extends to a functor J𝑡K : JPK-Alg→ JΓ ⊢ 𝛼K-Alg satisfying
UJΓ⊢𝛼K ◦ J𝑡K =UJPK.
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Let ΣL be the equational system over E B with signature JPK and a set of functorial
equations JΓK ⊢ J𝑡𝑙K = J𝑡𝑟K for every axiom (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝛼) ∈A (c.f. Notation 3.1∗7). By
construction, the category L -Mod (E ) of L -models in E and the category ΣL -Alg of
ΣL -algebras (in E B) are isomorphic. □

4.3∗5 Corollary. Let E be a cocomplete monoidal category with □ preserving colimits of
𝛼-chains for a limit ordinal 𝛼. By the theorem above and Theorem 3.1∗12, the category of
models L -Mod (E ) of a monoidal algebraic theory L with basic outputs is cocomplete
and monadic over the category E B.

4.3∗6 Example. The monoidal algebraic theory of monoids in Example 4.1∗2 has basic
outputs, and the corresponding equational system obtained using the theorem above is
precisely the equational system in Example 3.1∗6.

4.3∗7 Remark. The restriction of basic outputs is reminiscent of the relationship between
operads and PROPs (Markl, 2006), which are two frameworks for doing algebraic theories
in symmetric monoidal categories. It is also the case that the former allows multiple inputs
but one output, whereas the latter allows multiple inputs and multiple outputs. However, an
advantage of the restricted frameworks is that the category of algebras of operads/monoidal
algebraic theories with basic outputs is monadic (under the conditions of Corollary 4.3∗5).

4.3∗8. When considering monoidal algebraic theories with extra type formers that are not
covariant, such as the linear function type 𝐵/𝐴 in 4.2∗1, Theorem 4.3∗4 must additionally
require a theory L = ⟨B,P ,A ⟩ with basic outputs to have positive inputs: every primitive
operation 𝑓 : 𝐴→ 𝛼 and equation Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝛼 of L must satisfy that every base type
𝛽 ∈B occurs positively in 𝐴 and Γ, so that 𝐴 and Γ can be interpreted as covariant functors
E B→ E . The rule for types in which 𝛽 ∈B occurs positively 𝑃 and negatively 𝑁 is defined
inductively by the following grammar as usual:

𝑃 := 𝛽 | 𝛼 | 𝑃□ 𝑃 | 𝑃/𝑁 𝑁 := 𝛼 | 𝑁 □ 𝑁 | 𝑁/𝑃

where 𝛼 ranges over B \ {𝛽}. A base type 𝛽 occurs positively in a context Γ if it occurs
positively in every item of the context Γ. Other covariant type formers such as × and + in
4.2∗5 should be treated similarly to □.

4.3∗9. As explained above, type expressions 𝑃 in which base types occur positively denote
functors J𝑃K. It will be convenient if we also have access in the term language to the
corresponding action of J𝑃K on morphisms. Let 𝜏 ∈B and 𝑥 : 𝐴 ⊢ 𝑓 : 𝐵. For all types 𝑃 and
𝑁 in which 𝜏 ∈B occurs positively and negatively respectively, we define terms

𝑥 : 𝑃[𝐴/𝜏] ⊢ 𝑃𝜏 𝑓 : 𝑃[𝐵/𝜏] 𝑥 : 𝑁 [𝐵/𝜏] ⊢ 𝑁𝜏 𝑓 : 𝑁 [𝐴/𝜏]

by induction on the structure of 𝑃 and 𝑁:

𝜏𝜏 𝑓 := 𝑓 𝛼𝜏 𝑓 := 𝑥 (𝑃/𝑁)𝜏 𝑓 := 𝜆𝑦. 𝑃𝜏 𝑓 [𝑥 (𝑁𝜏 𝑓 [𝑦])]
(𝑃□ 𝑃′)𝜏 𝑓 := let (𝑥𝑙 , 𝑥𝑟 ) = 𝑥 in (𝑃𝜏 𝑓 [𝑥𝑙], 𝑃′𝜏 𝑓 [𝑥𝑟 ])

and symmetrically for 𝑁 . When the type expression 𝑃 contains (at most) one base type 𝜏,
we will just write 𝑃 𝑓 for 𝑃𝜏 𝑓 .
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As a convention, we will write 𝑃𝜏 𝑓 𝑡 for 𝑃𝜏 𝑓 [𝑡/𝑥], so we have an admissible rule:

𝑥 : 𝐴 ⊢ 𝑓 : 𝐵 Γ ⊢ 𝑡 : 𝑃[𝐴/𝜏]
Γ ⊢ 𝑃𝜏 𝑓 𝑡 : 𝑃[𝐵/𝜏]

As an example, if B = {𝜏}, then 𝜏 occurs positively in the type expression 𝑇 = 𝜏□ 𝜏,
which denotes the functor □ : E × E → E . Moreover we have Γ ⊢𝑇 𝑓 𝑡 : 𝐵□ 𝐵 for all terms
𝐴 ⊢ 𝑓 : 𝐵 and Γ ⊢ 𝑡 : 𝐴□ 𝐴.

4.3∗10. A notable difference between a monoidal algebraic theory L and an equational
system ¤Σ over a monoidal category E is that the definition of the former (4.1∗1) makes
no reference to any specific monoidal category, while the definition of the latter (3.1∗4) is
parameterised by the underlying category E . Therefore the operations of L must make
sense for all monoidal categories. Such a generality can also be a limitation: sometimes we
may be interested in operations that only make sense for a specific monoidal category E .
In this case, we need a slight generalisation of Theorem 4.3∗4 to use monoidal algebraic
theories to denote equational systems over E syntactically.

4.3∗11. Let L = ⟨B,P ,A ⟩ be a monoidal algebraic theory and 𝑀 be a model of it in
some monoidal category E . We say that another theory L ′ = ⟨B′,P ′,A ′⟩ is an extension
of L if B ⊆B′, P ⊆P ′, and A ⊆A ′, where we implicitly treat types/terms generated
by B and P as types/terms generated generated by the superset B′ and P ′. Moreover, a
model 𝑀 ′ of L ′ in E is said to be over the model 𝑀 if J𝐴K𝑀′ = J𝐴K𝑀 and J𝑡K𝑀′ = J𝑡K𝑀
for all types 𝐴 and terms 𝑡 of L .

For example, let E be a monoidal category and 𝐴 ∈ E be an object of E . Let L ′ be
the extension of the internal language L (E ) with a new base type 𝜏 and a new operation
𝑓 : 𝐴→ 𝜏. A model of L ′ over the canonical model of L (E ) in E is precisely an object
𝑋 ∈ E with a morphism 𝑓 : 𝐴→ 𝑋 .

4.3∗12. We say that an extension L ′ of L has basic outputs if every new operation
( 𝑓 : 𝐴→ 𝐵) ∈ (P ′ \P) and every equation (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐵) ∈ (A ′ \A ) satisfies that 𝐵 ∈
B′ \B. Similarly, we say that the extension L ′ has positive inputs if every 𝛼 ∈B′ \B
occurs positively in 𝐴 and Γ.

4.3∗13 Theorem. Let L be a monoidal algebraic theory (with possibly extra type formers
such as /, +, ×-types in Section 4.2), and let 𝑀 be a model of L in a monoidal category
E with small-coproducts. Every extension L ′ of L that has basic outputs (and positive
inputs) determines an equational system ΣL ′ ,𝑀 over E B\B′ such that algebras of ΣL ′ ,𝑀

are in bĳection with models of L ′ in E over 𝑀 .

Proof. The proof goes almost the same as Theorem 4.3∗4, except that the base types and
primitive operations of L are fixed by the model 𝑀 . □

4.3∗14. Our main use case of Theorem 4.3∗13 is when L is the internal language L (E )
of a monoidal category with coproducts E (4.1∗9), and 𝑀 is the canonical model, and
there is exactly one new base type: B′ \B = {𝜏} of L (E ) in E . This allows us to present
an equational system over E syntactically by a set of operations 𝑓 : 𝐴→ 𝜏 and axioms
Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝜏 where 𝐴, Γ, 𝑡𝑙 and 𝑡𝑟 can refer to the existing objects and morphisms in E .
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5 Equational Systems for Monoids with Operations

5∗1. After the detour to monoidal algebraic theories, now we come back to monoids with
operations, by which we mean the equational system Mon extended with a new operation
op : Σ𝑀→𝑀 for some endofunctor Σ : E → E and possibly some equations. In this section,
we will discuss a general notion known as Σ-monoids in the literature (Fiore et al., 1999),
which demands that the operation op is compatible with the monoid multiplication in a
sense. After this, we will see some concrete examples.

5∗2. Let E be a monoidal category and Σ : E → E be an endofunctor. A pointed strength 𝜃
for Σ is a natural transformation

𝜃𝑋,⟨𝑌, 𝑓 ⟩ : (Σ𝑋) □𝑌→ Σ(𝑋 □𝑌 )

for all 𝑋 in E and ⟨𝑌 ∈ E , 𝑓 : 𝐼→𝑌⟩ in the coslice category 𝐼/E , satisfying coherence
conditions analogous to those of strengths (2.4, 2.5):

(Σ𝑋) □ 𝐼 Σ(𝑋 □ 𝐼)

Σ𝑋

𝜃𝑋,⟨𝐼,id⟩

𝜌𝑋
Σ𝜌𝑋

(Σ𝑋 □𝑌 ) □ 𝑍 Σ(𝑋 □𝑌 ) □ 𝑍

Σ((𝑋 □𝑌 ) □ 𝑍)

Σ𝑋 □ (𝑌 □ 𝑍) Σ(𝑋 □ (𝑌 □ 𝑍))
𝜃𝑋,⟨𝑌□𝑍,ℎ⟩

𝜃𝑋,⟨𝑌, 𝑓 ⟩□𝑍

𝛼Σ𝑋,𝑌,𝑍

𝜃𝑋□𝑌,⟨𝑍,𝑔⟩

Σ𝛼𝑋,𝑌,𝑍

for all 𝑋, 𝑌, 𝑍 ∈ E , 𝑓 : 𝐼→𝑌 , 𝑔 : 𝐼→ 𝑍 , and ℎ := ( 𝑓 □ 𝑔) · 𝜌−1
𝐼

: 𝐼→𝑌 □ 𝑍 .

5∗3. To denote Σ and 𝜃 syntactically, we extend the internal language L (E ) (4.1∗9) with
a new type constructor Σ and the following typing rules

𝑥 : 𝐴 ⊢ 𝑓 : 𝐵 Γ ⊢ 𝑡 : Σ𝐴

Γ ⊢ Σ 𝑓 𝑡 : Σ𝐵

· ⊢ 𝑓 :𝑌 Γ ⊢ 𝑡 : (Σ𝑋) □𝑌
Γ ⊢ 𝜃𝑋,⟨𝑌, 𝑓 ⟩ 𝑡 : Σ(𝑋 □𝑌 )

which of course are interpreted in E by the functor Σ and the strength 𝜃.

5∗4. The equational system Σ-Mon of Σ-monoids (Fiore et al., 1999; Fiore and Hur, 2009)
extends the theory Mon of monoids (3.1∗6 and 4.1∗2) with a new operation op : Σ𝜏→ 𝜏

and a new equation 𝐿Σ-Mon = 𝑅Σ-Mon:

Σ-Mon =Mon ↰ Σ ↰
(
Σ−□ − ⊢ 𝐿Σ-Mon = 𝑅Σ-Mon

)
(5.1)

where the new equation 𝐿Σ-Mon = 𝑅Σ-Mon is given in terms of an extension of the internal
language of E by the following pair of terms:

𝑥 : Σ𝜏, 𝑦 : 𝜏 ⊢ 𝜇 (op 𝑥, 𝑦) = op (Σ𝜇 (𝜃𝜏,⟨𝜏,𝜂⟩ (𝑥, 𝑦))) : 𝜏 (5.2)

which encodes the following commutative diagram:

(Σ𝜏) □ 𝜏 Σ(𝜏□ 𝜏) Σ𝜏

𝜏□ 𝜏 𝜏

𝜃𝜏,⟨𝜏,𝜂⟩ Σ𝜇

opop□𝜏

𝜇
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Note that (5.2) refers to 𝜃, so technically the equational system should be denoted by
⟨Σ, 𝜃⟩-Mon, but writing Σ-Mon is unlikely to cause confusion.

5∗5. Equation (5.2) expresses that the operation op commutes with monoid multiplication.
When using ⟨Endo 𝑓 (Set), •, 𝑉⟩ for modelling higher-order abstract syntax, which was the
original context where Fiore et al. (1999) introduced Σ-monoids, this equation expresses the
sensible condition that syntactic operations must commute with substitution.

However, this equation might not be desirable in other contexts. For example, in the study
of modal type theories, there are plenty of operations that do not commute with substitution
(Gratzer, 2023). Also, when using ⟨Endo𝜅 (C ), ◦, Id⟩ to model computational effects, this
equation expresses that effectful operations must commute with sequential composition,
which is not true in general. Those effectful operations that do satisfy this condition and
have signature Σ = 𝐴□ − for some 𝐴 ∈ E are called algebraic operations (Plotkin and
Power, 2001; Jaskelioff and Moggi, 2010). We will say more about equation (5.2) shortly in
Lemma 5∗13 and see that imposing it on Σ-monoids actually does not lose generality.

5∗6. When the monoidal category E is cocomplete and functors Σ, □ both preserve
colimits of 𝛼-chains for some limit ordinal 𝛼, Theorem 3.1∗12 ensures the existence of
free Σ-monoids. When E is additionally closed, such as ⟨Endo𝜅 (C ), ◦, Id⟩ in Section 2,
there is a simple description of the free Σ-monoid (Fiore and Hur, 2007): it is carried by
the initial algebra 𝜇𝑋. 𝐼 + 𝐴□ 𝑋 + Σ𝑋 . This formula has many applications in modelling
abstract syntax: variable binding (Fiore and Szamozvancev, 2022), explicit substitution
(Ghani et al., 2006), and scoped operations (Piróg et al., 2018).

5∗7 Remark. Given a strong monad 𝑇 over E , Piróg (2016), Fiore and Saville (2017)
studied a notion akin to Σ-monoids in 5∗4 (with Σ =𝑇) but additionally asking the operation
op :𝑇𝜏→ 𝜏 to be an Eilenberg-Moore algebra of 𝑇 . This concept is called Eilenberg-Moore
monoids by Piróg (2016) and 𝑇-monoids by Fiore and Saville (2017). When E is closed,
there is again a simple formula 𝜇𝑋. 𝑇 (𝐼 + 𝐴□ 𝑋) for the free 𝑇-monoid/Eilenberg-Moore
monoid over 𝐴 ∈ E . Thinking of a monad 𝑇 as an algebraic theory, using 𝑇-monoids instead
of Σ-monoids allows us to impose equational laws on the operation op. In this paper we
have opted in to use equational systems to present equations, so in the following we will
continue with using Σ-monoids (with possibly additional equations). This has an additional
advantage that we can have equations that involve both the monoid operations 𝜂, 𝜇 and the
operation op at the same time, rather than just equations involving op.

5∗8. Now let us look at some concrete examples. In all the following examples, the monoidal
category ⟨E ,□, 𝐼⟩ is assumed to have small-coproducts

∐
𝑖∈𝑆 𝐴𝑖 and finite products

∏
𝑖∈𝐹 𝐴𝑖 .

Additionally, we assume the monoidal product distributes over coproducts from the right:

(∐𝑖∈𝑆 𝐴𝑖) □ 𝐵 �
∐
𝑖∈𝑆 (𝐴𝑖 □ 𝐵).

5∗9 Example. Let 𝑆 be a set. The theory St𝑆 of monads with global 𝑆-state (Plotkin and
Power, 2002) can be generally defined for monoids as follows. The theory St𝑆 is ΣSt𝑆 -Mon
with signature ΣSt𝑆 denoted by the type expression:

((∏𝑆 I) □ 𝜏) + ((∐𝑆 I) □ 𝜏),
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whose first component represents an operation 𝑔 : (∏𝑆 I) □ 𝜏→ 𝜏 reading the state, and the
second component is an operation 𝑝 : (∐𝑆 I) □ 𝜏→ 𝜏 writing an 𝑆-value into the state.

Plotkin and Power’s [2002] equations of these two operations can also be specified at this
level of generality. For example, the law saying that writing 𝑠 ∈ 𝑆 to the state and reading it
immediately gives back 𝑠 is

𝑘 :
∏
𝑆 I ⊢ 𝑝𝑠 (𝑔(𝑘, 𝜂𝜏)) = 𝑝𝑠 (let ∗ = 𝜋𝑠𝑘 in 𝜂𝜏) : 𝜏

where 𝑝𝑠 (𝑥) abbreviates 𝑝(𝜄𝑠 ∗, 𝑥).

5∗10 Example (Exception throwing). Letting 𝐸 be a set, the theory Et𝐸 of exception
throwing is the theory ΣEt𝐸 -Mon where ΣEt𝐸 = (∐𝐸 1) □ − : E → E equipped the associ-
ator 𝛼 : ((∐𝐸 1) □ 𝑋) □𝑌→∐

𝐸 1 □ (𝑋 □𝑌 ) as the strength, where
∐
𝐸 1 is the 𝐸-fold

coproduct of the terminal object in E (which may be different from the monoidal unit 𝐼).
For the case E = ⟨Endo𝜅 (C ), ◦, Id⟩, the equational system Et𝐸 describes (𝜅-accessible)

monads 𝑀 : C →C equipped with a natural transformation

throw : (∐𝐸 1) ◦𝑀 =
∐
𝐸 (1 ◦𝑀) =

∐
𝐸 1 −→ 𝑀 (5.3)

whose component 1→𝑀 for each 𝑒 ∈ 𝐸 represents a computation throwing an exception 𝑒.
Working in the generality of monoids allows us to generalise exceptions to more settings:
taking E = ⟨Endo𝜅 (Set), ∗, Id⟩, the theory describes applicatives 𝐹 with exception throwing:

(∐𝐸 1) ∗ 𝐹 �∐𝐸 (1 ∗ 𝐹) =
∐
𝐸 (

∫ 𝑎,𝑏 1𝑎 × 𝐹𝑏 × −𝑎×𝑏) �∐𝐸 (
∫ 𝑏

𝐹𝑏) → 𝐹 (5.4)

Note that exception throwing for monads (5.3) and for applicatives (5.4) differ by the
domain: 1 vs

∫ 𝑏
𝐹𝑏. This reflects the nature of applicative functors that computations are

independent, so the computation after exception throwing is not necessarily discarded.

5∗11. Although exception throwing is an algebraic operation, exception catching is not: if we
were to model it as an operation catch : 𝑀 ×𝑀→𝑀 on a monad 𝑀 such that catch ⟨𝑝, ℎ⟩
means catching exceptions possibly thrown by 𝑝 and handling exceptions using ℎ, then
equation (5.2) for Σ𝑀 =𝑀 ×𝑀 with the isomorphism (𝑀 ×𝑀) ◦𝑌 � (𝑀 ◦𝑌 ) × (𝑀 ◦𝑌 )
as the strength implies that

ph : 𝑀 ×𝑀, 𝑘 : 𝑀 ⊢ 𝜇(catch ph, 𝑘) = catch ⟨𝜇(𝜋1 ph, 𝑘), 𝜇(𝜋2 ph, 𝑘)⟩ : 𝑀 (5.5)

But this is undesirable because the scopes of catching on the two sides are different: the
left-hand side does not catch exceptions in 𝑘 but the right-hand side catches exceptions in 𝑘 .

5∗12. Plotkin and Pretnar’s [2009; 2013] take on this problem is that catching is inherently
different from throwing: throwing is the only operation of the algebraic theory of computation
with exceptions, but catching is a model of the theory. This view leads to the fruitful line of
research on handlers of algebraic effects.

Wu et al. (2014) proposed an alternative perspective: catch is still an operation in the theory
of monads supporting the effect of exceptions, but its signature should be (𝑀 ×𝑀) ◦𝑀→𝑀

rather than 𝑀 ×𝑀→𝑀 . Their perspective can be justified by the following observation.

5∗13 Lemma. Let ⟨E ,□, 𝐼⟩ be a monoidal category. For all functors Φ : E → E and
monoids ⟨𝑀, 𝜇, 𝜂⟩ in E , define Σ = (Φ−) □ − and a pointed strength:

(Σ𝑋) □𝑌 �−→Φ(𝑋 □ 𝐼) □ (𝑋 □𝑌 )
Φ(𝑋□𝜂𝑌 )□id
−−−−−−−−−−−→ Φ(𝑋 □𝑌 ) □ (𝑋 □𝑌 ) = Σ(𝑋 □𝑌 ).
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Then morphisms 𝑓 : Φ𝑀→𝑀 without any condition are in bĳection with morphisms
𝑔 : Σ𝑀→𝑀 satisfying the compatibility equation (5.2) of Σ-monoids instantiated with Σ.

Proof. The bĳection between 𝑓 and 𝑔 is given by

𝑓 ↦→ (Φ𝑀 □𝑀
𝑓□𝑀
−−−−→𝑀 □𝑀

𝜇
−→𝑀) 𝑔 ↦→ (Φ𝑀

Φ𝑀□𝜂
−−−−−−→Φ𝑀 □𝑀

𝑔
−→𝑀).

The reader is encouraged to use the internal language of E to check the round-trip property
of this bĳection, and below is a proof using the traditional notation. If we start with
𝑓 : Φ𝑀→𝑀 , after a round-trip we get the morphism

Φ𝑀
Φ𝑀□𝜂
−−−−−−→Φ𝑀 □𝑀

𝑓□𝑀
−−−−→𝑀 □𝑀

𝜇
−→𝑀,

which, by the naturality of 𝜂, is equal to (𝜇 · 𝜂) · 𝑓 = 𝑓 . If we start with a morphism
𝑔 : Σ𝑀→𝑀 satisfying (5.2), after a round-trip we get the morphism

Φ𝑀 □𝑀
Φ𝑀□𝜂□𝑀
−−−−−−−−−→Φ𝑀 □𝑀 □𝑀

𝑔□𝑀
−−−−→𝑀 □𝑀

𝜇
−→𝑀. (5.6)

By the definition of the pointed strength of Σ above, equation (5.2) instantiates to the
equation of the following two morphisms Φ𝑀 □𝑀 □𝑀→𝑀:

𝜇 · (𝑔□𝑀) = 𝑔 · (Φ𝜇□ 𝜇) · (Φ(𝑀 □ 𝜂) □𝑀 □𝑀)

The right-hand side is equal to 𝑔 · (Φ𝑀 □ 𝜇), so (5.6) is equal to 𝑔 · (Φ𝑀 □ 𝜇) · (Φ𝑀 □
𝜂□𝑀) = 𝑔 · (Φ𝑀 □ (𝜇 · (𝜂□𝑀))) = 𝑔 · (Φ𝑀 □ id) = 𝑔. □

5∗14. Therefore, using Lemma 5∗13, exception catching on a monad can still be formulated
as a Σ-monoid with Σ𝑀 := (𝑀 ×𝑀) ◦𝑀 = (Id × Id) ◦𝑀 ◦𝑀 . More generally, operations
𝑠 : 𝐴 ◦𝑀 ◦𝑀→𝑀 satisfying (5.2) for an endofunctor 𝐴, or equivalently 𝐴 ◦𝑀→𝑀

without (5.2), are called scoped operations by Wu et al. (2014) and Piróg et al. (2018).
The name ‘scoped operations’ refers to the intuition that the operation 𝑠 genuinely take

computations as its argument, so there is a meaningful boundary between its argument
and the future continuation, so its arguments are ‘in the scope of 𝑠’. This is in contrast
with algebraic operations 𝑎 : 𝐵 ◦𝑀→𝑀 satisfying (5.2), which are equivalently 𝐵→𝑀

by 5∗13, so they do not genuinely take computations as input although they are usually
presented in the form of 𝐵 ◦𝑀→𝑀 .

5∗15 Example (Exception catching). Now let us come back the example of exception
catching. Let C be a category with finite products and coproducts. Exception throwing and
catching can be modelled as the theory of ΣEc-monoids in ⟨Endo(C ), ◦, Id⟩, where the
signature functor ΣEc : E → E is

ΣEc = ((Id × Id) ◦ − ◦ −) + (1 ◦ −)

equipped with the following pointed strength for all 𝑋 ∈ E and ⟨𝑌, 𝑓 ⟩ : 𝐼/E :

(ΣEc𝑋) ◦𝑌 =
(
((Id × Id) ◦ 𝑋 ◦ 𝑋) + (1 ◦ 𝑋)

)
◦𝑌

� ((Id × Id) ◦ 𝑋 ◦ 𝑋 ◦𝑌 ) + (1 ◦ 𝑋 ◦𝑌 )
−→ ((Id × Id) ◦ 𝑋 ◦ 𝑌 ◦ 𝑋 ◦𝑌 ) + (1 ◦ 𝑋 ◦𝑌 ) � ΣEc (𝑋 ◦𝑌 )

where the boxed 𝑌 is inserted using 𝑓 : 𝐼→𝑌 .
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The intuition for the signature ΣEc is that the first operation 1 ◦𝑀→𝑀 is throwing an
exception as in Example 5∗10, and the second operation

catch : (Id × Id) ◦𝑀 ◦𝑀 � (𝑀 ×𝑀) ◦𝑀 −→ 𝑀 (5.7)

is catching. As we explained above, the trick here to avoid the undesirable equation (5.5) is
that catch has after 𝑀 ×𝑀 an additional − ◦𝑀 that represents an explicit continuation after
the scoped operation catch (Piróg et al., 2018): catch (⟨𝑝, ℎ⟩, 𝑘) is understood as handling
the exception in 𝑝 with ℎ and then continuing as 𝑘 . Then equation (5.2) instantiates to

ph : 𝑀 ×𝑀, 𝑘 : 𝑀, 𝑘 ′ : 𝑀 ⊢ 𝜇(catch (ph, 𝑘), 𝑘 ′) = catch (ph, 𝜇(𝑘, 𝑘 ′)) : 𝑀. (5.8)

Unlike (5.5), this equation is reasonable for the theory of exceptions: catching ph and then
doing 𝑘 and then 𝑘 ′ should be the same as catching ph and then continuing as 𝜇(𝑘, 𝑘 ′). The
scope of catch is not confused.

5∗16. Moreover, we can add equations to the theory ΣEc-Mon to characterise the interaction
of throw and catch. The theory Ec is ΣEc-Mon extended with the following equations:

𝑘 : 𝜏 ⊢ catch(⟨throw, 𝜂⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨throw, throw⟩, 𝑘) = throw : 𝜏
𝑘 : 𝜏 ⊢ catch(⟨𝜂, throw⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨𝜂, 𝜂⟩, 𝑘) = 𝑘 : 𝜏

where 𝜂 : I→ 𝜏, throw : 1→ 𝜏, and catch : (𝜏 × 𝜏) □ 𝜏→ 𝜏. These equations can be
alternatively presented with an empty context by replacing all the 𝑘’s with 𝜂 as in
· ⊢ catch(⟨throw, 𝜂⟩, 𝜂) = 𝜂 : 𝜏, which is equivalent to the first equation above, since by (5.8),
catch(⟨𝑥, 𝑦⟩, 𝜂); 𝑘 = catch(⟨𝑥, 𝑦⟩, 𝑘).

5∗17 Remark. By modelling scoped operations like catch as genuine operations rather than
handlers, they enjoy the usual benefits of algebraic effects: we can impose equational axioms
on them, consider the free models, combine their theories with effects, etc. But the reader
may still wonder – from a purely practical programming perspective, what do we gain by
modelling them as scoped operations rather than as effect handlers? Towards this question,
Wu et al. (2014) argued that there is a problem of compositionality if we model operations
like catch as effect handlers. Wu et al. used a concrete example of non-deterministic parsing
with effect handlers, and Yang et al. (2022) clarified this problem using exception catching.
Here, we explain this problem again using a small example about parallel composition as
either a handler or an operation in its own right; c.f. Castellano et al. (1987).

Implementing parallel composition as a handler is similar to interleaving concurrency
in concurrency theory: the parallel composition 𝑃 | |𝑖 𝑄 of two processes 𝑃 and 𝑄 is
handled/reduced to the nondeterministic choice of all the ways of interleaving the actions of
𝑃 and 𝑄. For example, if 𝑃 := 𝑎.0 is the process that performs an action 𝑎 and stops, and
𝑄 := 𝑏.0 is the process that performs an action 𝑏 and stops, then we have

𝑃 | |𝑖 𝑄 = (𝑎.𝑏.0) + (𝑏.𝑎.0).

A problem arises if we want to lower the level of abstraction by refining the action 𝑎
into two actions 𝑎1 and 𝑎2 (e.g. we may want to refine the action of writing a memory
location into several actions when we move down the level of abstractions from an abstract
memory model to a more realistic memory model). We may define this refinement as a
meta-operation 𝑟 on programs that replaces every action 𝑎 with two actions 𝑎1 and 𝑎2. The
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expected outcome of ‘parallel composition of 𝑃 and 𝑄’ with actions refined is

𝑟 (𝑃) | |𝑖 𝑟 (𝑄) = (𝑎1.𝑎2.0) | |𝑖 (𝑏.0) = (𝑎1.𝑎2.𝑏.0) + (𝑎1.𝑏.𝑎2.0) + (𝑏.𝑎1.𝑎2.0),

but refining 𝑃 | |𝑖 𝑄 above gives us

𝑟 (𝑃 | |𝑖 𝑄) = 𝑟 ((𝑎.𝑏.0) + (𝑏.𝑎.0)) = (𝑎1.𝑎2.𝑏.0) + (𝑏.𝑎1.𝑎2.0),

which is not the expected outcome in this scenario.
The problem here is precisely that if we treat parallel composition as a handler, then the

scope of parallel composition is lost after handling. On the other hand, if we treat parallel
composition as an operation in its own right, parallel composition of 𝑃 and 𝑄 is just 𝑃 | | 𝑄
(with perhaps some axioms), so

𝑟 (𝑃 | | 𝑄) = (𝑎1.𝑎2.0) | | 𝑏.0 = 𝑟 (𝑃) | | 𝑟 (𝑄).

Therefore, if we model parallel composition as a handler | |𝑖 , we must carefully ensure that
the refinement operation 𝑟 is applied to the processes 𝑃 and 𝑄 before applying | |𝑖 to them,
whereas if we model parallel composition a scoped operation | |, we can apply the refinement
operation 𝑟 to processes built with | |, which is a more compositional approach.

5∗18. There are many more examples of Σ-monoids that we cannot expand on here. Some
interesting ones are lambda abstraction (Fiore et al., 1999), the algebraic operations of
𝜋-calculus (Stark, 2008), and the non-algebraic operation of parallel composition (Piróg
et al., 2018). A collection of interesting programming examples can be found in (van den
Berg and Schrĳvers, 2024).

6 Families of Operations

6∗1. Given a monoidal category E , the coslice category Mon/Eqs(E ) contains all equa-
tional systems that extend the theory of monoids with new operations/equations. However,
this category is sometimes too general – we will see later that there are many constructions
that only work for a certain kind of operations, such as algebraic operations or scoped
operations. Therefore, we will need to consider subcategories of Mon/Eqs(E ) that contain
equational systems that extend Mon with a certain family of operations. In this section, let
us have a look at some important operation families, and it turns out that there are quite
some interesting things to be said about them.

6∗2 Definition. An operation family on monoids in a monoidal category E is a subcategory
F ⊆Mon/Eqs(E ) of the coslice category under the theory of monoids.

6∗3. An object ¥Σ in an operation family F is a pair ⟨ ¤Σ, 𝑇Σ : Mon→ ¤Σ⟩, but we will
colloquially say something of ¥Σ to mean that thing of ¤Σ. For example, when we say ¥Σ has
the free-forgetful adjunction, we mean that ¤Σ has it.

6∗4 (Algebraic operations). The simplest example is the family Alg(E ) of algebraic
operations on a monoidal category ⟨E ,□, 𝐼⟩ with binary coproducts. The full subcategory
Alg(E ) ⊆Mon/Eqs(E ) contains objects of the following form

⟨ (𝐴□ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅), 𝑇 ⟩ (6.1)
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where 𝐴, 𝐵 ∈ E ; the functor 𝐴□ − is equipped with the pointed strength

𝛼𝐴,𝑋,𝑌 : (𝐴□ 𝑋) □𝑌 � 𝐴□ (𝑋 □𝑌 );

𝑇 is the inclusion translation from Mon; K𝐵 : E → E is the constant functor mapping to 𝐵.
In other words, Alg(E ) contains all equational systems Σ-Mon in 5∗4 extended with an
equation for some Σ = 𝐴□ −.

6∗5. In particular, the theory of exceptions (Example 5∗10) and state (Example 5∗9) are in
Alg(E ). When E = ⟨Endo𝜅 (C ), ◦, Id⟩ for an l𝜅p category C , Alg(E ) consists of theories
of algebraic operations 𝐴 ◦𝑀→𝑀 for 𝐴 ∈ Endo𝜅 (C ) on 𝜅-accessible monads 𝑀 . When E

is ⟨Endo𝜅 (Set), ∗, Id⟩, it then contains theories of applicatives 𝐹 with ‘applicative-algebraic’
operations 𝐴 ∗ 𝐹→ 𝐹.

6∗6. When the monoidal category E is right distributive for binary coproducts, which
means that the canonical morphism

[𝜄1 □𝐶, 𝜄2 □𝐶] : (𝐴□𝐶 + 𝐵□𝐶) → (𝐴 + 𝐵) □𝐶

is an isomorphism, the category Alg(E ) has binary coproducts as well: binary coproducts in
Alg(E ) are equivalently pushouts in Eqs(E ), and by Lemma 3.3∗5, such a pushout still has
a constant context K𝐵 +K𝐵′ =K𝐵+𝐵′ and a signature (𝐴□ −) + (𝐴′ □ −) � (𝐴 + 𝐴′) □ −,
so it is still in Alg(E ).

6∗7. Many of the monoidal categories in Section 2 are right distributive:

• ⟨Endo(C ), ◦, Id⟩ for an small-complete small C ;
• ⟨Endo𝜅 (C ), ◦, Id⟩ for an l𝜅p C ;
• ⟨C , ×, 1⟩ for a cocomplete cartesian closed C ;
• ⟨Endo𝜅 (Set), ∗, Id⟩ underlying applicative functors;
• ⟨Endo𝑠𝜅 (C ), ◦𝑠 , Id𝑠⟩ for an l𝜅p as a cartesian closed category C ;
• ⟨Endo 𝑓 (Set)G , ∗, 𝐼⟩ for a small strict monoidal category G .

Moreover, for these choices of E , every object of Alg(E ) has the free-forgetful adjunction
using the freeness conditions in Section 3.1.

6∗8. The restriction in (6.1) that the context of the equation must be a constant functor K𝐵

deserves some explanation. Let Σ : C →C be an endofunctor on a category C . We call a
functorial equation K𝐵 ⊢ 𝐿 = 𝑅 over the signature Σ with a constant functor as its context a
constant equation. Assume that C is locally small and small-complete, and that the functor
Σ has the free-forgetful adjunction FΣ ⊣UΣ. By Corollary 3.2∗7, the equation K𝐵 ⊢ 𝐿 = 𝑅

is equivalently a pair of natural transformations K𝐵⇒ FΣUΣ. Moreover, when C has an
initial object 0, such a natural transformation is uniquely determined by its component at 0:

K𝐵0 = 𝐵 K𝐵𝑋 = 𝐵

UΣFΣ0 UΣFΣ𝑋

id𝐵

𝐿0 𝐿𝑋

UΣFΣ 𝑓
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Therefore constant equations K𝐵 ⊢ 𝐿 = 𝑅 over the signature Σ : C →C are in bĳection with
pairs of C -morphisms 𝐿′, 𝑅′ : 𝐵→UΣFΣ0, whose codomain is precisely (the carrier of)
the initial algebra 𝜇Σ of Σ.

6∗9. More specially, assume that a monoidal category E satisfies the conditions on C in the
last paragraph, and that □ : E × E → E preserves colimits of 𝛼-chains for some limit ordinal
𝛼. In this case, let Σ be the signature functor of the equational system (𝐴□ −)-Mon, i.e.
Σ = 𝐼 + −□ − + 𝐴□ −. Then both Σ and the equational system (𝐴□ −)-Mon have initial
algebras, whose carriers we denote by 𝑋 and 𝑌 respectively. For every algebra ⟨𝑍, 𝛼⟩ of
(𝐴□ −)-Mon, it satisfies K𝐵 ⊢ 𝐿 = 𝑅 if and only if the following diagram commutes:

𝐵 𝑋 𝑍
𝑙

𝑟

!Σ

where the morphism !Σ : 𝑋→ 𝑍 is the unique Σ-homomorphism from 𝑋 to 𝑍 . Since the
algebras of (𝐴□ −)-Mon is a full subcategory of Σ-algebras, the morphism !Σ factors via
!(𝐴□−)-Mon :𝑌→ 𝑍 , the unique homomorphism from the initial algebra of (𝐴□ −)-Mon:

𝐵 𝑋 𝑌 𝑍
𝑙

𝑟

!Σ !(𝐴□−) -Mon

Therefore, equations K𝐵 ⊢ 𝐿 = 𝑅 can be given as a pair of morphisms 𝐵⇒𝑌 without loss
of expressivity. In particular, if E is ⟨Endo 𝑓 (Set), ◦, Id⟩, 𝑌 is precisely the free monad 𝐴∗

over 𝐴, a pair of morphisms 𝐵⇒ 𝐴∗ for 𝐴, 𝐵 ∈ Endo 𝑓 (Set) is indeed the traditional way
of presenting a finitary algebraic theory. In fact, we can show that the category Alg(E ) is
equivalent to the category (as defined by e.g. Fiore and Mahmoud (2014)) of presentations
finitary algebraic theories and translations. Therefore, although constant equations seem very
restrictive, they are still useful enough when the monoidal category E itself is informative.

6∗10 Theorem. Let E be a monoidal category with binary coproducts such that every
object in Alg(E ) has the free-forgetful adjunction. There is an equivalence Alg(E ) �
Mon(E ) between Alg(E ) and the category Mon(E ) of monoids in E .

Proof. In sketch, every ¥Σ ∈Alg(E ) is mapped to its initial algebra treated as a monoid,
forgetting the operation. On the other hand, every monoid 𝑀 is mapped to the theory of
𝑀-actions on monoids.

In more detail, the direction Alg(E ) →Mon(E ) of the equivalence sends every object
¥Σ = ⟨ ¤Σ, 𝑇Σ⟩ in Alg(E ) to the initial algebra ⟨𝜇 ¤Σ, 𝛼Σ⟩ regarded as a monoid 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩.
On morphisms, every translation 𝑇 : ¥Σ→ ¥Ψ ∈Alg(E ) induces a unique ¥Σ-homomorphism
out of the initial algebra:

ℎ : ⟨𝜇 ¤Σ, 𝛼Σ⟩ →𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ⟩.

Then the arrow mapping is 𝑇 ↦→𝑇Σℎ where

𝑇Σℎ :𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩ →𝑇Σ (𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ⟩) =𝑇Ψ⟨𝜇 ¤Ψ, 𝛼Ψ⟩.

The equality 𝑇Σ ◦𝑇 =𝑇Ψ is by the definition of morphisms in Alg(E ).
For the other direction, every monoid ¤𝑀 = ⟨𝑀, 𝜇𝑀 , 𝜂𝑀⟩ in E is sent to the theory ¤𝑀-Act

of ¤𝑀-actions on monoids, which is the theory of (𝑀 □ −)-Mon extended with the following
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two equations (expressed as an extension of the internal language of E as in 4.3∗14):

⊢ op(𝜂𝑀 , 𝜂𝜏) = 𝜂𝜏 : 𝜏
𝑥 : 𝑀, 𝑦 : 𝑀 ⊢ op(𝜇𝑀 (𝑥, 𝑦), 𝜂𝜏) = op(𝑥, op(𝑦, 𝜂𝜏)) : 𝜏

saying that op : 𝑀 □ 𝜏→ 𝜏 is a monoid action on 𝜏. Every monoid morphism 𝑓 : ¤𝑀→ ¤𝑁 is
mapped to the translation ¤𝑀-Act→ ¤𝑁-Act sending ¤𝑁-actions

⟨𝐴 ∈ E , 𝛼 : (𝑁 □ 𝐴) + ΣMon𝐴→ 𝐴⟩

to ¤𝑀-actions ⟨𝐴, [𝛼 · 𝜄1 · ( 𝑓 □ 𝐴), 𝛼 · 𝜄2] : (𝑀 □ 𝐴) + ΣMon𝐴→ 𝐴⟩.
It remains to show that the mappings above are a pair of equivalence. Starting from a

monoid ¤𝑀, it can be shown that the category ( ¤𝑀-Act)-Alg is equivalent to the coslice
category ¤𝑀/Mon(E ) (see e.g. Fiore and Saville (2017, Proposition 5.5)). Thus the initial
algebra of ¤𝑀-Act is ¤𝑀 as required.

Starting from a theory ⟨ ¤Σ, 𝑇Σ⟩ ∈Alg(E ) where

¤Σ = (𝑆□ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅),

it is mapped to the monoid𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩, which is then mapped back to the theory 𝜇 ¤Σ-Act with
the inclusion translation. We need to construct an isomorphism translation 𝑇 : ¤Σ→ 𝜇 ¤Σ-Act
that preserves monoid operations. Given a monoid 𝐴 with 𝛼 : 𝜇 ¤Σ□ 𝐴→ 𝐴 satisfying the
laws of 𝜇 ¤Σ-Act, 𝑇 maps it to the ¤Σ-algebra on 𝐴 with the following operation:

𝑆□ 𝐴
𝑆□𝜂𝜇 ¤Σ□𝐴
−−−−−−−−−→ 𝑆□ 𝜇 ¤Σ□ 𝐴

𝛼𝜇 ¤Σ□𝐴−−−−−−→ 𝜇 ¤Σ□ 𝐴
𝛼−→ 𝐴

where 𝛼𝜇 ¤Σ : 𝑆□ 𝜇 ¤Σ→ 𝜇 ¤Σ is the structure map of the initial algebra.
For the inverse of 𝑇 , every tuple ⟨𝐴, 𝛽 : 𝑆□ 𝐴→ 𝐴⟩ ∈ ¤Σ-Alg is mapped to the following

𝜇 ¤Σ-Act-algebra on 𝐴:

𝜇 ¤Σ□ 𝐴
L𝛽M□𝐴
−−−−−→ 𝐴□ 𝐴

𝜇𝐴

−−→ 𝐴

where L𝛽M is the unique homomorphism from the initial ¤Σ-algebra 𝜇 ¤Σ to the ¤Σ-algebra
⟨𝐴, 𝛽⟩. This completes the proof. □

6∗11. Instantiating E with ⟨Endo 𝑓 (C ), ◦, Id⟩ for an lfp C , we obtain an equivalence
between finitary monads over C and theories of algebraic operations on finitary monads.
This is reminiscent of the classical theory-monad correspondence between finitary monads
and (presentations of) first-order algebraic theories. What is new is that Theorem 6∗14 is
applicable to other monoidal categories, such as those in Section 2, giving us equivalences
of cartesian monoids/applicative functors/graded monads and the corresponding categories
of theories of algebraic operations.

6∗12. Another interesting property of Alg(E ) is the following saying that (almost) all
equational systems of operations on monoids can be turned into one in Alg(E ) by a
coreflection, and the coreflection preserves initial algebras, i.e. the abstract syntax of terms
of operations. Hence in principle, theories of algebraic operations alone are sufficient for
the purpose of modelling syntax.

6∗13 Lemma. Let E be a monoidal category with binary coproducts. For every ¥Ψ ∈Alg(E )
and ¥Σ ∈Mon/Eqs(E ) such that both of them have initial algebras, the set Mon/Eqs( ¥Ψ, ¥Σ)
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is in natural bĳection to monoid morphisms 𝜇 ¥Ψ→ 𝜇 ¥Σ between the initial algebras of ¥Ψ
and ¥Σ viewed as monoids.

Proof sketch. For one direction of the bĳection 𝜙, every translation 𝑇 : ¥Ψ→ ¥Σ sends the
initial algebra 𝜇 ¥Σ of ¥Σ to a ¥Ψ-algebra carried by 𝜇 ¥Σ. Then by the initiality of 𝜇 ¥Ψ, there
is a ¥Ψ-homomorphism, which is also a monoid morphism, 𝑢 : 𝜇 ¥Ψ→ 𝜇 ¥Σ. We set 𝜙(𝑇) = 𝑢.
For the backward direction of the bĳection 𝜙, given a monoid morphism ℎ : 𝜇 ¥Ψ→ 𝜇 ¥Σ, we
define a translation 𝑇 : ¥Ψ→ ¥Σ, i.e. a functor 𝑇 : ¥Σ-Alg→ ¥Ψ-Alg as follows. Recall that
¥Ψ ∈Alg(E ) must be of the form ¤Ψ = (𝐺 □ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅), for some 𝐺 ∈ E . The
functor 𝑇 maps every ¥Σ-algebra ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴⟩ to the ¤Ψ-algebra carried by 𝐴 with

𝐺 □ 𝐴
𝐺□𝜂𝜇 ¥Ψ

−−−−−−→𝐺 □ 𝜇 ¥Ψ□ 𝐴
𝛼𝜇 ¥Ψ
−−−→ 𝜇 ¥Ψ□ 𝐴

ℎ−→ 𝜇 ¥Σ□ 𝐴
L𝛼M
−−−→ 𝐴□ 𝐴

𝜇𝐴

−−→ 𝐴

where 𝛼𝜇 ¥Ψ :𝐺 □ 𝜇 ¥Ψ→ 𝜇 ¥Ψ is the structure map of the initial ¥Ψ-algebra, L𝛼M : 𝜇 ¥Σ→ 𝐴 is
the unique ¥Σ-homomorphism from the initial algebra 𝜇 ¥Σ to ⟨𝐴, 𝛼⟩. It can be checked that 𝜙
is a natural bĳection. □

6∗14 Theorem. Let E be a monoidal category with binary coproducts such that every
object of Alg(E ) has the free-forgetful adjunction. The category Alg(E ) is a coreflec-
tive subcategory of Mon/Eqs 𝑓 (E ), where Eqs 𝑓 (C ) ⊆ Eqs(C ) is the full subcategory
containing equational systems with the free-forgetful adjunction:

Alg(E ) Mon/Eqs 𝑓 (E ).⊢

Moreover, the coreflector ⌊−⌋ preserves initial algebras: for every ⟨ ¤Σ, 𝑇⟩ in the category
Mon/Eqs 𝑓 (E ), the initial ¤Σ-algebra (viewed as a monoid via𝑇) is isomorphic to the initial
algebra of

⌊
⟨ ¤Σ, 𝑇⟩

⌋
also viewed as a monoid.

Proof sketch. Every theory ⟨ ¤Σ, 𝑇Σ⟩ ∈Mon/Eqs 𝑓 (E ) has an initial algebra 𝜇 ¤Σ ∈ E by
assumption, and 𝜇 ¤Σ carries a monoid structure by 𝑇Σ : Mon→ ¤Σ. We define the core-
flector ⌊−⌋ to map every ⟨ ¤Σ, 𝑇Σ⟩ to 𝜇 ¤Σ-Act ∈Alg(E ) as in the proof of Theorem 6∗10.
For every theory ⟨ ¤Ψ, 𝑇Ψ⟩ ∈Alg(E ), by Lemma 6∗13, each translation in the hom-set
Mon/Eqs 𝑓 (⟨ ¤Ψ, 𝑇Ψ⟩, ⟨ ¤Σ, 𝑇Σ⟩) is equivalently a monoid morphism 𝜇 ¤Ψ→ 𝜇 ¤Σ, which is also
equivalently a translation in Alg(⟨ ¤Ψ, 𝑇Ψ⟩,

⌊
⟨ ¤Σ, 𝑇Σ⟩

⌋
) by Theorem 6∗10.

The coreflector maps each ⟨ ¤Σ, 𝑇⟩ ∈Mon/Eqs 𝑓 (E ) to the theory 𝜇 ¤Σ-Act. It can be shown
that the category of algebras of 𝜇 ¤Σ-Act is equivalent to the coslice category 𝜇 ¤Σ/Mon(E )
of monoids under 𝑇 ⟨𝜇 ¤Σ, 𝛼Σ⟩, so the initial algebra of 𝜇 ¤Σ-Act is still the monoid 𝜇 ¤Σ. □

6∗15. Although Alg(E ) is sufficient for modelling syntax, it is not enough when we also
consider models. The counit of the coreflection gives us a translation

⌊
⟨ ¤Σ, 𝑇⟩

⌋
→ ⟨¤Σ, 𝑇⟩, i.e.

a functor ¤Σ-Alg→
⌊
⟨ ¤Σ, 𝑇⟩

⌋
-Alg, but this does not have to be an equivalence of categories.

6∗16 (Scoped operations). Our next example of operation families is the family Scp(E ) of
scoped (and algebraic) operations, such as exception catching (Example 5∗15). Let E be a
monoidal category with right distributive binary coproducts (6∗6). The family Scp(E ) is
the full subcategory of Mon/Eqs(E ) containing objects

⟨ ((𝐴□ −□ −) + (𝐵□ −))-Mon ↰ (K𝐶 ⊢ 𝐿 = 𝑅), 𝑇 ⟩ (6.2)
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where 𝐴, 𝐵, 𝐶 ∈ E and 𝑇 is the inclusion translation. Letting Σ := (𝐴□ −□ −) + (𝐵□ −),
the pointed strength 𝜃𝑋,⟨𝑌, 𝑓 ⟩ for Σ is the following composite:

(Σ𝑋) □𝑌 = (𝐴□ 𝑋 □ 𝑋 + 𝐵□ 𝑋) □𝑌
� (𝐴□ 𝑋 □ 𝑋 □𝑌 ) + (𝐵□ 𝑋 □𝑌 )
→ (𝐴□ 𝑋 □ 𝑌 □ 𝑋 □𝑌 ) + (𝐵□ 𝑋 □𝑌 )
� Σ(𝑋 □𝑌 )

where the boxed 𝑌 is inserted using 𝑓 : 𝐼→𝑌 .
In the example of exceptions in Example 5∗15, the monoidal category E is
⟨Endo(C ), ◦, Id⟩, and 𝐴 is Id × Id, encoding the scoped operation catch that takes in
two operands, and 𝐵 is 1, encoding the algebraic operation throw that takes in no operands.

6∗17. When every object of Scp(E ) has the free-forgetful adjunction, for example when E

is cocomplete and □ : E × E → E preserves colimits of 𝛼-chains for some limit ordinal 𝛼, a
corollary of Theorem 6∗14 is that the initial-algebra preserving coreflection there restricts to

Alg(E ) Scp(E ).⊢

Thus the abstract syntax of programs with scoped operations can be alternatively expressed
with only algebraic ones, but as argued by Piróg et al. (2018) and Yang et al. (2022), the
models of scoped operations are different from those of the coreflected algebraic operations.

6∗18. The operation family Scp(E ) should be more accurately called the family of scoped
and algebraic operations with constant equations. We can certainly relax the restriction of
constant equations to obtain bigger operation families. For example, we may have a family
Scp1 (E ) that is similar to (6.2) but permits first-order equations, meaning that the functorial
context can be either a constant functor K𝐶 or a functor 𝐶 □ − for some 𝐶 ∈ E .

For computational effects in practice, it seems constant equations in Endo𝜅 (C ) are
enough for algebraic operations, evidenced by the examples in (Plotkin and Power, 2002),
whereas scoped operations sometimes need first-order equations. For example, a reasonable
equation for exception catching catch : 𝑀 ×𝑀→𝑀 is that it is associative for ×:

𝑀 ×𝑀 ×𝑀 𝑀 ×𝑀

𝑀 𝑀

catch×𝑀

𝑀×catch catch

catch

As an equation in the monoidal category ⟨Endo𝜅 (C ), ◦, Id⟩, this equation is first-order,
since the context is (IdC × IdC × IdC ) ◦ − : Endo(C ) → Endo(C ).

6∗19. We did not require operation families F ⊆Mon/Eqs(E ) to be full, so we may
also restrict the translations. For example, we can consider only translations that map
operations to operations (rather than terms in general). Such translations are sometimes
called transliterations (Arkor, 2022). In particular, we define Scp𝑙 (E ) ⊆ Scp(E ) to be the
subcategory containing translations

𝑇 : ((𝐴□ −□ −) + (𝐵□ −))-Mon→ ((𝐴′ □ −□ −) + (𝐵′ □ −))-Mon
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that sends ⟨𝑀, 𝑠 : 𝐴′ □𝑀 □𝑀, 𝑎 : 𝐵′ □𝑀→𝑀⟩ to ⟨𝑀, 𝑠 · ( 𝑓 □𝑀 □𝑀), 𝑎 · (𝑔□𝑀)⟩
for some morphisms 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 𝐵→ 𝐵′ in E .

For example, let 𝐴 = Id × Id × Id and 𝐴′ = Id × Id, corresponding to a ternary operation 𝑡
and a binary operation 𝑏 respectively. Then the transliteration given by 𝑓 ⟨𝑥, 𝑦, 𝑧⟩ = ⟨𝑥, 𝑦⟩
translates the operation 𝑡 (𝑥, 𝑦, 𝑧) to 𝑏(𝑥, 𝑦), but a transliteration cannot translate 𝑡 (𝑥, 𝑦, 𝑧)
to 𝑏(𝑏(𝑥, 𝑦), 𝑧) that uses the target operation more than once, nor can it use the monoid
structure 𝜇 and 𝜂 in the translation.

6∗20 (Variable-binding operations). Algebraic theories of operations with variable-bindings
are called second-order algebraic theories (Fiore and Hur, 2010; Fiore and Mahmoud, 2010,
2014; Fiore and Szamozvancev, 2022), and they can be formulated as an operation family as
follows. For simplicity, we work specially in the monoidal category ⟨SetFin, •, 𝑉⟩ in 2.2∗2,
but it is possible to replace SetFin with Endo𝜅 (Set) for infinitary syntax or with SetCtx for
simply typed syntax given a category Ctx of contexts and renamings.

6∗21. A binding signature ⟨𝑂, 𝑎⟩ consists of a set 𝑂 of operations and an arity assignment
𝑎 :𝑂→N∗ of a sequence of natural numbers to each operation. Each 𝑜 ∈𝑂 with 𝑎(𝑜) =
⟨𝑛𝑖⟩1⩽𝑖⩽𝑘 stands for an operation taking 𝑘 arguments, each binding 𝑛𝑖 variables:

𝑜((𝑥1,1𝑥1,2 · · · 𝑥1,𝑛1 ). 𝑒1, · · · , (𝑥𝑘,1𝑥𝑘,2 · · · , 𝑥𝑘,𝑛𝑘 ). 𝑒𝑘)

For example, the binding signature for 𝜆-calculus has two operations {app, abs}: function
application 𝑎(app) = ⟨0, 0⟩ has two arguments binding no variables; 𝜆-abstraction 𝑎(abs) =
⟨1⟩ has one argument that binds one variable.

A binding signature ⟨𝑂, 𝑎⟩ determines an endofunctor J𝑂, 𝑎K on SetFin:

J𝑂, 𝑎K =
∐
𝑜∈𝑂, 𝑎 (𝑜)=⟨𝑛𝑖 ⟩1⩽𝑖⩽𝑘

∏
1⩽𝑖⩽𝑘 (−)𝑉

𝑛𝑖

where (−)𝑉𝑛𝑖 is the exponential by 𝑛𝑖-fold product of the monoidal unit 𝑉 . This functor has
a pointed strength 𝜃𝑋,⟨𝑌,𝜂𝑌 ⟩ :

(∐𝑜

∏
𝑖 𝑋

𝑉𝑛𝑖 ) •𝑌 �∐𝑜

∏
𝑖 (𝑋𝑉

𝑛𝑖 •𝑌 )
∐

𝑜

∏
𝑖 𝑡𝑜,𝑖−−−−−−−−→∐

𝑜

∏
𝑖 (𝑋 •𝑌 )𝑉

𝑛𝑖

where 𝑡𝑜,𝑖 is the adjoint transpose of

(𝑋𝑉𝑛𝑖 •𝑌 ) ×𝑉𝑛𝑖 id × 𝜂𝑌−−−−→ (𝑋𝑉𝑛𝑖 •𝑌 ) × (𝑉𝑛𝑖 •𝑌 ) � (𝑋𝑉𝑛𝑖 ×𝑉𝑛𝑖 ) •𝑌→ 𝑋 •𝑌 .

6∗22. The operation family Var(SetFin) ⊆Mon/Eqs(SetFin) then contains all objects of
the following form:

⟨J𝑂, 𝑎K-Mon ↰ (J𝑃, 𝑏K ⊢ 𝐿 = 𝑅), 𝑇⟩

where ⟨𝑂, 𝑎⟩ and ⟨𝑃, 𝑏⟩ are two binding signatures and 𝑇 is still the inclusion translation.
The category Var(SetFin) is closed under coproducts by Lemma 3.3∗5 and every object
of it has the free-forgetful adjunction because J𝑂, 𝑎K and J𝑃, 𝑏K are finitary, which is a
consequence of (−)𝑉 being a left adjoint to the right Kan extension Ran𝑉+1, so (−)𝑉
preserves all colimits.

6∗23. Again, the coreflector in Theorem 6∗14 allows us to turn every theory in Var into
one with only algebraic operations but isomorphic initial algebras. For example, under the
coreflection, the theory Λ of untyped 𝜆-calculus is turned into a theory ⌊Λ⌋ which has an
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ordinary 𝑛-ary operation 𝑡 for every 𝜆-term 𝑡 with 𝑛 free variables, together with suitable
equations. The equational systems Λ and ⌊Λ⌋ have isomorphic initial algebras (as monoids).

∗ ∗ ∗

6∗24. To reflect what we have done so far in this paper:

• We have seen how to present theories of monoids with operations using equational
systems and monoidal algebraic theories (Sections 3 to 5);

• We can construct (relative) free algebras on cocomplete categories: Theorem 3.1∗12,
Theorem 3.1∗19, Theorem 3.2∗14;

• We can combine such theories modularly using colimits (Section 3.3);
• Theories of monoids with operations can be classified into operation fami-

lies (Section 6), with the family of algebraic operations playing a special role:
Theorem 6∗10 and 6∗14.

These results achieve syntactic modularity for computational effects. In the rest of the
paper, we will develop a framework of modular models, which will allow us to combine
models of existing theories into a model of a combined theory, thus achieving modularity
for both syntax and semantics.

7 Modular Constructions of Algebraic Structures

7∗1. In many frameworks of algebraic theories, we can combine smaller theories into bigger
ones by taking colimits. This gives us a modular way to design programming languages:
language features are defined individually as algebraic theories, which are then combined
to form algebraic theories of full-fledged languages. Programming language theory is not
only about syntax/theories of languages though. What is usually more interesting is the
implementations/models, and it turns out that modularly combining models is significantly
harder than modularly combining theories. In the rest of this paper, we propose a formal
theory of modularity in algebraic structures and show some concrete examples.

7∗2. Let us begin with some high-level description of the concepts that we will define. Let
T be a category of some notion of algebraic theories, together with a functor (−)-Alg :
T op→CAT that associates a category of models to every theory in T , such that T has
finite coproducts and each category of models Γ-Alg has an initial object 𝜇Γ. For example,
T may be the category Alg(E ) or Scp(E ) of theories of monoids with algebraic or scoped
operations that we saw in Section 6 or the category of (ordinary) algebraic theories.

The motivation for a modular model of Γ ∈T is that we treat Γ ∈T as a language
feature that can be added into existing programming languages, rather than a complete
language on its own. A modular model for Γ is then going to be a family of functors
𝑀Σ : Σ-Alg→ (Σ + Γ)-Alg, (oplax-) natural inΣ ∈T . In this way, for an arbitrary language
Σ ∈T and a model 𝐴 ∈ Σ-Alg of it, we can add the language feature Γ to the language Σ,
giving us the combined language Σ + Γ, and a new model 𝑀Σ𝐴 ∈ (Σ + Γ)-Alg.

7∗3. In the situation above, we may also want to relate the old model 𝐴 ∈ Σ-Alg and the
new model 𝑀Σ𝐴 ∈ (Σ + Γ)-Alg. For this, we will define an updater 𝑢 for the modular model
𝑀 to be a family of Σ-homomorphisms 𝑢Σ,𝐴 : 𝐴→𝑀Σ𝐴, (oplax-) natural in Σ and 𝐴. The
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name ‘updater’ comes from the intuition that a model 𝐴 ∈ Σ-Alg is like a compiler for the
language Σ; an element 𝑎 fo 𝐴 is like a compiled binary file; the morphism 𝑢Σ,𝐴 updates
every compiled binary 𝑎 for the old compiler 𝐴 to a binary for the new compiler 𝑀Σ𝐴.

7∗4. Moreover, we notice that coproducts Σ + Γ are just one particular way to combine
algebraic theories, and we could also consider other ways of combining theories, such as the
commutative combination Σ ⊗ Γ, also known as the tensor (Hyland et al., 2006), which is
the theory Σ + Γ with additionally equations stating that operations from Σ and operations
from Γ are commutative. Motivated by this, we will generalise from (− + Γ) : T →T in
the definition of modular models to an arbitrary functor T →T , better still, a functor
𝑇 : T →T ′ where the domain T and codomain T ′ can be different (T ′ is also equipped
with a functor (−)-Alg : T ′op→CAT). We will then call an (oplax-) natural family of
functors 𝑀Σ : Σ-Alg→ (𝑇Σ)-Alg a model transformer for 𝑇 .

Model transformers will be shown to be equivalent to liftings of functors along fibrations,
i.e. functors 𝑀 making the diagram commute strictly,

A A ′

T T ′

𝑀

𝑝 𝑝′

𝑇

where 𝑝 and 𝑝′ are the fibrations corresponding to (−)-Alg : T op→CAT and (−)-Alg :
T ′op→CAT respectively via the Grothendieck construction. A toolbox of constructions of
such model transformers will be developed in 8∗1.

7∗5. The structure of this section is as follows: In Section 7.1, we define modular models
of monoids with operations, and establish the correspondence between two formulations
based on indexed categories and fibrations respectively. In Section 7.2, motivated by more
scenarios of algebraic structures, we generalise modular models to model transformers,
which are just a ‘name with an attitude’ (nLab, 2024) for liftings of functors along fibrations.

7.1 Modular Models of Monoids

7.1∗1 Notation. We will work with indexed categories C →CAT a lot in this subsection,
where CAT is the category of large categories, so for convenient when we say ‘a category’
in this subsection, by default we mean a large category unless otherwise specified. We fix a
monoidal category E and an operation family F ⊆Mon/Eqs(E ) such that F is closed under
finite coproducts in Mon/Eqs(E ). Every object ¥Σ ∈ F is a pair ⟨ ¤Σ ∈ Eqs(E ), 𝑇 : Mon→ ¤Σ⟩.
We will write ¥Σ-Alg to mean the category ¤Σ-Alg of algebras for ¤Σ.

7.1∗2. In this subsection, we will make precise the idea of modular models, as motivated in
7∗2, in two equivalent formulations, one based on indexed categories (Definition 7.1∗5),
and another based on fibrations (Theorem 7.1∗18). The former is more explicit while the
latter is more convenient to work with.

7.1∗3. Recall that a morphism 𝑇 : ¤Σ→ ¤Ψ in Eqs(E ) is a functor ¤Ψ-Alg→ ¤Σ-Alg such
that U ¤Σ ◦𝑇 =U ¤Ψ : ¤Ψ-Alg→ E , so we can treat (−)-Alg as a functor Eqs(E )op→CAT.
Similarly, we have a functor (−)-Alg : F op→CAT.



54 Zhixuan Yang and Nicolas Wu

7.1∗4 Definition (Johnson and Yau (2020)). For a category C and two functors 𝐹, 𝐺 : C →
CAT, a lax transformation 𝛼 : 𝐹→𝐺 consists of a family of functors 𝛼𝑋 : 𝐹𝑋→𝐺𝑋 for all
𝑋 ∈ C and a family of natural transformations 𝛼 𝑓 :𝐺 𝑓 ◦ 𝛼𝑋→ 𝛼𝑌 ◦ 𝐹 𝑓 for all 𝑓 : 𝑋→𝑌 :

𝐹𝑋 𝐹𝑌

𝐺𝑋 𝐺𝑌

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝛼𝑌
𝛼 𝑓

Additionally, 𝛼 must satisfy that 𝛼id𝑋
= id : 𝛼𝑋→ 𝛼𝑋 for all 𝑋 ∈ C , and for all 𝑓 : 𝑋→𝑌

and 𝑔 :𝑌→ 𝑍 in C , 𝛼𝑔· 𝑓 is exactly the pasting of 𝛼 𝑓 and 𝛼𝑔:

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝛼𝑌
𝛼 𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔 =

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔· 𝑓

An oplax transformation from 𝐹 to 𝐺 is similar to a lax transformation except that the
direction of the 2-cells 𝛼 𝑓 becomes 𝛼𝑌 ◦ 𝐹 𝑓 →𝐺 𝑓 ◦ 𝛼𝑋. An (op)lax transformation 𝛼 is
called strong if 𝛼 𝑓 is a natural isomorphism for every 𝑓 : 𝑋→𝑌 in C , and it is called strict
if 𝛼 𝑓 is exactly the identity for every 𝑓 .

7.1∗5 Definition. Given ¥Ψ ∈ F , a (strong/strict) modular model 𝑀 of ¥Ψ is a (strong/strict)
oplax transformation from (−)-Alg to (− + ¥Ψ)-Alg : F op→CAT.

7.1∗6. Unpacking the definition, a modular model 𝑀 of ¥Ψ ∈ F consists of a family of
functors 𝑀 ¥Σ : ¥Σ-Alg→ ( ¥Σ + ¥Ψ)-Alg for all ¥Σ ∈ F and a family of natural transformations
𝑀𝑇 : 𝑀 ¥Σ ◦𝑇→ (𝑇 + ¥Ψ) ◦𝑀 ¥Σ′ for all 𝑇 : ¥Σ→ ¥Σ′ in F :

¥Σ-Alg ¥Σ′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg

𝑀¥Σ

𝑇

𝑀¥Σ′

𝑇+ ¥Ψ

𝑀𝑇

such that 𝑀id is the identity transformation, and for a pair of morphisms 𝑇 : ¥Σ→ ¥Σ′ and
𝑇 ′ : ¥Σ′→ ¥Σ′′, 𝑀𝑇 ′ ·𝑇 is exactly the pasting of 𝑀𝑇 and 𝑀𝑇 ′ :

¥Σ-Alg ¥Σ′-Alg ¥Σ′′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg ( ¥Σ′′ + ¥Ψ)-Alg

𝑀¥Σ
𝑀𝑇

𝑇

𝑀¥Σ′
𝑀𝑇′

𝑇 ′

𝑀¥Σ′′

𝑇+ ¥Ψ 𝑇 ′+ ¥Ψ

Specially, the data of a strict modular model 𝑀 of ¥Ψ ∈ F is only a family of functors 𝑀 ¥Σ
such that the following diagram in CAT commutes:

¥Σ-Alg ¥Σ′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg

𝑀¥Σ

𝑇

𝑀¥Σ′

𝑇+ ¥Ψ

(7.1)
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Therefore a strict modular model for ¥Ψ is exactly an ordinary natural transformation between
the functors (−)-Alg and (− + ¥Ψ)-Alg : F op→CAT.

7.1∗7 Example. For a trivial example, let F be the operation family containing only
the initial object ⟨Mon, Id : Mon→Mon⟩ of Mon/Eqs(E ). In this case, ⟨Mon, Id⟩ +
⟨Mon, Id⟩ is still ⟨Mon, Id⟩, so a modular model of ⟨Mon, Id⟩ is exactly an endofunctor
Mon(E ) →Mon(E ) over the category of monoids in E .

7.1∗8 Example. Let E be ⟨Endo𝜅 (C ), ◦, Id⟩ for l𝜅p C . A strict modular model 𝑀 for
the theory Et𝐸 of exception throwing (Example 5∗10) in the family Alg(E ) of algebraic
operations is given by a family of functors

𝑀 ¥Σ : ¥Σ-Alg→ ( ¥Σ + Et𝐸)-Alg

natural in ¥Σ ∈Alg(E ). Recall that each ⟨ ¤Σ, 𝑇Σ⟩ ∈Alg(E ) is of the form

(𝑆□ −)-Mon ↰ (K𝐺 ⊢ 𝐿 = 𝑅)

for some 𝑆 and 𝐺 ∈ Endo𝜅 (C ), so objects of ¥Σ-Alg are tuples

⟨𝐴 ∈ Endo𝜅 (C ), 𝛼 : 𝑆 ◦ 𝐴→ 𝐴, 𝜂𝐴 : Id→ 𝐴, 𝜇𝐴 : 𝐴 ◦ 𝐴→ 𝐴⟩

that are mapped by 𝐿 and 𝑅 to the same algebra. We define 𝑀 ¥Σ to send each of them to
a ( ¥Σ + Et𝐸)-algebra carried by 𝐶𝐴 := 𝐴 ◦ (�̄� + Id), i.e. the exception monad transformer
applied to 𝐴, where �̄� is the 𝐸-fold coproduct of the terminal object 1 in Endo𝜅 (C ). Using
the internal language of Endo𝜅 (C ), the operations [𝛼♯, 𝛽] : (𝑆 ◦𝐶𝐴) + �̄�→𝐶𝐴 are

𝛼♯ = J𝑠 : 𝑆, 𝑎 : 𝐴, 𝑒 : �̄� + Id ⊢ (𝛼(𝑠, 𝑎), 𝑒) :𝐶𝐴K
𝛽 = J𝑒 : �̄� ⊢ (𝜂𝐴, 𝜄1 𝑒) :𝐶𝐴K

and 𝐶𝐴 has the following monad structure:

𝜂𝐶 = J⊢ (𝜂𝐴, 𝜄2 (∗)) :𝐶𝐴K
𝜇𝐶 = J𝑎 : 𝐴, 𝑒 : �̄� + Id, 𝑎′ : 𝐴, 𝑒′ : �̄� + Id ⊢

let (𝑎′′, 𝑒′′) = 𝑑 (𝑒, 𝑎′) in (𝜇𝐴(𝑎, 𝑎′′), 𝜇�̄�+Id (𝑒′′, 𝑒′))K

where 𝑑 : (�̄� + Id) ◦ 𝐴→ 𝐴 ◦ (�̄� + Id) is the following distributive law:

𝑒 : �̄� + Id, 𝑎 : 𝐴 ⊢ case 𝑒 of { 𝜄1 𝑒′ ↦→ (𝜂𝐴, 𝜄1𝑒′); 𝜄2 ∗ ↦→ (𝑎, 𝜄2∗) :𝐶𝐴},

and 𝜇�̄�+Id is the multiplication of the exception monad �̄� + Id:

𝑥 : �̄� + Id, 𝑦 : �̄� + Id ⊢ case 𝑥 of { 𝜄1 𝑒 ↦→ 𝜄1 𝑒; 𝜄2 ∗ ↦→ 𝑦} : �̄� + Id.

On morphisms, 𝑀 ¥Σ sends a ¤Σ-homomorphism ℎ : 𝐴→ 𝐵 to ℎ ◦ (�̄� + Id).
We need to check that the family of functors 𝑀 ¥Σ satisfies the naturality square (7.1):

for all 𝑇 : ¥Σ→ ¥Σ′, every object ⟨𝐴, 𝛼, 𝜂𝐴, 𝜇𝐴⟩ of ¥Σ′-Alg is mapped by functors 𝑀 ¥Σ ◦𝑇
and (𝑇 + Et𝐸) ◦𝑀 ¥Σ′ to two objects in ( ¥Σ + Et𝐸)-Alg with the same carrier 𝐶𝐴, the same
Et𝐸-algebra structure, and the same monad structure by construction. We need to show that
the respective ¥Σ-algebras on 𝐶𝐴 are also the same: the ¥Σ-algebra on 𝐶𝐴 from 𝑀 ¥Σ ◦𝑇 is

𝑇𝛼 ◦ (�̄� + Id) : 𝑆 ◦ 𝐴 ◦ (�̄� + Id) → 𝐴 ◦ (�̄� + Id),
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and the one from (𝑇 + Et𝐸) ◦𝑀 ¥Σ′ is 𝑇 (𝛼 ◦ (�̄� + Id)). By Lemma 5∗13, it is sufficient to
show that the following diagram commutes

𝑆 𝑆 ◦𝐶𝐴 𝐶𝐴
𝑆◦𝜂𝐶

𝑇𝛼◦ (�̄�+Id)

𝑇 (𝛼◦ (�̄�+Id) )
(7.2)

To see this, we first observe that we have the following ¥Σ′-homomorphism square:

𝑆′ ◦ 𝐴 𝐴

𝑆′ ◦ 𝐴 ◦ (�̄� + Id) 𝐴 ◦ (�̄� + Id)

𝛼

𝑆′◦𝐴◦ 𝜄2 𝐴◦ 𝜄2

𝛼◦ (�̄�+Id)

and this square is mapped by the translation 𝑇 to a commuting square

𝑆 ◦ 𝐴 𝐴

𝑆 ◦ 𝐴 ◦ (�̄� + Id) 𝐴 ◦ (�̄� + Id)

𝑇𝛼

𝑆◦𝐴◦ 𝜄2 𝐴◦ 𝜄2

𝑇 (𝛼◦ (�̄�+Id) )

This implies (7.2) because

𝑇 (𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝜂𝐶 )
= {definition of 𝜂𝐶 }
𝑇 (𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝐴 ◦ 𝜄2) · (𝑆 ◦ 𝜂𝐴)

= {by the last commutativity square above}
(𝐴 ◦ 𝜄2) · 𝑇𝛼 · (𝑆 ◦ 𝜂𝐴)

= {by naturality}
(𝑇𝛼 ◦ (�̄� + Id)) · (𝐴 ◦ 𝜄2) · (𝑆 ◦ 𝜂𝐴)

= (𝑇𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝜂𝐶 )

7.1∗9. CAT-valued functors also known as (strict) indexed categories, which are equivalent
to split fibrations via the Grothendieck construction, so we can alternatively formulate
modular models based on fibrations. The fibrational formulation is usually easier to work
with, especially when we talk about morphisms between modular models later, which
would be a 3-categorical concept in the indexed-category formulation. Also, the fibrational
formulation slightly simplifies some ‘dependently typed’ constructions such as mapping
each ¥Σ in F to the initial algebra in ¥Σ-Alg. We will only need the very basics about fibrations
(see e.g. Jacobs (1999); Streicher (2023); Borceux (1994)), which we review below.

7.1∗10 (Fibrations). Let 𝑃 : T →B be a functor. A morphism 𝑓 : 𝑋→𝑌 in T is called
cartesian if for every 𝑔 : 𝑍→𝑌 and 𝑤 : 𝑃𝑍→ 𝑃𝑋 such that 𝑃𝑔 = 𝑃 𝑓 · 𝑤, there is a unique
ℎ : 𝑍→ 𝑋 in T satisfying 𝑃ℎ = 𝑤 and 𝑓 · ℎ = 𝑔:

𝑍

𝑋 𝑌 T

𝑃𝑍

𝑃𝑋 𝑃𝑌 B

ℎ

𝑔

𝑓

𝑤

𝑃𝑔

𝑃 𝑓

𝑃
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The functor 𝑃 called a (Grothendieck) fibration if for every morphism 𝑢 : 𝐼→ 𝐽 in B

and object 𝑌 ∈T such that 𝑃𝑌 = 𝐽, there exists a cartesian morphism 𝑓 : 𝑋→𝑌 in T with
𝑃 𝑓 = 𝑢. It is customary to call the category T the total category and B the base category. If
an object 𝑋 or a morphism 𝑓 in T is sent by the functor 𝑃 to an object 𝐼 or a morphism 𝑢 in
B, we colloquially say that 𝑋 or 𝑓 is over 𝐼 or 𝑢. Given an object 𝐼 ∈B, the fiber category
T𝐼 over 𝐼 is the subcategory of T consisting of objects over 𝐼 and morphisms over id𝐼 .

A cleavage for a fibration 𝑃 : T →B is an assignment 𝜅 of cartesian morphisms 𝜅(𝑌, 𝑢)
over 𝑢 to all pairs of 𝑌 ∈T and 𝑢 : 𝐼→ 𝑃𝑌 for some 𝐼 ∈B. A cleavage 𝜅 is said to be a split
cleavage if it is functorial: 𝜅(𝑌, id𝑃𝑌 ) = id𝑌 and 𝜅(𝑌, 𝑢 · 𝑣) = 𝜅(𝑌, 𝑢) · 𝜅(Dom 𝜅(𝑌, 𝑢), 𝑣).
A split fibration is a fibration 𝑃 : T →B equipped with a split cleavage.

Let 𝑃 : T →B be a fibration with a cleavage 𝜅. For every morphism 𝑢 : 𝐼→ 𝐽 in the base
category B, the reindexing functor 𝑢∗ : T𝐽→T𝐼 sends every object 𝑌 ∈T𝐽 to the domain
object 𝑋 ∈T𝐼 of the morphism 𝜅(𝑌, 𝑢) : 𝑋→𝑌 and sends every morphism 𝑓 :𝑌→𝑌 ′ in
T𝐼 to the morphism ℎ : 𝑢∗𝑌→ 𝑢∗𝑌 ′ as follows:

𝑢∗𝑌 𝑌

𝑢∗𝑌 ′ 𝑌 ′

𝐼 𝐽

𝐼 𝐽

𝜅 (𝑌,𝑢)

ℎ
𝑓

𝜅 (𝑌 ′ ,𝑢)

𝑢

id
id

𝑢

where ℎ is obtained from the cartesianess of 𝜅(𝑌 ′, 𝑢) : 𝑢∗𝑌 ′→𝑌 ′ and the fact that 𝑃( 𝑓 ·
𝜅(𝑌, 𝑢)) = id · 𝑢 = 𝑢 = 𝑃(𝜅(𝑌 ′, 𝑢)). The functoriality of 𝑢∗ : T𝐽→T𝐼 is a consequence of
the uniqueness part of cartesianess.

A morphism 𝑃→ 𝑃′ of fibrations is a pair of functors ⟨𝐹, 𝐺⟩ such that the diagram
below commutes and 𝐹 maps cartesian morphisms to cartesian morphisms. A morphism
⟨𝑃, 𝜅⟩ → ⟨𝑃′, 𝜅′⟩ of split fibrations is a morphism ⟨𝐹, 𝐺⟩ : 𝑃→ 𝑃′ that strictly preserves
the split cleavage: 𝐹𝜅(𝑌, 𝑢) = 𝜅(𝐹𝑌, 𝐺𝑢).

T T ′

B B′

𝐹

𝑃

𝐺

𝑃′ (7.3)

With component-wise identity functors and functor composition, fibrations (resp. split
fibrations) and morphisms form a category Fib (resp. Fib𝑠). Also, given a category B, there
is a subcategory FibB ⊆ Fib (resp. Fib𝑠B ⊆ Fib𝑠) containing all (resp. split) fibrations over
B and morphisms ⟨𝐹, Id : B→B⟩ : 𝑃→ 𝑃′.

Let 𝑃 : T →B be a fibration and 𝐹 : C →B be a functor. A basic result (Jacobs, 1999,
Lemma 1.5.1) in fibred category theory is that the pullback 𝐹∗𝑃 : 𝐹∗T →C of 𝑃 along 𝐹
in the (1-)category CAT is still a fibration:

𝐹∗T T

C B

𝐹∗𝑃 𝑃

𝐹
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The fibration 𝐹∗𝑃 is called the change of base of 𝑃 along 𝐹. Moreover, if 𝑃 has a split
cleavage then so does 𝐹∗𝑃. Explicitly, the objects of 𝐹∗T are pairs ⟨𝐼 ∈ C , 𝑋 ∈T ⟩ such
that 𝐹𝐼 = 𝑃𝑋 , the morphisms ⟨𝐼, 𝑋⟩ → ⟨𝐽, 𝑌⟩ in 𝐹∗T are pairs ⟨ 𝑓 : 𝐼→ 𝐽, 𝑔 : 𝑋→𝑌⟩ such
that 𝐹 𝑓 = 𝑃𝑔. A morphism ⟨ 𝑓 , 𝑔⟩ in 𝐹∗T is cartesian if and only if 𝑔 is cartesian.

7.1∗11 Definition. Given a functor 𝐹 : Bop→CAT, the Grothendieck construction is a
split fibration 𝑃 : ∫ 𝐹→B where the category ∫ 𝐹 has tuples ⟨𝐼 ∈B, 𝑎 ∈ 𝐹𝐼⟩ as objects,
and its morphisms ⟨𝐼, 𝑎⟩ → ⟨𝐽, 𝑎′⟩ are pairs ⟨ 𝑓 , 𝑔⟩ for 𝑓 : 𝐼→ 𝐽 in B and 𝑔 : 𝑎→ 𝐹 𝑓 𝑎′

in the category 𝐹𝐼. Identity arrows are ⟨id, id⟩ and the composition ⟨ 𝑓 ′, 𝑔′⟩ · ⟨ 𝑓 , 𝑔⟩ is
⟨ 𝑓 ′ · 𝑓 , 𝑔′ · 𝐹 𝑓 ′𝑔⟩. The fibration 𝑃 : ∫ 𝐹→B is the first projection ⟨𝐼, 𝑎⟩ ↦→ 𝐼. The split
cleavage 𝜅(⟨𝐼, 𝑎⟩, 𝑢) for some 𝑢 : 𝐽→ 𝐼 is ⟨𝑢, id⟩ : ⟨𝐽, (𝐹𝑢)𝑎⟩ → ⟨𝐼, 𝑎⟩.

7.1∗12. Applying the Grothendieck construction to (−)-Alg : F op→CAT, we obtain a
(split) fibration 𝑃 : F -Alg→F , which we explicitly describe below. The intuition is that
F -Alg is the category of all models of all equational systems in F . The objects of the
category F -Alg are tuples

⟨ ¤Σ ∈ Eqs(E ), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ E , 𝛼 : Σ𝐴→ 𝐴⟩

such that ⟨ ¤Σ, 𝑇Σ⟩ ∈ F and ⟨𝐴, 𝛼⟩ ∈ ¤Σ-Alg. Morphisms between two objects ⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩
and ⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ are pairs ⟨𝑇, ℎ⟩ where 𝑇 : ¤Σ→ ¤Ψ is a functorial translation in F , and the
other component ℎ : 𝐴→ 𝐵 ∈ E is a ¤Σ-algebra homomorphism from ⟨𝐴, 𝛼⟩ to 𝑇 ⟨𝐵, 𝛽⟩:

Σ𝐵 Σ𝐴

𝐵 𝐴

𝛼𝑇𝛽

ℎ

Σℎ

in ¤Σ-Alg
𝑇←−−−−−−

Ψ𝐵

𝐵

𝛽 in ¤Ψ-Alg

The identities in F -Alg are pairs ⟨Id : ¤Σ→ ¤Σ, id : 𝐴→ 𝐴⟩, and the composition of two
morphisms ⟨𝑇, ℎ⟩ and ⟨𝑇 ′, ℎ′⟩ is ⟨𝑇 ◦𝑇 ′, ℎ · ℎ′⟩.

The fibration 𝑃 : F -Alg→F is the projection: 𝑃⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩ = ⟨ ¤Σ, 𝑇Σ⟩ and 𝑃⟨𝑇, ℎ⟩ =𝑇 .
It has a split cleavage assigning to every pair of a morphism 𝑇 : ⟨ ¤Σ, 𝑇Σ⟩ → ⟨ ¤Ψ, 𝑇Ψ⟩ ∈
F and an object ⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ ∈ F -Alg a cartesian morphism ⟨𝑇, id⟩ : ⟨ ¤Σ, 𝑇Σ, 𝐵, 𝑇 𝛽⟩ →
⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ in F -Alg.

7.1∗13 Example. Given an object ¥Ψ ∈ F , the Grothendieck construction of the functor
(− + ¥Ψ)-Alg : F op→CAT is a split fibration𝑄 : (F + ¥Ψ)-Alg→F . Explicitly, the objects
of (F + ¥Ψ)-Alg are tuples:

⟨ ¤Σ ∈ Eqs(E ), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ E , 𝛼 : Σ𝐴→ 𝐴, 𝛽 : Ψ𝐴→ 𝐴⟩

such that ⟨ ¤Σ, 𝑇Σ⟩ ∈ F , ⟨𝐴, 𝛼⟩ ∈ ¤Σ-Alg, ⟨𝐴, 𝛽⟩ ∈ ¤Ψ-Alg, and 𝑇Ψ𝛼 =𝑇Σ𝛽. Morphisms in the
category (F + ¤Ψ)-Alg are similar to those ⟨𝑇, ℎ⟩ in F -Alg, but require ℎ also to be a
¤Ψ-homomorphism. Therefore, objects of (F + ¥Ψ)-Alg are models of some equational
systems in F that are additionally equipped with a ¥Ψ-algebra. The functor𝑄 is the projection
⟨ ¤Σ, 𝑇, 𝐴, 𝛼, 𝛽⟩ ↦→ ⟨ ¤Σ, 𝑇⟩.

The split fibration𝑄 : (F + ¥Ψ)-Alg→F can be alternatively given as the change of base
of the fibration 𝑃 : F -Mon→F along the functor (− + ¥Ψ) : F →F , which is the following
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pullback in the category CAT of large categories:

(F + ¥Ψ)-Alg F -Alg

F F

𝑃

−+ ¥Ψ

𝐾

𝑄 (7.4)

The functor 𝐾 maps objects ⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼, 𝛽⟩ to ⟨⟨ ¤Σ, 𝑇Σ⟩ + ⟨ ¤Ψ, 𝑇Ψ⟩, 𝐴, [𝛼, 𝛽]⟩. The pair
⟨𝐾, (− + ¤Ψ)⟩ is a morphism of split fibrations 𝑄→ 𝑃.

7.1∗14 Definition. Given two fibrations 𝑃 : E →B and 𝑃′ : E ′→B′, a lifting of a functor
𝐹 : B→B′ along 𝑃 and 𝑃′ is a functor𝐺 : E → E ′ making the following diagram commute:

E E ′

B B′

𝐺

𝑃 𝑃′

𝐹

The lifting is called fibred if ⟨𝐹, 𝐺⟩ is a morphism of fibrations (i.e.𝐺 preserves all cartesian
morphisms). When 𝑃 and 𝑃′ have split cleavages, the lifting 𝐺 is called split if ⟨𝐹, 𝐺⟩ is a
morphism of split fibrations.

A morphism between two liftings 𝐺→ 𝐻 of 𝐹 is a natural transformation 𝜎 : 𝑀→ 𝑁

that is vertical, i.e. 𝑃′𝜎 = id𝑇◦𝑃:

E E ′

B B′

𝐺

𝐻𝑃 𝑃′

𝐹

𝜎

Liftings of 𝐹 along 𝑃 and 𝑃′ and morphisms between them form a category Lift𝑃,𝑃′ (𝐹),
whose identity morphisms are the identity natural transformations, and composition is
vertical composition of natural transformations.

7.1∗15 (Modular models as liftings). Using the language of fibrations, we have now a very
concise alternative formulation of modular models: a (strong/strict) modular model 𝑀 of
¥Ψ ∈ F is just a (fibred/split) lifting of the endofunctor (− + ¥Ψ) : F →F along the fibration
𝑃 : F -Alg→F from 7.1∗12:

F -Alg F -Alg

F F

𝑀

𝑃 𝑃

−+ ¥Ψ

The commutativity of the square ensures that the functor 𝑀 maps every object ⟨ ¥Σ, 𝐴, 𝛼⟩
to an object ⟨ ¥Σ + ¥Ψ, 𝐵, 𝛽⟩. Below, we show that this formulation of modular models is
equivalent to Definition 7.1∗5 based on indexed categories.

7.1∗16 Lemma. Given two fibrations 𝑃 : T →B, 𝑃′ : T ′→B′, and a functor 𝐹 : B→
B′, let 𝐹∗𝑃′ : 𝐹∗T ′→B be the change of base of 𝑃′ along 𝐹.

1. Liftings of 𝐹 along 𝑃 and 𝑃′ are in bĳection with CAT/B(𝑃, 𝐹∗𝑃′).
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2. Fibred liftings of 𝐹 along 𝑃 and 𝑃′ are in bĳection with FibB (𝑃, 𝐹∗𝑃′).
3. If 𝑃 and 𝑃′ are equipped with split cleavages, split liftings of 𝐹 along 𝑃 and 𝑃′ are in

bĳection with Fib𝑠B (𝑃, 𝐹
∗𝑃′).

Proof. By definition, 𝐹∗𝑃′ is the pullback in the following diagram:

T

𝐹∗T T ′

B B′

𝐻

𝐺

𝑃

𝐾

𝐹∗𝑃′ 𝑃′

𝐹

By definition, liftings of 𝐹 are functors 𝐺 : T →T ′ such that 𝐹 ◦ 𝑃 = 𝑃′ ◦𝐺, so by the
universal property of the pullback, liftings 𝐺 are in bĳection with functors 𝐻 : T → 𝐹∗T ′

such that (𝐹∗𝑃′) ◦ 𝐻 = 𝑃, and the backward direction is given by 𝐻 ↦→ 𝐾 ◦ 𝐻. This is the
first item in the statement.

This bĳection cuts down to fibred (resp. split) liftings. The functor 𝐾 always preserves
cartesian morphisms and the split cleavage. Hence from one direction, if 𝐻 preserves
cartesian morphisms (resp. split cleavage), then so does 𝐾 ◦ 𝐻. From the other direction, if
𝐺 preserves cartesian morphisms (resp. split cleavage), then the functor 𝐻 sends a cartesian
morphism 𝑓 in T to the pair ⟨𝑃 𝑓 , 𝐺 𝑓 ⟩, which is cartesian for the fibration 𝐹∗𝑃′. □

7.1∗17 Lemma. For a category C and two functors 𝐹, 𝐺 : C op→CAT, denote the
Grothendieck construction of 𝐹 and 𝐺 by 𝑝 : ∫ 𝐹→C and 𝑞 : ∫ 𝐺→C . Oplax
transformations 𝐹→𝐺 are in bĳection with CAT/C (𝑝, 𝑞).

Proof. For one direction, given an oplax transformation 𝛼 : 𝐹→𝐺, we define a functor
𝐾 : ∫ 𝐹→∫ 𝐺 as follows. On objects, 𝐾 sends every object ⟨𝐼 ∈ C , 𝑎 ∈ 𝐹𝐼⟩ to ⟨𝐼, 𝛼𝐼𝑎 ∈𝐺𝐼⟩.
On morphisms, 𝐾 sends every morphism

⟨ 𝑓 : 𝐼→ 𝐽, 𝑔 : 𝑎→ (𝐹 𝑓 )𝑏⟩ : ⟨𝐼, 𝑎⟩ → ⟨𝐽, 𝑏⟩

in ∫ 𝐹 to ⟨ 𝑓 , 𝑔′⟩ where 𝑔′ is the following morphism in the fiber category 𝐺 𝐼 :

𝛼𝐼𝑎
𝛼𝐼𝑔−−−→ 𝛼𝐼 (𝐹 𝑓 𝑏)

𝛼 𝑓 ,𝑏−−−→ (𝐺 𝑓 )𝛼𝐽𝑏.

The functor preserves identities and composition following the unity and composition
axioms of oplax transformations.

For the other direction, given a functor 𝐾 : ∫ 𝐹→∫ 𝐺 with 𝑞 ◦ 𝐹 = 𝑝, we define an
oplax transformation 𝛼 : 𝐹→𝐺 as follows. For every object 𝐼 ∈ C , we define the functor
𝛼𝐼 : 𝐹𝐼→𝐺𝐼 to be 𝐾 restricted to the fiber category of ∫ 𝐹 over 𝐼. For every 𝑓 : 𝐼→ 𝐽 in C ,
we need to define a natural transformation 𝛼 𝑓 : 𝛼𝐼 ◦ 𝐹 𝑓 →𝐺 𝑓 ◦ 𝛼𝐽 : 𝐹𝐽→𝐺𝐼. For each
object 𝑏 ∈ 𝐹𝐽, there is a morphism ⟨ 𝑓 , id⟩ : ⟨𝐼, (𝐹 𝑓 )𝑏⟩ → ⟨𝐽, 𝑏⟩ in the total category ∫ 𝐹,
and this morphism is mapped by 𝐾 to some ⟨ 𝑓 , 𝑔⟩ : ⟨𝐼, 𝛼𝐼 (𝐹 𝑓 𝑏)⟩ → ⟨𝐽, 𝛼𝐽𝑏⟩, we define
the natural transformation 𝛼 𝑓 to be

𝛼 𝑓 ,𝑏 := 𝑔 : 𝛼𝐼 (𝐹 𝑓 𝑏) →𝐺 𝑓 (𝛼𝐽𝑏)



Modular Models of Monoids with Operations by Lifting Functors along Fibrations 61

in the fiber category 𝐹𝐼. For every ℎ : 𝑏→ 𝑏′ in 𝐹𝐽, the naturality of 𝛼 𝑓 follows from the
fact that the diagram below left commutes in ∫ 𝐹:

𝐼, 𝐹 𝑓 𝑏 𝐽, 𝑏

𝐼, 𝐹 𝑓 𝑏′ 𝐽, 𝑏′

𝑓 ,𝑖𝑑

𝑖𝑑,ℎ𝑖𝑑,𝐹 𝑓 ℎ

𝑓 ,𝑖𝑑

𝐼, 𝛼𝐼 (𝐹 𝑓 )𝑏 𝐽, 𝛼𝐽𝑏

𝐼, 𝐺 𝑓 𝛼𝐽𝑏

𝐼, 𝛼𝐼 (𝐹 𝑓 )𝑏′ 𝐽, 𝛼𝐽𝑏
′

𝐼, 𝐺 𝑓 𝛼𝐽𝑏
′

𝐾 ⟨ 𝑓 ,id⟩

id,𝛼𝐽ℎid,𝛼𝐼 (𝐹 𝑓 )ℎ

𝐾 ⟨ 𝑓 ,id⟩

𝑓 ,idid,𝛼 𝑓 𝑏
′

id,𝛼 𝑓 𝑏 𝑓 ,id

id,𝐺 𝑓 (𝛼𝐽ℎ)

and 𝐾 maps this diagram to ∫ 𝐺, which is the back square in the diagram above right. We
observe that in the diagram above right the two triangles commute by the definition of 𝛼 𝑓 𝑏
and 𝛼 𝑓 𝑏′; the right square commutes by the definition of arrow composition in ∫ 𝐺. Hence
the following diagram commutes:

𝐼, 𝛼𝐼 (𝐹 𝑓 )𝑏

𝐼, 𝐺 𝑓 𝛼𝐽𝑏

𝐼, 𝛼𝐼 (𝐹 𝑓 )𝑏′ 𝐽, 𝛼𝐽𝑏
′

𝐼, 𝐺 𝑓 𝛼𝐽𝑏
′

id,𝛼𝐼 (𝐹 𝑓 )ℎ

𝑓 ,idid,𝛼 𝑓 𝑏
′

id,𝛼 𝑓 𝑏

id,𝐺 𝑓 𝛼𝐽ℎ

The square on the left is exactly the naturality square for 𝛼 𝑓 that we need, which also
commutes because the morphism ⟨ 𝑓 , id⟩ on the right is cartesian. It can be checked that
this natural transformations satisfies the axioms of oplax transformations and that the two
directions define a bĳection. □

7.1∗18 Theorem. For every ¥Ψ ∈ F , the following are in bĳection with each other:

1. modular models (resp. strong or strict modular models) as in Definition 7.1∗5,
2. functors in CAT/F (𝑃, 𝑄) (resp. morphisms of fibrations or split fibrations from 𝑃

to 𝑄) where the split fibrations 𝑃 and 𝑄 are as in (7.4), and
3. liftings (resp. fibred or split liftings) of the endofunctor (− + ¥Ψ) : F →F along the

fibration 𝑃 : F -Alg→F .

Proof. The bĳection between 2 and 3 is Lemma 7.1∗16. The bĳection between modular
models and morphisms in CAT/F is Lemma 7.1∗17. The bĳection between strong (resp.
strict) modular models – which are exactly strong transformations (resp. natural transforma-
tions) between CAT-valued functors – and morphisms of fibrations (resp. split fibrations) is
standard (Jacobs, 1999, §1.10). □

7.1∗19 Notation. In the future, we will leave implicit the conversion between modular
models as oplax transformations and as liftings of functors, so we may say ‘a modular model
𝑀 : F -Alg→F -Alg of ¥Ψ’.

7.1∗20. One advantage of the fibrational formulation is that we avoid the need of a category
of categories CAT bigger than the base category. Also, it reduces the 2-categorical notion of
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oplax transformations to the 1-categorical notion of functors. Consequently, 3-categorical
concepts can be avoided when talking about transformations of modular models, such as
homomorphisms between modular models and the concept of updaters below.

7.1∗21 Definition. Let 𝑀 be a modular model of ¥Ψ ∈ F given in the lifting form. An
updater 𝑢 for 𝑀 is a natural transformation 𝑢 : Id→𝑀 such that

(𝑃 ◦ 𝑢) = (𝜄1 ◦ 𝑃) : 𝑃→ (𝑃 ◦𝑀) = (− + ¥Ψ) ◦ 𝑃

where 𝜄1 : (−) → (−) + ¥Ψ is the coprojection in F :

F -Alg F -Alg

F F

Id

𝑀

𝑃 𝑃

(−)

−+ ¥Ψ

𝑢

𝜄1

7.1∗22. For an object ⟨ ¥Σ, 𝐴, 𝛼⟩ ∈ F -Alg, the component of 𝑢 at this object is a ¥Σ-
homomorphism from ⟨𝐴, 𝛼⟩ to the algebra 𝑀 ⟨ ¥Σ, 𝐴, 𝛼⟩ forgetting the ¥Ψ-algebra. If we
informally think of ¥Σ as a programming language, ¥Ψ as the new feature in a new release of
the programming language, and ⟨𝐴, 𝛼⟩ as the existing compiled programs of ¥Σ, then the role
of 𝑢 is updating existing compiled programs to the new version, hence its name ‘updater’.

7.1∗23. In the setting of Example 7.1∗7, updaters correspond to exactly the lifting operation
𝑙 : Id→𝑇 : Mon(E ) →Mon(E ) of monad/monoid transformers (Jaskelioff and Moggi,
2010). We have switched to the terminology lifting to avoid the confusion with liftings along
fibrations (Definition 7.1∗14).

7.1∗24. Assuming objects of F have initial algebras, the ‘dependently typed’ mapping
sending every ⟨ ¤Σ, 𝑇Σ⟩ ∈ F to its initial algebra 𝜇 ¤Σ can be conveniently formulated as a
functor (−)★ : F →F -Alg using the fibrational language:

¥Σ★ = ⟨ ¤Σ, 𝑇Σ, 𝜇 ¤Σ, 𝛼Σ : Σ(𝜇 ¤Σ) → 𝜇 ¤Σ⟩ (7.5)

(𝑇 : ¥Σ→ ¥Ψ)★ = ⟨𝑇, ! : ⟨𝜇 ¤Σ, 𝛼Σ⟩ →𝑇 ⟨𝜇 ¤Ψ, 𝛼Ψ⟩⟩

where ! is the unique ¤Σ-homomorphism out of the initial algebra 𝜇 ¤Σ.
Let 𝑀 be a modular model of some ¥Ψ ∈ F in the lifting form. For every ¥Σ ∈ F , we have

a unique ( ¥Σ + ¥Ψ)-homomorphism out of the initial algebra ( ¥Σ + ¥Ψ)★:

ℎ𝑀¥Σ : ( ¥Σ + ¥Ψ)★→𝑀 ¥Σ★, (7.6)

which defines a natural transformation

ℎ𝑀 : (− + ¥Ψ)★→𝑀 (−)★ : F →F -Alg. (7.7)

This is how 𝑀 modularly handles/interprets ¤Ψ-operations in programs ( ¥Σ + ¥Ψ)★ with both
¥Ψ-operations and some other ¥Σ-operations, leaving operations from the other theory ¥Σ
uninterpreted. Specially, ¥Σ can be the initial object ⟨Mon, Id⟩ of F , whose initial algebra is
the initial monoid 𝐼. In this case, the morphism ℎ𝑀Mon,Id : ¥Ψ★→𝑀𝐼 interprets the abstract
syntax ¥Ψ★ with no ‘residual operations’.
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7.2 Model Transformers

7.2∗1. In the previous section, we have seen modular models of theories of monoids with
operations as liftings of endofunctors − + ¥Ψ along a fibration 𝑃:

F -Alg F -Alg

F F

𝑀

𝑃 𝑃

−+ ¥Ψ

(7.8)

But there is no reason that the idea of modular models is specific to coproducts − + ¥Ψ or
the fibration F -Alg→F for monoids with operations, since we may be interested in ways
of combining algebraic theories other than coproducts, and we may be interested in other
fibrations of theories and algebras. Thus we shall just study liftings of arbitrary functors
along two possibly different fibrations. In this section, we justify the generalisation by
showing a few more instances of liftings along fibrations related to modularity.

7.2∗2 (Commutative combination). Consider E = ⟨Endo𝜅 (C ), ◦, Id⟩ for some C that is
l𝜅p as a cartesian closed category, as ωCpo and Set. For functors 𝐴1, 𝐴2 ∈ Endo𝜅 (C ), we
had seen the Day tensor product 𝐴1 ⊗ 𝐴2 in Section 2.6:

(𝐴1 ⊗ 𝐴2)𝑛 =
∫ 𝑚,𝑘∈C𝜅

𝐴1𝑚 × 𝐴2𝑘 × 𝑛𝑚×𝑘 ,

which is intuitively a pair of 𝐴1-operation and 𝐴2-operation that do not depend on each
other. This is clearly symmetric, so we have an isomorphism

𝑠 : 𝐴1 ∗ 𝐴2 � 𝐴2 ∗ 𝐴1.

Also, there is a canonical morphism 𝑖 : 𝐴1 ∗ 𝐴2→ 𝐴1 ◦ 𝐴2 as shown in 2.6∗3.
We define a functor ⊗ : Alg(E ) ×Alg(E ) →Alg(E ) as follows, which is closely related

to the commutative combination, also known as the tensor, of enriched algebraic theories
(Hyland et al., 2006). Let ¥Σ𝑖 ∈Alg(E ) be

⟨(𝐴𝑖 □ −)-Mon ↰ (K𝐵𝑖
⊢ 𝐿𝑖 = 𝑅𝑖), 𝑇𝑖⟩, for 𝑖 = 1, 2.

We define ¥Σ1 ⊗ ¥Σ2 to be ¥Σ1 + ¥Σ2 extended with the following (constant) equation

𝑜 : 𝐴1 ∗ 𝐴2 ⊢ 𝑓 (𝑖 𝑜) = 𝑓 (𝑖 (𝑠 𝑜)) : 𝜏.

where the term 𝑜′ : 𝐴1 ◦ 𝐴2 ⊢ 𝑓 : 𝜏 is defined by

𝑜′ : 𝐴1 ◦ 𝐴2 ⊢ let (𝑎1, 𝑎2) = 𝑜′ in 𝜇 (op1 (𝑎1, 𝜂 ∗), op2 (𝑎2, 𝜂 ∗)) : 𝜏,

and op𝑖 : 𝐴𝑖 ◦ 𝜏→ 𝜏, 𝜂 : I→ 𝜏, 𝜇 : 𝜏 ◦ 𝜏→ 𝜏 are respectively the algebraic operations, the
unit, and the multiplication of the monoid.

Informally, a model of ¥Σ1 ⊗ ¥Σ2 is a monad with an 𝐴1-operation and an 𝐴2-operation such
that the order of an adjacent pair of an 𝐴1-operation and an 𝐴2-operation can be swapped:

do {x← op1; y← op2; k x y} = do {y← op2; x← op1; k x y}.

The Day tensor 𝐴1 ∗ 𝐴2 shows up in the equation to ensure that each of the two operations do
not depend on the other’s output, so that it makes sense to swap them. The functor ⊗ can be
extended to a monoidal product on Alg(E ) with the theory of monoids with no operations
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as the unit. Let F be Alg(E ) and ¥Ψ ∈ F , a lifting of − ⊗ ¥Ψ along 𝑃 : F -Alg→F is then
a modular model of ¥Ψ such that operations of ¥Ψ commute with all other operations, even if
they may be unknown now. This may sound very strong, but the state monad transformer
gives such a modular model (Yang and Wu, 2021, §6).

7.2∗3 (Modular handlers). The theory of modular models is inspired by the concept of
modular handlers studied by Schrĳvers et al. (2019) and Yang and Wu (2021) in Haskell.
If we re-express them in category theory, a reasonable definition of a modular handler of
an equational system ¤Σ over a category C is a mapping (not necessarily a functor) from
monads 𝑀 on C to tuples ⟨𝐴, 𝑎, 𝑓 ⟩ of an object 𝐴 ∈ C , a ¤Σ-algebra 𝑎 : Σ𝐴→ 𝐴 on 𝐴, and
an Eilenberg-Moore algebra of 𝑀 𝑓 : 𝑀𝐴→ 𝐴 on 𝐴:

Σ𝐴 𝐴 𝑀𝐴
𝑎 𝑓

The idea is similar to our modular models: for whatever ‘ambient effect’ 𝑀 , there is a model
𝐴 of the effect ¤Σ, which also models any effect that 𝑀 supports. In particular, if 𝑀 has an
algebraic operation 𝑏 : 𝑆 ◦𝑀→𝑀 on 𝑀 , then the object 𝐴 can ‘forward’ this operation by

𝑆𝐴 𝑆(𝑀𝐴) 𝑀𝐴 𝐴.
𝑆𝜂𝐴 𝑏 𝑓

Modular handlers in this sense are also an instance of liftings along fibrations. Let
|Mnd(C ) | be the discrete category of monads over C , then the identity functor Id :
|Mnd(C ) | → |Mnd(C ) | is a fibration. For every ¤Σ ∈ Eqs(C ), we define the functor 𝑇¤Σ :
|Mnd(C ) | → Eqs(C ) to be (−)-Act + ¤Σ, where (−)-Act is the equational system of monad
algebras from 3.1∗8. Let 𝑃 : Alg(C ) → Eqs(C ) be the Grothendieck construction of
(−)-Alg : Eqs(C )op→CAT. A modular handler 𝐻 of ¤Σ is then a lifting of 𝑇¤Σ along Id, 𝑃:

|Mnd(C ) | Alg(C )

|Mnd(C ) | Eqs(C )

𝐻

Id 𝑃

𝑇¤Σ

In fact, most examples of modular handlers from Schrĳvers et al. (2019) and Yang and Wu
(2021) are covariant functors Mnd(C ) →Alg(C ), apart from those based on continuation
monad transformers 𝑀 ↦→ (−⇒𝑀𝑅) ⇒𝑀𝑅.

7.2∗4 (Output Effects). An intuition for effect handlers is that they consume effectful
operations, but in almost all implementations of effect handlers, handlers can also produce
effectful operations. For example, a handler may handle an exception by producing a nonde-
terministic failure, thus transforming the effect of exceptions to the effect of nondeterminism.
Such handlers with both input effect (the operations to be handled) and output effect (the
operations to be generated) can be modelled as liftings along fibrations as well.

Let F be an operation family (Definition 6∗2) closed under binary coproducts. For every
¥Ψ ∈ F , we denote by U ¥Ψ : ¥Ψ/F → F the forgetful functor from the coslice category under
¥Ψ ∈ F to F . We also denote by 𝑃 ¥Ψ : ( ¥Ψ/F )-Alg→ ¥Ψ/F the change of base of the fibration
𝑃 : F -Alg→F along the functor U ¥Ψ:

( ¥Ψ/F )-Alg F -Alg

¥Ψ/F F

𝑃 ¥Ψ 𝑃

U ¥Ψ
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For every pair of ¥Σ, ¥Ψ ∈ F , we define a functor 𝑇¥Σ, ¥Ψ : ¥Σ/F → ¥Ψ/F

𝑇¥Σ, ¥Ψ ⟨ ¥Φ ∈ F , 𝑆 : ¥Σ→ ¥Φ⟩ = ⟨ ¥Φ + ¥Ψ, 𝜄2 : ¥Ψ→ ¥Φ + ¥Ψ⟩

A modular model 𝑀 of input effect ¥Ψ and output effect ¥Σ is then a lifting of the functor
𝑇¥Σ, ¥Ψ along the fibrations 𝑃 ¥Σ and 𝑃 ¥Ψ:

( ¥Σ/F )-Alg ( ¥Ψ/F )-Alg

¥Σ/F ¥Ψ/F

𝑀

𝑃¥Σ 𝑃 ¥Ψ

𝑇¥Σ, ¥Ψ

(7.9)

Note that it is ¥Ψ rather than ¥Σ that is the input effect, since ¥Ψ is the effect to be ‘handled’ by
this modular model; this is similar to how translations of equational systems ¤Ψ→ ¤Σ are
functors ¤Σ-Alg→ ¤Ψ-Alg from the opposite direction.

7.2∗5. In the diagram (7.9), 𝑃 ¥Ψ is a pullback of 𝑃 : F -Alg→F along U ¥Ψ, so functors 𝑀
making (7.9) commute are in bĳection with functors 𝑁 making

( ¥Σ/F )-Alg F -Alg

¥Σ/F ¥Ψ/F F

𝑁

𝑃¥Σ 𝑃

𝑇¥Σ, ¥Ψ U ¥Ψ

commute. When ¥Σ is the theory of monoids with no operations, this recovers our earlier
definition of modular models without output effects (7.8).

7.2∗6. Moreover, the fibration F -Alg→F in 7.2∗4 can be replaced by many other
fibrations whose base category is a category of some notion of algebraic theories and total
category is a category of pairs of a theory and its model. For example, let FPCat be the
category of small categories with finite products and finite-product-preserving functors; there
is a functor [−, Set] : FPCatop→CAT sending every C ∈ FPCat to the category of finite-
product-preserving functors C → Set, which induces a fibration 𝑃 : FPMod→ FPCat, and
we can talk about modular models of finite-product theories by replacing F -Alg→F in
7.2∗4 with this fibration. The same thing can be said for generalised algebraic theories
(Cartmell, 1986), second-order algebraic theories (Fiore and Mahmoud, 2010), and so on
for any framework of algebraic theories that have a fibration of models over theories and
useful ways of combining theories such as coproducts.

7.2∗7. Motivated by the above examples of liftings, we will use ‘model transformers’ as
a suggestive synonym for liftings along fibrations. (We could similarly call the functor
𝑇 : T →T ′ a ‘theory transformer’.) Incidentally, Hyland et al. (2006) have a concept of
‘operation transformers’, but they correspond to translations between algebraic theories
rather than functors between the categories of theories.

7.2∗8 Definition. Given two fibrations 𝑃 : A →T , 𝑃′ : A ′→T ′ and a functor 𝑇 : T →
T ′, a (strong/strict) model transformer 𝑀 of 𝑇 is defined to a (fibred/split) lifting of 𝑇
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along 𝑃 and 𝑃′ (Definition 7.1∗14).

A A ′

T T ′

𝑀

𝑃 𝑃′

𝑇

The category Lift𝑃,𝑃′ (𝑇) of liftings will also be denoted by Motr(𝑇).
Specially, model transformers of a coproduct functor − +Ψ : T →T will be called

modular models of Ψ ∈T , reusing the terminology from the last section.

7.2∗9. We can similarly generalise updaters (Definition 7.1∗21) to general fibrations. It
seems natural to require the two fibrations to be the same in this case. Given a fibration
𝑃 : A →T and a pointed endofunctor ⟨𝑇 : T →T , 𝜂𝑇 : Id→T ⟩, an updater for a model
transformer of 𝑇 along 𝑃 is a natural transformation 𝑢 : Id→𝑀 such that 𝑃 ◦ 𝑢 = 𝜂𝑇 ◦ 𝑃:

A A

T T

Id

𝑀

𝑃 𝑃

Id

𝑇

𝑢

𝜂𝑇

We denote by Motr𝑢 (𝑇) the category of model transformers of 𝑇 equipped with an updater
and whose morphisms ⟨𝑀, 𝑢⟩ → ⟨𝑁, 𝑣⟩ are morphisms 𝜎 : 𝑀→ 𝑁 that are compatible
with the updaters: 𝑣 = 𝜎 · 𝑢 : Id→ 𝑁 .

8 Constructions of Model Transformers

8∗1. The definition of model transformers is just a mathematical formulation of semantic
modularity, so in this section we will have a look at some concrete examples and general
constructions of model transformers. Each subsection below discusses a construction and is
basically independent of each other:

• initial model transformers (Section 8.1),
• initial model transformers with an updater (Section 8.2),
• free model transformers (Section 8.3),
• modular models from monoids transformers (Section 8.4),
• limits and colimits of model transformers (Section 8.5),
• modular models in symmetric monoidal categories (Section 8.7).

8.1 Initial Model Transformer

8.1∗1. We begin with the initial model transformer. Let 𝑃 : A →T be a fibration and
𝑃′ : A ′→T ′ be a fibration with a cleavage 𝜅 such that for every object Σ ∈T ′, the fiber
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category A ′
Σ

has a chosen initial object 𝜇Σ. Then for every functor 𝑇 : T →T ′, we define
a functor 0𝑇 : A →A ′ such that

• for every object 𝐴 ∈A , 0𝑇 𝐴 := 𝜇(𝑇𝑃𝐴),
• for every morphism 𝑓 : 𝐴→ 𝐵 ∈A , 0𝑇 𝑓 := 𝜅(𝜇(𝑇𝑃𝐵), 𝑇𝑃 𝑓 ) · 𝑣, where the mor-

phism 𝑣 : 𝜇(𝑇𝑃𝐴) → 𝑋 is the unique morphism out of the initial object 𝜇(𝑇𝑃𝐴) of
the fiber category A ′

𝑇𝑃𝐴
:

𝜇(𝑇𝑃𝐴)

𝐴 𝐵 𝑋 𝜇(𝑇𝑃𝐵)

𝑃𝐴 𝑃𝐵 𝑇𝑃𝐴 𝑇𝑃𝐵

𝑣

𝑓 𝜅 (𝜇 (𝑇𝑃𝐵) ,𝑇𝑃 𝑓 )

𝑃 𝑓 𝑇𝑃 𝑓

8.1∗2 Theorem. In the situation of 8.1∗1, the functor 0𝑇 : A →A ′ is a model transformer
of 𝑇 : T →T ′ and is initial in the category Motr(𝑇).

A A ′

T T ′

0𝑇

𝑃 𝑃′

𝑇

Moreover, when the cleavage 𝜅 of 𝑃′ preserves the chosen initial objects up to isomorphism
(resp. strictly), i.e. for all 𝑓 : Γ→ Σ ∈T ′, the domain of 𝜅(𝜇Σ, 𝑓 ) is initial in A ′

Γ
(resp.

exactly 𝜇Γ), 0𝑇 is a strong (resp. strict) model transformer.

Proof. The functor 0𝑇 satisfies 𝑃′ ◦ 0𝑇 =𝑇 ◦ 𝑃 by construction, so it is a model transformer
by definition (Definition 7.2∗8). Given any 𝐻 : A →A ′ such that 𝑃′ ◦ 𝐻 =𝑇 ◦ 𝑃, for every
𝐴 ∈A , 𝐻𝐴 and 0𝑇 𝐴 are both in the fibre category A ′

𝑇𝑃𝐴
, so by the initiality of 0𝑇 𝐴, there

is a unique vertical morphism 𝑢𝐴 : 0𝑇 𝐴→ 𝐻𝐴. To show that 𝑢𝐴 is natural, consider every
𝑓 : 𝐴→ 𝐵 and the morphism 𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) :𝑌→ 𝐻𝐵, we have the following situation

0𝑇 𝐴 = 𝜇(𝑇𝑃𝐴) 𝑋 𝜇(𝑇𝑃𝐵) = 0𝑇𝐵

𝐻𝐴 𝑌 𝐻𝐵

𝑇𝑃𝐴 𝑇𝑃𝐵

𝑣

𝑢𝐴

𝜅 (0𝑇𝐵,𝑇𝑃 𝑓 )

ℎ 𝑢𝐵

𝑘

𝐻 𝑓𝑃

𝜅 (𝐻𝐵,𝑇𝑃 𝑓 )

𝑃′

𝑓

where 𝑣 : 0𝑇 𝐴→ 𝑋 is the unique vertical morphism from 𝜇(𝑇𝑃𝐴) to 𝑋 , and ℎ : 𝑋→𝑌

is the unique vertical morphism making the upper-right square commute, obtained from
the cartesianess of 𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) :𝑌→ 𝐻𝐵. Similarly, 𝑘 is the unique vertical morphism
satisfying 𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) · 𝑘 = 𝐻 𝑓 . Note that 0𝑇 𝑓 is exactly the upper path 𝜅(0𝑇𝐵, 𝑇𝑃 𝑓 ) · 𝑣,
and the upper-left square commutes by the initiality of 0𝑇 𝐴. Hence we have the commutativity
of the large rectangle, which is the naturality of 𝑢 : 0𝑇→ 𝐻. This concludes the proof of the
initiality of the model transformer 0𝑇 in Motr(𝑇).
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For the second part of the theorem, if the cleavage 𝜅 preserves initial algebras up to
isomorphism, the object 𝑋 in the diagram above is also initial among A ′

𝑇𝑃𝐴
, so the morphism

𝑣 : 0𝑇 𝐴→ 𝑋 is a vertical isomorphism, and 0𝑇 𝑓 = 𝜅(0𝑇𝐵, 𝑇𝑃 𝑓 ) · 𝑣 is also cartesian. The
case for splitting fibrations is similar. □

8.1∗3 Example. Let F be an operation family of monoids such that ¥Σ-Alg has chosen
initial algebras for all ¥Σ ∈ F . Applying the construction of initial model transformers to the
situation of 7.1∗15, where 𝑇 = − + ¥Ψ for some ¥Ψ ∈ F , the model transformer 0𝑇 then maps
every ⟨ ¥Σ, 𝐴, 𝛼⟩ to the initial algebra of ¥Σ + ¥Ψ, ignoring the ‘existing model’ ⟨𝐴, 𝛼⟩ of the
‘existing syntax’ ¥Σ completely. Therefore the initial model transformer does not have an
updater (Definition 7.1∗21) in general.

8.2 Initial Updatable Model Transformers

8.2∗1. Instead of completely ignoring the existing model, we can alternatively consider
the free model of the new syntax over the existing model. As a special case, let F be an
operation family closed under coproducts, for every ¥Σ, ¥Ψ ∈ F , Theorem 3.2∗14 provides a
sufficient condition for the forgetful functor𝑈 : ( ¥Σ + ¥Ψ)-Alg→ ¥Σ-Alg to have a left adjoint
𝐹 : ¥Σ-Alg→ ( ¥Σ + ¥Ψ)-Alg, the idea is to define a model transformer of ¥Ψ ∈ F by sending
every ⟨ ¥Σ, 𝐴, 𝛼⟩ ∈ F -Alg to 𝐹⟨𝐴, 𝛼⟩. Moreover, the unit of the adjunction 𝐹 ⊣𝑈 defines an
updater. The universal property of the obtained model transformer is that it is the initial one
in the category of model transformers with an updater (7.2∗9), so we will call it the initial
updatable model transformer for short.

8.2∗2 Theorem. Let 𝑃 : A →T be a fibration with a cleavage such that for every mor-
phism 𝑡 : Γ→ Σ in T , there is an adjunction 𝑡! ⊣ 𝑡∗ : AΣ→AΓ. Let ⟨𝑇, 𝜂⟩ be a pointed
endofunctor on T . The category of Motr𝑢 (𝑇) of model transformers of 𝑇 with an updater
as defined in 7.2∗9 has an initial object.

Proof. We define a model transformer 0𝑢
𝑇

: A →A as follows. For every object 𝐴 ∈A ,
we have a functor 𝜂𝑃𝐴! : A𝑃𝐴→A𝑇𝑃𝐴 left adjoint to 𝜂∗

𝑃𝐴
: A𝑇𝑃𝐴→A𝑃𝐴, and we define

0𝑢
𝑇
𝐴 := 𝜂𝑃𝐴! 𝐴. For every 𝑓 : 𝐴→ 𝐵 ∈A , let 𝑛𝐵 : 𝐵→ 𝜂∗

𝑃𝐵
𝜂𝑃𝐵! 𝐵 be the unit of the adjunction

𝜂𝑃𝐵! ⊣ 𝜂∗
𝑃𝐵

. Since 𝑛𝐵 is a morphism in A𝑃𝐵, it is vertical: 𝑃𝑛𝐵 = id𝑃𝐵, and 𝑃(𝑛𝐵 · 𝑓 ) = 𝑃 𝑓 .
Therefore there is a unique ℎ : 𝐴→ (𝑃 𝑓 )∗𝜂∗

𝑃𝐵
𝜂𝑃𝐵! 𝐵 making the upper square commute:

𝐴 𝐵

0𝑢
𝑇
𝐴 = 𝜂𝑃𝐴! 𝐴

(𝑃 𝑓 )∗𝜂∗
𝑃𝐵
𝜂𝑃𝐵

! 𝐵
�

𝜂∗
𝑃𝐴
(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵

! 𝐵
𝜂∗
𝑃𝐵
𝜂𝑃𝐵! 𝐵

(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵! 𝐵 𝜂𝑃𝐵! 𝐵 = 0𝑢
𝑇
𝐵

𝑃𝐴 𝑃𝐵

𝑇𝑃𝐴 𝑇𝑃𝐵

𝑓

ℎ 𝑛𝐵

𝑃 𝑓

𝜂𝑃𝐴

𝜂𝑃𝐵

𝑇𝑃 𝑓

𝑔 (8.1)
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The unlabelled morphisms are the evident cartesian morphisms from the cleavage 𝜅.
By the naturality of 𝜂 : Id→𝑇 , we have the commutativity of the bottom square in T :
𝜂𝑃𝐵 · 𝑃 𝑓 =𝑇𝑃 𝑓 · 𝜂𝑃𝐴. Reindexing is pseudofunctorial, so we have

(𝑃 𝑓 )∗𝜂∗𝑃𝐵𝜂𝑃𝐵! 𝐵 � 𝜂∗𝑃𝐴(𝑇𝑃 𝑓 )
∗𝜂𝑃𝐵! 𝐵.

Hence the morphism ℎ determines a morphism 𝐴→ 𝜂∗
𝑃𝐴
(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵! 𝐵, which by the

adjunction 𝜂𝑃𝐴! ⊣ 𝜂∗
𝑃𝐴

, determines a vertical morphism

𝑔 : 0𝑢𝑇 𝐴 = 𝜂𝑃𝐴! 𝐴→ (𝑇𝑃 𝑓 )∗𝜂𝑃𝐵! 𝐵.

By composing 𝑔 with 𝜅(0𝑢
𝑇
𝐵, 𝑇𝑃 𝑓 ) : (𝑇𝑃 𝑓 )∗𝜂𝑃𝐵! 𝐵→ 0𝑢

𝑇
𝐵, we obtain a morphism 0𝑢

𝑇
𝐴→

0𝑢
𝑇
𝐵, which is our definition of the action of 0𝑢

𝑇
the morphism 𝑓 : 𝐴→ 𝐵. We omit the

checking of the functoriality of 0𝑢
𝑇

: A →A here.
The functor 0𝑢

𝑇
by construction is a lifting of 𝑇 : T →T along the fibration 𝑃 : A →T .

It has an updater 𝑢 : Id→ 0𝑢
𝑇

given by

𝑢𝐵 := 𝜅(𝜂𝑃𝐵, 𝜂𝑃𝐵! 𝐵) · 𝑛𝐵 : 𝐵→ 𝜂𝑃𝐵! 𝐵 = 0𝑢𝑇𝐵

for all 𝐵 ∈A as in the diagram (8.1) above. To see the naturality of 𝑢, for all 𝑓 : 𝐴→ 𝐵, the two
morphisms 𝑢𝐵 · 𝑓 and 0𝑢

𝑇
𝑓 · 𝑢𝐴 are over the same morphism in T , i.e. 𝜂𝑃𝐵 · 𝑃 𝑓 =𝑇𝑃 𝑓 · 𝜂𝑃𝐴,

so it is sufficient to show that their induced vertical morphisms in A𝑃𝐴 are equal. It can be
calculated that the one for 𝑢𝐵 · 𝑓 is ℎ as in (8.1) and the one for 0𝑢

𝑇
𝑓 · 𝑢𝐴 is

(𝜂∗𝑃𝐴𝑔) · 𝑛𝐴 = 𝜂
∗
𝑃𝐴(𝑒𝐴 · 𝜂

𝑃𝐴
! ℎ) · 𝑛𝐴 (8.2)

where 𝑒𝐴 : 𝜂𝑃𝐴! 𝜂∗
𝑃𝐴
𝐴→ 𝐴 is the counit of the adjunction 𝜂𝑃𝐴! ⊣ 𝜂∗

𝑃𝐴
. Using naturality and

triangle identity of the unit 𝑛 and counit 𝑒 of the adjunction 𝜂𝑃𝐴! ⊣ 𝜂∗
𝑃𝐴

, the morphism (8.2)
can be shown to be exactly ℎ.

As for the initiality of ⟨0𝑢
𝑇
, 𝑢⟩ in Motr𝑢 (𝑇), for every ⟨𝑀, 𝑣⟩ ∈Motr𝑢 (𝑇) and 𝐵 ∈A ,

𝑣𝐵 : 𝐵→𝑀𝐵 is over 𝜂𝑃𝐵 by the definition of updaters. Hence there is a vertical morphism
𝑤 : 𝐵→ 𝜂𝑃𝐵! 𝑀𝐵 such that 𝑣𝐵 = 𝜅(𝜂𝑃𝐵, 𝑀𝐵) · 𝑤. By the universal property of 𝑛𝐵 : 𝐵→
𝜂∗
𝑃𝐵
𝜂𝑃𝐵! 𝐵, there is a unique morphism 𝜎𝐵 : 𝜂𝑃𝐵! 𝐵 = 0𝑢

𝑇
𝐵→𝑀𝐵 such that 𝜂∗

𝑃𝐵
𝜎𝐵 · 𝑛𝐵 = 𝑤:

𝐵 𝜂∗
𝑃𝐵
𝜂𝑃𝐵! 𝐵

𝜂∗
𝑃𝐵
𝑀𝐵

𝑛𝐵

𝑤 𝜂∗
𝑃𝐵
𝜎𝐵

We omit the checking of the naturality of𝜎 here (it is similarly to the proof of Theorem 8.1∗2).
Since every 𝜏 : ⟨0𝑢

𝑇
, 𝑢⟩ → ⟨𝑀, 𝑣⟩ is a vertical natural transformation 𝜏 : 0𝑢

𝑇
→𝑀 satisfying

𝜏𝐵 · 𝑢𝐵 = 𝑣𝐵, it must satisfy that 𝜂∗
𝑃𝐵
𝜏𝐵 · 𝑛𝐵 = 𝑤. Therefore, 𝜎 is the unique morphism

⟨0𝑢
𝑇
, 𝑢⟩ → ⟨𝑀, 𝑣⟩ in Motr𝑢 (𝑇). □

8.2∗3 Example. Let C be a category and A be a freeness condition for C

(Definition 3.1∗21) that satisfies the assumption of Theorem 3.2∗14 (for example, pre-
serving colimits of 𝛼-chains for some limit ordinal 𝛼 and C being cocomplete). The
fibration 𝑃 : AlgA (C ) → EqsA (C ) then satisfies the condition of Theorem 8.2∗2, so
the pointed functor (− + ¤Ψ) : EqsA (C ) → EqsA (C ) for every ¤Ψ ∈ EqsA (C ) then has an
initial updatable model transformer.
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8.2∗4 Example. Let E be a cocomplete monoidal category such that the monoidal
product □ : E × E → E preserves colimits of 𝛼-chains for some limit ordinal 𝛼. Let
F ⊆Mon/Eqs(E ) be the operation family containing all equational systems whose signa-
ture and context colimits of 𝛼-chains for some limit ordinal 𝛼. By Theorem 3.2∗14, for
every morphism 𝑇 : ¥Σ→ ¥Ψ ∈ F , the corresponding functor 𝑇 : ¥Ψ-Alg→ ¥Σ-Alg has a left
adjoint. Therefore the fibration 𝑃 : F -Alg→F satisfies the condition of Theorem 8.2∗2,
and for every ¥Ψ ∈ F , the functor − + ¥Ψ : F →F has an initial updater model transformer
0𝑢−+ ¥Ψ, which maps every ¥Σ-algebra 𝐴 to the relative free ( ¥Σ + ¥Ψ)-algebra over 𝐴.

8.2∗5 Example. For a concrete example, let us instantiate E in the previous example to be
⟨SetFin, •, 𝑉⟩ from 2.2∗2. As we mentioned in 6∗21, the syntax of untyped 𝜆-calculus can be
presented as an equational system Λ= Σ⟨𝑂,𝑎⟩-Mon for the binding signature𝑂 = {app, abs}
with 𝑎(abs) = ⟨1⟩ and 𝑎(app) = ⟨0, 0⟩. Models of Λ can be obtained from reflexive objects
𝑈 �𝑈𝑈 in any cartesian closed category 𝐶: every𝑈 induces a functor �̄� : Fin→ Set with
𝑛 ↦→C (𝑈𝑛, 𝑈). The functor �̄� has a monoid structure [𝜂𝑈 , 𝜇𝑈] (similar to that of the
continuation monad), and it is a model of Λ (Hyland, 2017):

abs𝑈 : �̄�𝑉𝑛 � C (𝑈𝑛+1, 𝑈) � C (𝑈𝑛, 𝑈𝑈) � C (𝑈𝑛, 𝑈) � �̄�𝑛
app𝑈 : (�̄� × �̄�)𝑛 � C (𝑈𝑛, 𝑈 ×𝑈) � C (𝑈𝑛, 𝑈𝑈 ×𝑈) evalUU ·−−−−−−−−→C (𝑈𝑛, 𝑈) � �̄�𝑛

Now consider the theory St𝑆 of mutable state (Example 5∗9) for some finite set 𝑆. Its initial
updatable model transformer maps the Λ-model on �̄� to a (Λ +Mon St𝑆)-model whose
carrier is the initial algebra

𝜇𝑋. �̄� + 𝑋 • 𝑋 +𝑉 + 𝑋𝑉 + 𝑋 × 𝑋 +∏𝑆 𝑋 +
∐
𝑆 𝑋 : Fin→ Set

quotiented by equations of Λ and St𝑆 and equations saying that Λ-operations of the initial
algebra acting on �̄� are the same as the model [𝜂𝑈 , 𝜇𝑈 , abs𝑈 , app𝑈] of �̄�.

8.2∗6. Left adjoints to reindexing functors of a fibration are used for modelling Σ-types
and ∃-quantification in categorical logic, where the fibration models types or predicates over
a type, and reindexing models substitution. In this context, reindexing functors typically
preserve the left adjoints suitably, called satisfying the Beck-Chevalley condition (Jacobs,
1999, Definition 1.9.4), reflecting the fact substitution commutes with Σ and ∃. Dually, in
this context reindexing functors usually have right adjoints, which model Π or ∀.

However, for fibrations of algebras and theories, the reindexing functors typically do
not have right adjoints (the translation functors between categories of algebras almost
never preserve colimits), and reindexing functors typically do not preserve the left adjoints
(relative free algebras), so initial updatable model transformers typically are not strong or
strict. For example, consider E = ⟨Set, ×, 1⟩. We have the following theories in the family
Mon/EqsA (E ): Mon with the identity translation; Grp with the inclusion translation
𝑇 : Mon→Grp (Example 3.2∗4); and the theory BLat of bounded lattices with the
translation that maps monoid multiplication to lattice join ∨, monoid identity to lattice
bottom ⊥. The following diagram in CAT does not commute:

Mon-Alg Grp-Alg

(Mon +BLat)-Alg (Grp +BLat)-Alg

𝑇

FGrpFMon

𝑇+BLat
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The theory Mon +BLat, bounded lattices whose join ∨ and⊥ form a monoid, is isomorphic
to BLat since ⟨∨,⊥⟩ of a lattice is already a monoid, so FMon (𝑇𝐺) for every group 𝐺 is the
free bounded lattice over𝐺 as a monoid. On the other hand, the theory Grp +BLat, bounded
lattices whose ⟨∨,⊥⟩ form a group, has only trivial models since for every element 𝑥, ⊥ =

𝑥 ∨ 𝑥−1, and by the idempotent law of join, ⊥ = (𝑥 ∨ 𝑥) ∨ 𝑥−1 = 𝑥 ∨ (𝑥 ∨ 𝑥−1) = 𝑥 ∨⊥ = 𝑥.
Therefore (𝑇 +BLat) (FGrp𝐺) is always the trivial bounded lattice for every group 𝐺.

8.3 Free Model Transformers over Ordinary Models

8.3∗1. Consider model transformers of − + ¥Ψ : F →F on an operation family F : for every
¥Σ ∈ F and every 𝐴 ∈ ¥Σ-Alg, the initial model transformer 0 ¥Ψ just ignores the algebra 𝐴 and
freely generates a model of ¥Σ + ¥Ψ, so it is not a practically interesting model transformer. In
comparison, the initial updatable model transformer 0𝑢¥Ψ takes into account of 𝐴 and freely
generates a model of ¥Σ + ¥Ψ that has a ¥Σ-homomorphism from 𝐴.

The natural next step is then freely generating a model of ¥Σ + ¥Ψ that has both a ¥Σ-
homomorphism from 𝐴 and a ¥Ψ-homomorphism from some fixed 𝐵 ∈ ¥Ψ-Alg, using the
construction in Example 3.2∗18. In this way, we can turn an ordinary model 𝐵 of ¥Ψ to a
model transformer of ¥Ψ, and it is also going to be the free way.

8.3∗2. In this subsection, we fix a fibration 𝑃 : A →T with a cleavage such that T

has finite coproducts, and we fix a functor ⊕ : T ×T →T equipped with a natural
transformation 𝜏 : +→ ⊕. For all Σ, Γ ∈T , we define

𝜅1 := (Σ 𝜄1−→ Σ + Γ 𝜏−→ Σ ⊕ Γ) 𝜅2 := (Γ 𝜄2−→ Σ + Γ 𝜏−→ Σ ⊕ Γ)

The natural transformation 𝜅1 : −→− ⊕ Γ makes − ⊕ Γ a pointed functor, enabling us to
talk about updaters (7.2∗9) of the functor − ⊕ Γ.

As usual, the category T is expected to be a category of some notion of algebraic theories
and each fiber category AΣ is the category of models of Σ ∈T . For example, 𝑃 can be
the fibration F -Alg→F for an operation family and ⊕ can be just the coproduct or the
commutative combination (7.2∗2).

8.3∗3 Definition. When the fiber category A0 of the initial object 0 ∈T also has an initial
object 𝐼, for every Γ ∈A we define a functor U⊕Γ : Motr(− ⊕ Γ) →AΓ:

U⊕Γ 𝑀 := 𝜅∗2𝑀𝐼

where 𝜅∗2 is the reindexing functor A0⊕Γ→AΓ. The functor U⊕Γ is intuitively the forgetful
functor from model transformers of (⊕-combination with) Γ to ordinary models of Γ.
Composing U⊕Γ with the functor that forgets updaters (7.2∗9), we also have a functor
Motr𝑢 (− ⊕ Γ) →AΓ that we shall also denote by U⊕Γ.

8.3∗4 Theorem. Assume that all reindexing functors !∗ : AΓ→A0 to the fiber category
over the initial object 0 ∈T is monadic and every fiber category AΣ is finitely cocomplete.
The functor U⊕Γ : Motr𝑢 (− ⊕ Γ) →AΓ for every Γ ∈T defined in Definition 8.3∗3 has a
left adjoint F⊕Γ : AΓ→Motr𝑢 (− ⊕ Γ).

Proof. Every fibration is equivalent to a split one (Jacobs, 1999, Corollary 5.2.5), and
the statement is stable under equivalence of fibrations, so we can assume without loss of
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generality that 𝑃 is a split fibration. By Mac Lane (1998, §IV.1 Theorem 2), it is sufficient to
construct for every ⟨𝐵, 𝛽⟩ ∈AΓ a model transformer with an updater 𝑀𝐵 ∈Motr𝑢 (− ⊕ Γ)
and a universal arrow 𝑒 : ⟨𝐵, 𝛽⟩ →U⊕Γ𝑀𝐵.

First we observe that for every Σ ∈T , we have the following functors:

AΣ ×AΓ AΣ⊕Γ

A0 ×A0 A0

!∗
Σ
×!∗

Γ

⟨𝜅∗1 ,𝜅
∗
2 ⟩

!∗
Σ⊕Γ

Δ

This diagram commutes strictly since 𝜅1 · !Σ = !Σ⊕Γ = 𝜅2 · !Γ : 0→ Σ ⊕ Γ, and we have
assumed that 𝑃 is a split fibration. By the assumption that each fiber category is finitely
cocomplete, the category A0 has binary coproducts, so we have an adjunction + ⊣ Δ : A0→
A0 ×A0, and moreover the fiber category AΣ⊕Γ has coequalisers. By assumption !∗Σ, !∗Γ,
and !∗Σ⊕Γ are monadic functors. The product of monadic functors is also monadic, so !∗Σ × !∗Γ
is monadic. By Borceux (1994, Theorem 4.5.6) (c.f. our discussion in 3.2∗16), the functor
⟨𝜅∗1, 𝜅

∗
2⟩ on the top of the diagram has a left adjoint 𝐹Σ⊕Γ : AΣ ×AΓ→AΣ⊕Γ.

Now we define 𝑀𝐵 via an oplax transformation by Lemma 7.1∗17:

𝑀𝐵 : A−→A−⊕Γ : T op→CAT.

We define the component 𝑀𝐵
Σ

at every Σ ∈T to be 𝐹Σ⊕Γ⟨−, 𝐵⟩ : AΣ→AΣ⊕Γ. For every
morphism 𝑡 : Σ→Φ, we have the following functors:

AΦ ×AΓ AΦ⊕Γ

AΣ ×AΓ AΣ⊕Γ

𝐹Φ⊕Γ

𝑡∗×id

⟨𝜅∗1 ,𝜅
∗
2 ⟩

(𝑡⊕id)∗

𝐹Σ⊕Γ

⟨𝜅∗1 ,𝜅
∗
2 ⟩

⊣
⊣

By the naturality of 𝜅, we have strict commutativity:

id : (𝑡∗ × id) ◦ ⟨𝜅∗1, 𝜅
∗
2⟩ = ⟨𝑡

∗𝜅∗1, 𝜅
∗
2⟩ = ⟨𝜅

∗
1, 𝜅
∗
2⟩ ◦ (𝑡 ⊕ id)∗,

which determines a canonical natural transformation

𝜏 : 𝐹Σ⊕Γ ◦ (𝑡∗ × id) → (𝑡 ⊕ id)∗ ◦ 𝐹Φ⊕Γ
called the mate (nLab, 2024) or the conjugate of id (Mac Lane, 1998, §IX.7). Namely, 𝜏 is
the transpose along the adjunction 𝐹Σ⊕Γ ⊣ ⟨𝜅∗1, 𝜅

∗
2⟩ of

(𝑡∗ × id)
𝜂
−→ ⟨𝜅∗1, 𝜅

∗
2⟩ ◦ 𝐹Σ⊕Γ ◦ (𝑡

∗ × id) id−→ ⟨𝜅∗1, 𝜅
∗
2⟩ ◦ (𝑡 ⊕ id)∗ ◦ 𝐹Φ⊕Γ .

We define the 2-cell 𝑀𝐵
𝑡 := (𝜏 ◦ ⟨Id,K𝐵⟩) : 𝑀𝐵

Σ
◦ 𝑡∗→ (𝑡 ⊕ Γ)∗ ◦𝑀𝐵

Φ
.

Now we define an updater 𝑢 : Id→𝑀𝐵 for 𝑀𝐵. For every 𝐴 ∈A , letting Σ := 𝑃𝐴, we
define 𝑢𝐴 to be the composite

𝐴
𝜋1𝜂𝐴,𝐵−−−−−−→ 𝜅∗1𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅1−→𝑀𝐵𝐴

where 𝜂𝐴,𝐵 : ⟨𝐴, 𝐵⟩ → ⟨𝜅∗1, 𝜅
∗
2⟩(𝐹Σ⊕Γ⟨𝐴, 𝐵⟩) is the unit of the adjunction, 𝜅1 is the cartesian

morphism over 𝜅1. The naturality of 𝑢 is essentially a consequence of the naturality of 𝜂.
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We have defined a model transformer 𝑀𝐵 with an updater 𝑢 for every 𝐵 ∈AΓ, and
what remains is to define a universal arrow 𝑒 : 𝐵→U⊕Γ⟨𝑀𝐵, 𝑢⟩. By Definition 8.3∗3,
U⊕Γ⟨𝑀𝐵, 𝑢⟩ is 𝜅∗2 (𝐹0⊕Γ⟨𝐼, 𝐵⟩) ∈AΓ. Therefore we define 𝑒 : 𝐵→U⊕Γ⟨𝑀𝐵, 𝑢⟩ to be the
second projection of the unit

𝜂𝐼,𝐵 : ⟨𝐼, 𝐵⟩ → ⟨𝜅∗1, 𝜅
∗
2⟩(𝐹0⊕Γ⟨𝐼, 𝐵⟩).

To show the universality of 𝑒, given any model transformer ⟨𝑁, 𝑣⟩ ∈Motr𝑢 (− ⊕ Γ) with a
morphism 𝑓 : 𝐵→U⊕Γ⟨𝑁, 𝑣⟩ in AΓ, we need to show that there is a unique 𝜎 : ⟨𝑀𝐵, 𝑢⟩ →
⟨𝑁, 𝑣⟩ in Motr(− ⊕ Γ) such that (U⊕Γ𝜎) · 𝑒 = 𝑓 .

First of all, the codomain of 𝑓 is by definition 𝜅∗2 (𝑁𝐼), where 𝐼 is the initial object of A0.
It is not hard to see that the object 𝐼 is also the initial object of the total category A , so for
every 𝐴 ∈A , we have a morphism

𝑓𝐴 := ((𝜅∗2𝑁!) · 𝑓 ) : 𝐵→ 𝜅∗2𝑁𝐴.

Now recall that a morphism 𝜎 in Motr𝑢 (− ⊕ Γ) is a vertical natural transformation
𝑀𝐵→ 𝑁 that commutes with the updaters 𝑢 and 𝑣. For every 𝐴 ∈A , letting Σ := 𝑃𝐴,
the updater 𝑣 at 𝐴 is a morphism 𝑣𝐴 : 𝐴→ 𝜅∗1 (𝑁𝐴). Paired with 𝑓𝐴, we have a morphism
⟨𝑣𝐴, 𝑓𝐴⟩ : ⟨𝐴, 𝐵⟩ → ⟨𝜅∗1, 𝜅

∗
2⟩(𝑁𝐴), and we define 𝜎𝐴 : 𝑀𝐵𝐴 = 𝐹Σ⊕Γ⟨𝐴, 𝐵⟩ → 𝑁𝐴 to be the

transpose of ⟨𝑣𝐴, 𝑓𝐴⟩ along the adjunction 𝐹Σ⊕Γ ⊣ ⟨𝜅∗1, 𝜅
∗
2⟩. We omit the verification of

naturality here.
What remains is to show that 𝜎 defined above is the unique morphism ⟨𝑀𝐵, 𝑢⟩ → ⟨𝑁, 𝑣⟩

satisfying (U⊕Γ𝜎) · 𝑒 = 𝑓 . First of all, 𝜎 satisfies this equation since by definition U⊕Γ𝜎 =

𝜅∗2𝜎𝐼 and 𝜎𝐼 makes the following triangle commute

⟨𝐼, 𝐵⟩ ⟨𝜅∗1, 𝜅
∗
2⟩𝐹𝐼⊕Γ⟨𝐼, 𝐵⟩

⟨𝜅∗1, 𝜅
∗
2⟩𝑁𝐼

𝜂𝐼,𝐵

⟨𝑉𝐼 , 𝑓 𝐼 ⟩
⟨𝜅∗1 ,𝜅

∗
2 ⟩𝜎𝐼

in the category A0 ×AΓ. The second projection of this commutativity diagram is exactly
(U⊕Γ𝜎) · 𝑒 = 𝑓 . For the uniqueness of 𝜎, given another 𝜏 satisfying (U⊕𝜏𝜎) · 𝑒 = 𝑓 , for
every Σ ∈T and 𝐴 ∈AΣ, the naturality of 𝜏 for the unique morphism ! : 𝐼→ 𝐴 implies the
commutativity of the right trapezium below:

𝐵 𝜅∗2𝐹𝐼⊕Γ⟨𝐼, 𝐵⟩ 𝜅∗2𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅∗2𝑁𝐼

𝜅∗2𝑁𝐴

𝑒

𝑓

𝑓 𝐴

𝜅∗2𝑀
𝐵!

𝜅∗2 𝜏𝐼

𝜅∗2 𝜏𝐴

𝜅∗2𝑁 !

(8.3)
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Moreover, it can be shown that the following diagram in A ×A commutes by expanding
out the definition of the action of 𝑀𝐵 : A →A on morphisms:

⟨𝐼, 𝐵⟩ ⟨𝜅∗1, 𝜅
∗
2⟩𝐹0⊕Γ⟨𝐼, 𝐵⟩

⟨𝐴, 𝐵⟩ ⟨𝜅∗1, 𝜅
∗
2⟩𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜂𝐼,𝐵

⟨!,𝐵⟩ ⟨𝜅∗1 ,𝜅
∗
2 ⟩𝑀

𝐵!

𝜂𝐴,𝐵

Applying the second projection to this commutative diagram,

𝜋2𝜂𝐴,𝐵 = 𝜋2 (𝜂𝐴,𝐵 · ⟨!, 𝐵⟩) = 𝜋2 (⟨𝜅∗1, 𝜅
∗
2⟩𝑀

𝐵! · 𝜂𝐼,𝐵) = 𝜅∗2𝑀
𝐵! · 𝜋2𝜂𝐼,𝐵.

Recall that 𝑒 is exactly 𝜋2𝜂𝐼,𝐵, so the top horizontal path of the diagram (8.3) is equal to
𝜋2𝜂𝐴,𝐵. Then the diagram (8.3) implies that 𝜅∗2𝜏𝐴 · 𝜋2𝜂𝐴,𝐵 = 𝑓 𝐴. This, together with the
fact 𝜏 is compatible with the updaters,

𝐴 𝜅∗1𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅∗1𝑁𝐴

𝑢𝐴

𝑣𝐴 𝜅∗1 𝜏𝐴

implies that 𝜏𝐼 is the transpose of ⟨𝑣𝐴, 𝑓𝐴⟩ along 𝐹Σ⊕Γ ⊣ ⟨𝜅∗1, 𝜅
∗
2⟩, so 𝜏𝐼 = 𝜎𝐼 . □

8.3∗5 Example. Let C be a cocomplete category and A be the freeness condition (3.1∗21)
containing all pairs of endofunctors that preserve colimits of 𝛼-chains for some limit ordinal
𝛼. By Theorem 3.1∗12 and Theorem 3.2∗14, the fibration 𝑃 : AlgA (C ) → EqsA (C ) of
algebras and equational systems in A then satisfies the assumptions of Theorem 8.3∗4.
For every ¤Ψ ∈ EqsA (C ), instantiating ⊕ to be + : EqsA (C ) × EqsA (C ) → EqsA (C ),
Theorem 8.3∗4 constructs a modular model F𝐵 of ¤Ψ from an ordinary model 𝐵 of ¤Ψ.

8.3∗6 Example. Similarly, let F and E be the operation family and monoidal category in
Example 8.2∗4. Theorem 8.3∗4 lets us construct modular models of theories of monoids
with operations from ordinary models.

In particular, if E = ⟨Endo𝜅 (C ), ◦, Id⟩ for some l𝜅p C , and ¥Ψ ∈ F be the theory of
monads with some scoped operations, then Theorem 8.3∗4 lets us construct a modular
model F𝐵 of ¥ΨF from a monad 𝐵 equipped with a ¥Ψ-operation. For any theory ¥Σ ∈ F
of monads with operations, every monad 𝐴 equipped with a ¥Σ-operation is sent by the
modular model F𝐵 to a new monad 𝐶 with monad morphisms 𝐴→𝐶 and 𝐵→𝐶 that are
respectively a ¥Σ-homomorphism and a ¥Ψ-homomorphism.

8.3∗7 Example. Let E be a monoidal category, F be the operation family Alg(E ) of
algebraic operations on E -monoids, and ¥Ψ ∈ F . If the fibration 𝑃 : F -Alg→F satisfies
the assumption of Theorem 8.3∗4, the free modular model 𝐹𝐵 of ¥Ψ over some 𝐵 ∈ ¥Ψ-Alg
has a simple characterisation – for every ¥Σ ∈Alg(E ) and 𝐴 ∈ ¥Σ-Alg, 𝐹𝐵 simply maps 𝐴 to
the coproduct of 𝐵 and 𝐴 treated as monoids in E . This is because an algebraic operation
𝑆 ◦𝑀→𝑀 on a monoid 𝑀 is equivalently a morphism 𝑆→𝑀 (Lemma 5∗13), so the
initial monoid with both ¥Σ and ¥Ψ operations together with a ¥Σ-homomorphism from 𝐴 and
a ¥Ψ-homomorphism from 𝐵 is the same thing as the initial monoid with monoid morphisms
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from 𝐴 and 𝐵, i.e. the coproduct of 𝐴 and 𝐵 as monoids:

𝑆 𝐴 𝐵 𝑆′

𝑀

8.4 Modular Models from Monoid Transformers

8.4∗1. The concept of modular models is directly inspired by Moggi’s monad transformers
and their generalisation, monoid transformers (Jaskelioff and Moggi, 2010), to monoids in
monoidal categories. A monoid transformer maps every monoid 𝑀 in a monoidal category
E to a monoid 𝑇𝑀 together with a monoid morphism 𝑖 : 𝑀→𝑇𝑀. The central question
about monoid transformers is:

If there is an operation on the monoid 𝑀, can this operation be transformed to an
operation on 𝑇𝑀 too?

The standard terminology here is to lift the operation to 𝑇𝑀 rather than to transform but
we use the latter to avoid the confusion with liftings along fibrations.

This question was first formulated by Moggi (1989, §4.1), accompanied by a basic
result (Moggi, 1989, Proposition 4.1.3): operations of the form 𝛼 : 𝐴→𝑀 for some fixed
endofunctor 𝐴 can always be transformed to 𝐴→𝑇𝑀, namely 𝑖 · 𝛼 : 𝐴→𝑇𝑀. About 20
years later, Jaskelioff and Moggi (2010) gave a new result: for functorial monoid transformers
𝑇 on a left-closed monoidal category, every operation on 𝑀 of the form 𝐴□𝑀→𝑀 can
be lifted to 𝐴□𝑇𝑀→𝑇𝑀 .

What we have done in this paper is bringing equations on operations into the view and
formulating transformations of operations as model transformers. In this subsection, we put
the old wine by Moggi (1989) and Jaskelioff and Moggi (2010) in our new bottle.

8.4∗2. In this subsection, we fix a monoidal category E with finite coproducts that is right-
distributive: (∐𝑖∈𝑆 𝐴𝑖) □ 𝐵 �

∐
𝑖∈𝑆 (𝐴𝑖 □ 𝐵), which ensures that Alg(E ) and Scp(E )

from Section 6 are closed under coproducts.

8.4∗3 Theorem. Let F be Alg(E ) and ¥Ψ = ⟨ ¤Ψ, 𝑇Ψ⟩ ∈ F . Every functor 𝐻 : Mon(E ) →
¤Ψ-Alg together with a natural transformation 𝜏 : Id→𝑇Ψ ◦ 𝐻

¤Ψ-Alg

Mon(E ) Mon(E )

𝐻 𝑇Ψ

Id

𝜏

defines a strict modular model 𝑀 of ¤Ψ ∈ F making the following commute:

F -Alg (F + ¥Ψ)-Alg

Mon(E ) ¤Ψ-Alg

�̄�

𝐻

(8.4)
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where �̄� : F -Alg→ (F + ¤Ψ)-Alg is the functor corresponding to 𝑀 by items 1 and 2 of
Theorem 7.1∗18, and the unlabelled vertical arrows are the evident projection functors.
Moreover, 𝑀 has an updater 𝑢⟨ ¤Σ,𝑇Σ ,𝐴,𝛼⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼⟩ .

Proof. For every object ⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩ of F -Alg with

¤Σ = (𝑆 ◦ −)-Mon ↰ (K𝐺 ⊢ 𝐿 = 𝑅),

we define 𝑀 : F -Alg→F -Alg to send it to an ( ¤Σ + ¤Ψ)-algebra with the same carrier of
𝐻⟨𝐴, 𝑇Σ𝛼⟩ ∈ ¤Ψ-Alg. Since 𝐻⟨𝐴, 𝑇Σ𝛼⟩ already has a ¤Ψ-algebra, we only need to equip
it with an (𝑆 ◦ −)-operation. This can be done by the observation (Jaskelioff and Moggi,
2010, Theorem 3.4) that algebraic operations can be transformed along monoid morphisms.
Namely, the transformed operation is

𝛼♯ = J𝑠 : 𝑆, ℎ : 𝐻𝐴 ⊢ 𝜇𝐻 (𝜏𝐴(𝛼𝑆 (𝑠, 𝜂𝐴)), ℎ) : 𝐻𝐴K (8.5)

where 𝐻𝐴 and 𝜏𝐴 stand for the carrier of 𝐻⟨𝐴, 𝑇Σ𝛼⟩ and 𝜏⟨𝐴,𝑇Σ𝛼⟩ : 𝐴→ 𝐻𝐴 respectively,
and 𝛼𝑆 : 𝑆 ◦ 𝐴→ 𝐴 is the component of 𝛼 for the algebraic operation on 𝐴.

We also need to show that the operation (8.5) satisfies the equation K𝐺 ⊢ 𝐿 = 𝑅. This
follows from the functoriality of

𝐿, 𝑅 : ((𝑆 ◦ −) + ΣMon)-Alg→𝐺-Alg,

which implies that the following diagrams commute

𝐺 𝐴

𝐻𝐴

𝐿⟨𝐴, 𝛼⟩

𝜏𝐴
𝐿⟨𝐻𝐴, 𝛼

♯ ⟩
and

𝐺 𝐴

𝐻𝐴

𝑅⟨𝐴, 𝛼⟩

𝜏𝐴
𝑅⟨𝐻𝐴, 𝛼

♯ ⟩

If 𝛼 satisfies the equation 𝐿 = 𝑅 (i.e. 𝐿⟨𝐴, 𝛼⟩ = 𝑅⟨𝐴, 𝛼⟩), so does 𝛼♯. It can be shown that
𝑀 is a strict modular model of ¤Ψ by the same argument for the special case of exception
monad transformers in Example 7.1∗8. □

8.4∗4. Example 7.1∗8 is exactly this theorem applied to the exception monad transformer.
The state monad transformer 𝐴 ↦→ (𝐴(𝑆 × −))𝑆 for a set 𝑆 with |𝑆 | < 𝜅 together with its
model for the theory St𝑆 of mutable state (Example 5∗9) yields a modular model of St𝑆
in Alg(Endo𝜅 (C )). The list monad transformer 𝐴 ↦→ 𝜇𝑋.𝐴(1 + (− × 𝑋)) (Jaskelioff and
Moggi, 2010) with its model for explicit nondeterminism also gives rise to a modular model.

8.4∗5. Now we move on to scoped operations. First we recall that Scp𝑙 (E ) from 6∗19 is
the operation family of scoped operations on monoids and transliterations. Let us again
start with a concrete example.

8.4∗6 Example. The theory Ec of exception throwing and catching in Example 5∗15 is
in the family Scp𝑙 (E ) for E = ⟨Endo𝜅 (Set), ◦, Id⟩. A strict modular model for it can be
constructed by extending the modular model of throwing in Example 7.1∗8 with (1) a model
of catching on 𝐶𝐴 = 𝐴 ◦ (1 + Id) and (2) a way to transform scoped operations on 𝐴 to 𝐶𝐴.

For (1), we define catch : (𝐶𝐴 ×𝐶𝐴) ◦𝐶𝐴→𝐶𝐴 by catch := 𝜇𝐶 · ((𝑐 · 𝑠) ◦𝐶𝐴) where
𝜇𝐶 :𝐶𝐴 ◦𝐶𝐴→𝐶𝐴 is the multiplication on 𝐶𝐴 defined in Example 7.1∗8, and 𝑠 is the
following morphism in which the unlabelled arrow is the canonical strength for the functor
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𝐴 ∈ Endo𝜅 (Set):

𝑠 :𝐶𝐴 ×𝐶𝐴 = (𝐴 ◦ (1 + Id)) ×𝐶𝐴→ 𝐴 ◦ ((1 + Id) ×𝐶𝐴) � 𝐴 ◦ (𝐶𝐴 + Id ×𝐶𝐴),

and lastly the morphism 𝑐 : 𝐴 ◦ (𝐶𝐴 + Id ×𝐶𝐴) →𝐶𝐴 is denoted by

𝑎 : 𝐴, 𝑏 : (𝐶𝐴 + Id ×𝐶𝐴) ⊢ 𝜇𝐶
(
(𝑎, 𝜄2 ∗),

case 𝑏 of {𝜄1 ℎ ↦→ ℎ; 𝜄2 ih ↦→ 𝜂𝐶 (𝜋1 ih)}
)

:𝐶𝐴

The operational idea for this term is that the computation 𝑎 is first executed and 𝑏 is its
result. The case 𝑏 = 𝜄1 ℎ means that an exception is thrown and ℎ is the exception handler, so
ℎ is executed in this case. On the other hand, the case 𝑏 = 𝜄2 ih means a normal termination,
and the handler is ignored by 𝜋1 ih.

For (2), to transform a scoped operation 𝛼 : 𝑆 ◦ 𝐴 ◦ 𝐴→ 𝐴 on 𝐴 to 𝐶𝐴, we define
𝛼♯ : 𝑆 ◦𝐶𝐴 ◦𝐶𝐴→𝐶𝐴 by the term

𝑠 : 𝑆, 𝑎 : 𝐴, 𝑚 : 1 + Id, 𝑘 :𝐶𝐴 ⊢ 𝜇𝐶 ((𝛼(𝑠, 𝑎, 𝜂𝐴), 𝑚), 𝑘) :𝐶𝐴.

The transformed operation 𝛼♯ satisfies any constant equation K𝐶 ⊢ 𝐿 = 𝑅 whenever 𝛼 does
by the same argument as in the proof of Theorem 8.4∗3.

8.4∗7. Theorem 8.4∗3 constructs modular models for algebraic operations from monoid
transformers. Jaskelioff and Moggi (2010) shows that this is also possible for scoped
operations, provided that the monoid transformer is functorial.

8.4∗8 Definition (Jaskelioff and Moggi (2010)). A functorial monoid transformer on a
monoidal category E consists of two functors ¤𝐹 : Mon(E ) →Mon(E ) and 𝐹 : E → E and
two natural transformations ¤𝜎 : Id→ ¤𝐹 and 𝜎 : Id→ 𝐹:

Mon(E ) Mon(E )

E E

Id

¤𝐹

UMon UMon

Id

𝐹

¤𝜎

𝜎

such that UMon ◦ ¤𝜎 = 𝜎 ◦UMon

8.4∗9. As shown by Jaskelioff and Moggi (2010), many monad transformers in programming
languages are functorial, including the exception monad transformer 𝑀 (𝐸 + −) for monads
𝑀 , the state monad transformer 𝑆⇒𝑀 (𝑆 × −), the writer monad transformer 𝑀 (𝑊 × −),
and the (generalised) resumption monad transformer 𝜇𝑋. 𝑀 (Σ𝑋 + −) (Cenciarelli and
Moggi, 1993). However, the seemingly functorial list transformer 𝐿𝑀 := 𝜇𝑋. 𝑀 (1 + (− ×
𝑋)) is in fact not functorial, because the associated natural transformation ¤𝜎 : 𝑀→ 𝐿𝑀

defined by 𝑎 : 𝑀 ⊢ (𝑎, 𝜄2 ⟨∗, (𝜂𝑀 , 𝜄1 ⟨⟩)⟩) : 𝑀 ◦ (1 + Id × 𝐿𝑀 ) refers to the unit 𝜂𝑀 of 𝑀,
which is not a part of the underlying functor of 𝑀 .

8.4∗10 Theorem. Assume that the monoidal category E is left-closed. Let ¥Ψ be some
⟨ ¤Ψ, 𝑇Ψ⟩ ∈ Scp𝑙 (E ). A functorial monoid transformer ⟨ ¤𝐹, 𝐹, ¤𝜎, 𝜎⟩ and a functor 𝐻 :
Mon(E ) → ¤Ψ-Alg such that ¤𝐹 =𝑇Ψ · 𝐻 induce a strict modular model 𝑀 of ¥Ψ ∈ Scp𝑙 (E )
with an updater 𝑢⟨ ¤Σ,𝑇Σ ,𝐴,𝛼⟩ = 𝜎⟨𝐴, 𝑇Σ𝛼⟩ .
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Proof sketch. Compared to Theorem 8.4∗3, what is new is how scoped operations 𝛼 :
𝑆□ 𝐴□ 𝐴→ 𝐴 on a monoid ⟨𝐴, 𝜂𝐴, 𝜇𝐴⟩ are transformed to 𝐹𝐴. Such a transformation
(not necessarily the unique one) is given by Jaskelioff and Moggi (2010), whose insight
is that that scoped operations on 𝐴 are the same as an algebraic operation on the monoid
𝐴/𝐴, which embed 𝐴 by Cayley’s theorem (Example 4.2∗4), and we already know how
to transform algebraic operations along monoid transformers. This is why we need (left)
closedness in the assumption. We briefly record the transformation below and refer the
reader to Jaskelioff and Moggi (2010, §5.1) for more details.

Firstly, recall that we have the Cayley embedding 𝑒 : 𝐴→ 𝐴/𝐴 and its retraction 𝑟 :
𝐴/𝐴→ 𝐴 defined as follows:

𝑒 = (𝑎 : 𝐴 ⊢ 𝜆𝑥. 𝜇𝐴(𝑎, 𝑥) : 𝐴/𝐴) 𝑟 = ( 𝑓 : 𝐴/𝐴 ⊢ 𝑓 𝜂𝐴 : 𝐴).

We can similarly transpose the scoped operation 𝛼 : 𝑆□ 𝐴□ 𝐴→ 𝐴 on 𝐴 to obtain a
morphism �̃� : 𝑆→ 𝐴/𝐴:

�̃� = (𝑠 : 𝑆 ⊢ 𝜆𝑥. 𝛼(𝑠, 𝑥, 𝜂𝐴) : 𝐴/𝐴)

The transformed operation 𝛼♯ : 𝑆□ 𝐹𝐴□ 𝐹𝐴→ 𝐹𝐴 is then defined by

𝑠 : 𝑆, 𝑎 : 𝐹𝐴, 𝑏 : 𝐹𝐴 ⊢ 𝜇𝐹𝐴
(
𝐹𝑟

(
𝜇𝐹 (𝐴/𝐴) (𝜎𝐴/𝐴 (�̃� 𝑠), 𝐹𝑒 𝑎)

)
, 𝑏

)
: 𝐹𝐴

This transformed operation 𝛼♯ preserves any constant equation K𝐶 ⊢ 𝐿 = 𝑅 satisfied by 𝛼
by the same argument for Theorem 8.4∗3. Moreover, the definition of 𝛼♯ is natural w.r.t.
Scp𝑙 (E ): given any transliteration 𝑓 : 𝑆′→ 𝑆 between scoped operations, we have

𝛼♯ · ( 𝑓 □ 𝐹𝐴□ 𝐹𝐴) = (𝛼 · ( 𝑓 □ 𝐴□ 𝐴))♯,

which can be directly checked or deduced from the general fact that all the term formers of
monoidal algebraic theories are natural, similar to the abstraction theorem of simply typed
lambda calculus (Reynolds, 1983). □

8.4∗11 Remark. The theorem above needs the monoid transformer ¤𝐹 to be over some
𝐹 : E → E because the retract 𝑟 : 𝐴/𝐴→ 𝐴 of the Cayley embedding (Example 4.2∗4) used
in the proof is not a monoid morphism, so we need 𝐹 : E → E to have 𝐹𝑟 : 𝐹 (𝐴/𝐴) → 𝐴.
The requirement of having 𝜎 : Id→ 𝐹 below ¤𝜎 : Id→ ¤𝐹 is also essential. It is needed for
showing that the updater is an algebra-homomorphism (Jaskelioff and Moggi, 2010, Lemma
5.3) and the equations are preserved, which are omitted in the proof sketch above.

8.4∗12. A mistake in the earlier paper (Yang and Wu, 2023) by the author is that the strict
modular models from Theorem 8.4∗10 and Example 8.4∗6 were claimed to be w.r.t. the
family Scp(E ) rather than Scp𝑙 (E ). This is wrong because the operation transformation
𝛼♯ : 𝑆□ 𝐹𝐴□ 𝐹𝐴→ 𝐹𝐴 from a scoped operation 𝛼 : 𝑆□ 𝐴□ 𝐴→ 𝐴 in these modular
models is not natural with respect to translations in Scp(E ), i.e. there exist translations 𝑇
such that (𝑇𝛼)♯ ≠𝑇 (𝛼♯).

For a counterexample, consider the modular model of exception catching in from
Example 8.4∗6. Let ¥Σ ∈ Scp(Endo𝜅 (Set)) be the theory of monads with a binary scoped
operation 𝑏 : (Id × Id) ◦ 𝐴 ◦ 𝐴→ 𝐴, and let ¥Σ′ ∈ Scp(Endo𝜅 (Set)) be an arbitrary theory.
In the category Scp (but not in Scp𝑙), we have a translation 𝑇 : ¥Σ→ ¥Σ′ that as a functor
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sends every ⟨𝐴, 𝜇𝐴, 𝜂𝐴, 𝛼⟩ ∈ ¥Σ′-Alg to the ¥Σ-algebra ⟨𝐴, 𝜇𝐴, 𝜂𝐴, 𝜇𝐴 · (𝑐 ◦ 𝐴)⟩ where 𝑐 is

(Id × Id) ◦ 𝐴 = 𝐴 × 𝐴 𝑠−→ 𝐴 ◦ (Id × 𝐴) 𝐴◦𝜋2−−−−→ 𝐴 ◦ 𝐴 𝜇𝐴

−−→ 𝐴

and the arrow 𝑠 is the canonical strength 𝑠𝑛 : 𝐴𝑛 × 𝐴𝑛→ 𝐴(𝑛 × 𝐴𝑛) for the set-endofunctor
𝐴. Note that this translation completely ignores the original operation 𝛼. It is perhaps more
intuitive to use the syntax of an ordinary programming language here, say Haskell, which
would be the following:

𝑇𝛼 :: 𝐴 x→ 𝐴 x→ (x→ 𝐴 y) → 𝐴 y
𝑇𝛼 m n k = do ←m; x← n; k x

In prose, 𝑇 translates the binary scoped operation 𝑏(𝑥, 𝑦) to the computation that first runs
𝑥, ignores its result, and then runs 𝑦.

The operation lifting 𝛼♯ in Example 8.4∗6 for a binary scoped operation 𝛼 :: 𝐴 x→ 𝐴 x→
(x→ 𝐴 y) → 𝐴 y) would be the following in Haskell:

data Maybe x =Nothing | Just x
data MaybeT 𝐴 x =MaybeT (𝐴 (Maybe x))
𝛼♯ :: MaybeT 𝐴 x→MaybeT 𝐴 x→ (x→MaybeT 𝐴 y) →MaybeT 𝐴 y
𝛼♯ (MaybeT m′) (MaybeT n′) k = do x←MaybeT (𝛼 m′ n′ return); k x

Now we can see that the two binary scoped operation (𝑇𝛼)♯ and 𝑇 (𝛼♯) are not equal. The
operation 𝑇 (𝛼♯) written in Haskell would be

b1 :: MaybeT 𝐴 x→MaybeT 𝐴 x→ (x→MaybeT 𝐴 y) →MaybeT 𝐴 y
b1 m n k = do ←m; x← n; k x

while the operation (𝑇𝛼)♯ would be

b2 (MaybeT m′) (MaybeT n′) k = do x←MaybeT (do ←m′; n′); k x

The difference is that when m throws an exception, i.e. when 𝑚′ returns Nothing, b1 will
stop after 𝑚, whereas b2 will continue as 𝑛′.

8.5 Colimits and Limits of Model Transformers

8.5∗1. The category of model transformers (i.e. liftings along fibrations) inherits many
properties of categories of ordinary models. As a first step, in the following we show colimits
and reindexing-stable limits of ordinary models can be lifted to model transformers.

8.5∗2 Theorem. Let 𝑃 : A →T be a fibration and 𝑃′ : A ′→T ′ be a fibration with a
cleavage 𝜅, and let 𝑇 : T →T ′ be a functor and D be a category. If every fiber category
A ′

Σ
of 𝑃′ has (chosen) D-indexed colimits, the category Motr(𝑇) of model transformers

of 𝑇 also has D-indexed colimits, which are computed fiberwise.
Moreover, if reindexing functors of 𝑃′ preserve (or strictly preserve) D-indexed colimits,

the full subcategory of Motr(𝑇) containing strong (or strict) model transformers is closed
under D-indexed colimits in Motr(𝑇).
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Proof. Let 𝑀 : D→Motr(𝑇) be a D-diagram of model transformers. We define a functor
𝐶 : A →A ′ that sends every object 𝐴 ∈A to the colimit of 𝑀𝑖𝐴 in the fiber category
A𝑇𝑃𝐴. For every morphism 𝑓 : 𝐴→ 𝐵 in A , let 𝛼𝐴

𝑖
: 𝑀𝑖𝐴→𝐶𝐴 and 𝛼𝐵

𝑖
: 𝑀𝑖𝐵→𝐶𝐵 be

the colimiting cocones:

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝐶𝐴 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝐶𝐵

𝛼𝐴
𝑖 𝛼𝐴

𝑗

𝛼𝐵
𝑖 𝛼𝐵

𝑗

𝑀𝑖 𝑓

𝑀 𝑗 𝑓

Writing 𝑟 :=𝑇𝑃 𝑓 , for every 𝑖 ∈D , the morphism 𝑀𝑖 𝑓 : 𝑀𝑖𝐴→𝑀𝑖𝐵 factors as a vertical
morphism 𝑣𝑖 : 𝑀𝑖𝐴→ 𝑟∗ (𝑀𝑖𝐵) in A ′

𝑇𝑃𝐴
followed by a cartesian morphism. The reindexing

functor 𝑟∗ sends the cocone 𝛼𝐵
𝑖

in A ′
𝑇𝑃𝐵

to a cocone 𝑟∗𝛼𝐵
𝑖

: 𝑟∗𝑀𝑖𝐵→ 𝑟∗𝐶𝐵 in A ′
𝑇𝑃𝐴

:

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝐶𝐴

𝑟∗𝑀𝑖𝐵 𝑟∗𝑀 𝑗𝐵 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝑟∗𝐶𝐵 𝐶𝐵

𝛼𝐴
𝑖𝑣𝑖

𝛼𝐴
𝑗 𝑣 𝑗

𝑟∗𝛼𝐵
𝑖 𝑟∗𝛼𝐵

𝑗
𝛼𝐵
𝑖 𝛼𝐵

𝑗

𝜅 (𝐶𝐵,𝑟 )

𝑢

(8.6)

The composite (𝑟∗𝛼𝐵
𝑖
) · 𝑣𝑖 : 𝑀𝑖𝐴→ 𝑟∗𝐶𝐵 can be checked to be a cocone too. By the universal

property of 𝐶𝐴 as a colimit of 𝑀𝑖𝐴, we have a unique vertical morphism 𝑢 :𝐶𝐴→ 𝑟∗𝐶𝐵

such that 𝑢 · 𝛼𝐴
𝑖
= 𝑟∗𝛼𝐵 · 𝑣𝑖 . We define the action of 𝐶 on the morphism 𝑓 : 𝐴→ 𝐵 to be

𝜅(𝐶𝐵, 𝑟) · 𝑢 :𝐶𝐴→𝐶𝐵. The functoriality of 𝐶 is a consequence of the functoriality of 𝑀𝑖
and the universal property of𝐶𝐴 as colimits. For example, if 𝑓 : 𝐴→ 𝐵 above is id𝐴 : 𝐴→ 𝐴,
it can be checked by diagram chasing that for all 𝑖 ∈D , 𝐶id𝐴 · 𝛼𝐴𝑖 = 𝛼𝐴

𝑖
· 𝑀𝑖id𝐴 = 𝛼𝐴𝑖 , so

𝐶id𝐴 = id𝐴. The case for 𝐶 (𝑔 · 𝑓 ) =𝐶𝑔 ·𝐶 𝑓 is more complex but similar.
The functor 𝐶 is by construction a lifting of 𝑇 . For each 𝑖, we show that the family of

morphisms 𝛼𝐴
𝑖

: 𝑀𝑖𝐴→𝐶𝐴 is natural in 𝐴. In the following diagram,

𝑀𝑖𝐴

𝐶𝐴

𝑟∗𝑀𝑖𝐵 𝑀𝑖𝐵

𝑟∗𝐶𝐵 𝐶𝐵

𝛼𝐴
𝑖𝑣𝑖

𝜅 (𝑀𝑖𝐵,𝑟 )

𝑟∗𝛼𝐵
𝑖 𝛼𝐵

𝑖

𝜅 (𝐶𝐵,𝑟 )

𝑢

we have 𝐶 𝑓 · 𝛼𝐴
𝑖
= 𝜅(𝐶𝐵, 𝑟) · 𝑢 · 𝛼𝐴

𝑖
= 𝜅(𝐶𝐵, 𝑟) · 𝑟∗ (𝛼𝐵

𝑖
) · 𝑣𝑖 . The morphism 𝑟∗𝛼𝐵

𝑖
, which is

the image of 𝛼𝐵
𝑖

under reindexing 𝑟∗, is by definition the unique morphism making the square
at the bottom commute, so we have 𝜅(𝐶𝐵, 𝑟) · 𝑟∗ (𝛼𝐵

𝑖
) · 𝑣𝑖 = 𝛼𝐵𝑖 · 𝜅(𝑀𝑖𝐵, 𝑟) · 𝑣𝑖 = 𝛼𝐵𝑖 · 𝑀𝑖 𝑓 .
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Hence we have shown the required naturality: 𝐶 𝑓 · 𝛼𝐴
𝑖
= 𝛼𝐵

𝑖
· 𝑀𝑖 𝑓 , and thus we have a

cocone ⟨𝛼𝑖⟩𝑖∈D in Motr(𝑇).
Given any cocone ⟨𝛽𝑖 : 𝑀𝑖→ 𝑁⟩𝑖∈D , for every 𝐴 ∈A , ⟨𝛽𝐴

𝑖
⟩ is a cocone in A𝑇𝑃𝐴 from

𝑀𝑖𝐴 to 𝑁𝐴, so there is a unique mediating morphism𝜎𝐴 :𝐶𝐴→ 𝑁𝐴 such that𝜎𝐴 · 𝛼𝐴
𝑖
= 𝛽𝐴

𝑖
.

It can be checked by diagram chasing that the family of morphisms 𝜎𝐴 is natural in 𝐴, so 𝐶
is the colimit of 𝑀𝑖 in Motr(𝑇).

Finally, by the construction of the colimit 𝐶 above, we can see that if reindexing functors
of 𝑃′ (strictly) preserve D-indexed colimits in fiber categories, then when 𝑓 : 𝐴→ 𝐵 is
cartesian and all 𝑀𝑖 are strong, the two cocones in the left of (8.6) are isomorphic (the
same), therefore 𝐶 is strong (strict) too. □

8.5∗3. The situation for limits is slightly different: we need reindexing functors to preserve
limits in fiber categories for Motr(𝑇) to inherit these limits. This requirement is not too
demanding though, since in many fibrations of algebras and theories, reindexing functors
are right adjoints so they preserve all limits.

8.5∗4 Theorem. Let 𝑃 : A →T be a fibration and 𝑃′ : A ′→T ′ be a fibration with a
cleavage 𝜅, and let 𝑇 : T →T ′ be a functor and D be a category. If every fiber category
A ′

Σ
of 𝑃′ has (chosen) D-indexed limits, and reindexing functors preserve these limits,

then the category Motr(𝑇) has D-indexed limits. Moreover, the subcategory containing
strong/strict model transformers are closed under these limits.

Proof sketch. Similar to the case of colimits above, the limit 𝐿 of a diagram 𝑀𝑖 of model
transformers is defined fiberwise: for every object 𝐴 ∈A , 𝐿𝐴 is defined to be the (chosen)
limit of 𝑀𝑖𝐴 in the fiber category A ′

𝑃𝑇𝐴
. However, the action of 𝐿 on a morphism 𝑓 : 𝐴→ 𝐵

is different from the situation of colimits:

𝐿𝐴

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝑟∗𝐿𝐵 𝐿𝐵

𝑟∗𝑀𝑖𝐵 𝑟∗𝑀 𝑗𝐵 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝛼𝐴
𝑖

𝛼𝐴
𝑗

𝑟∗𝛼𝐵
𝑖

𝑟∗𝛼𝐵
𝑗 𝛼𝐵

𝑖

𝛼𝐵
𝑗

𝜅 (𝐿𝐵,𝑟 )

𝑢

𝑣𝑖 𝑣 𝑗

By reindexing the limiting cone 𝛼𝐵
𝑖

: 𝐿𝐵→𝑀𝑖𝐵 along 𝑟 :=𝑇𝑃 𝑓 , we have a cone 𝑟∗𝛼𝐵
𝑖

:
𝑟∗𝐿𝐵→ 𝑟∗𝑀𝑖𝐵. Let 𝑣𝑖 : 𝑀𝑖𝐴→ 𝑟∗𝑀𝑖𝐵 be the unique vertical morphism 𝜅(𝑀𝑖𝐵) · 𝑣𝑖 =𝑀𝑖 .
We have a cone (𝑣𝑖 · 𝛼𝐴𝑖 ) : 𝐿𝐴→ 𝑟∗𝑀𝑖𝐵. Now we use the assumption that 𝑟∗ preserves
D-limits, so 𝑟∗𝛼𝐵

𝑖
: 𝑟∗𝐿𝐵→ 𝑟∗𝑀𝑖𝐵 is still a limiting cone, and we have a vertical morphism

𝑢 : 𝐿𝐴→ 𝑟∗𝐿𝐵. The rest of this proof is similar to the proof of Theorem 8.5∗2. □

8.5∗5. Under the assumptions of Theorem 8.5∗4 and additionally that 𝑃, 𝑃′ are the same
fibration, and 𝑇 : T →T is equipped with 𝜂 : Id→𝑇 , the category Motr𝑢 (𝑇) of updatable
model transformers also has D-indexed limits. In fact, limits in Motr𝑢 (𝑇) are strictly created
by the forgetful functor U : Motr𝑢 (𝑇) →Motr(𝑇), which means that for every diagram
𝐷 : D→Motr𝑢 (𝑇), whenever U ◦ 𝐷 has a limiting cone 𝛼𝑖 : 𝐿→U𝐷𝑖 in Motr(𝑇), there
exists a unique updater 𝑢 for 𝐿 making 𝛼𝑖 : ⟨𝐿, 𝑢⟩ → 𝐷𝑖 a limiting cone in Motr𝑢 (𝑇).
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To prove this, recall that an updater 𝑢 for a model transformers𝑀 is a natural transformation
𝑢 : Id→𝑀 over 𝜂 : Id→𝑇 . For a D-indexed diagram ⟨𝑀𝑖 , 𝑢𝑖⟩ in Motr𝑢 (𝑇), for every
𝐴 ∈A , we have a vertical morphism 𝑢𝐴

𝑖
: 𝐴→ 𝜂∗

𝐴
𝑀𝑖𝐴. Since morphisms in Motr𝑢 (𝑇)

are compatible with updaters, 𝑢𝐴
𝑖

is a cone over 𝜂∗
𝐴
𝑀𝑖𝐴. In the proof of Theorem 8.5∗4,

the limit 𝐿 of 𝑀𝑖 is computed pointwise and fiberwise, so 𝐿𝐴 is the limit of 𝑀𝑖𝐴 in the
fiber A𝑇𝑃𝐴. Moreover, the limit 𝐿𝐴 is preserved by reindexing 𝜂∗

𝐴
, so 𝜂∗𝐿𝐴 is a limit of

𝜂∗
𝐴
𝑀𝑖𝐴 in A𝑃𝐴, and the cone 𝑢𝐴

𝑖
: 𝐴→ 𝜂∗

𝐴
𝑀𝑖𝐴 then gives us a unique mediating morphism

𝑢𝐴 : 𝐴→ 𝜂∗𝐿𝐴. It can be checked that this 𝑢 is natural and is an updater for 𝐿.
Note however, the forgetful functor Motr𝑢 (𝑇) →Motr(𝑇) does not create colimits:

a cone 𝑢𝐴
𝑖

: 𝐴→ 𝜂∗
𝐴
𝑀𝑖𝐴 does not give us a morphism 𝐴→ 𝜂∗

𝐴
𝐶𝐴 into the colimit that

commutes with 𝜂∗
𝐴
𝛼𝐴
𝑖

: 𝜂∗
𝐴
𝑀𝑖𝐴→ 𝜂∗

𝐴
𝐶𝐴 for all 𝑖 ∈D .

8.5∗6. There are many more properties that we may wish to lift from ordinary models to
model transformers. In particular, a question for the future is

If every fiber category is locally 𝜅-presentable, under what conditions the category of
model transformers is also locally 𝜅-presentable?

8.6 Composition and Fusion of Model Transformer

8.6∗1. Model transformers are readily composable horizontally. Let 𝑀 and 𝑁 be two
(strict/strong) model transformers of functors 𝑆 and 𝑇 respectively,

A A ′ A ′′

T T ′ T ′′

𝑀

𝑃

𝑁

𝑃′ 𝑃′′

𝑆 𝑇

it is immediate that the composite functor 𝑁 ◦𝑀 is a (strict/strong) model transformers of
𝑇 ◦ 𝑆 : T ′→T ′′. Moreover, when 𝑃, 𝑃′, and 𝑃′′ are the same fibration, and the functors 𝑆
and 𝑇 are pointed, an updater 𝑢 of 𝑀 and an updater 𝑣 of 𝑁 can be composed horizontally
to an updater 𝑣 ◦ 𝑢 : Id→ 𝑁 ◦𝑀 as well.

In particular, the composition of a modular model 𝑀 of Σ ∈T (i.e. a model transformer
of − + Σ : T →T ) and a modular model 𝑁 of Φ ∈T gives us a modular model of Σ +Φ
via the isomorphism − + (Σ +Φ) � (− + Σ) +Φ.

8.6∗2 Example. Let 𝑀𝐸 be the modular model of exception throwing and catching
(Example 8.4∗6), and 𝑀𝑆 be the modular model of mutable state arising from the state
monad transformer by Theorem 8.4∗3. The composite 𝑀𝑆 ◦𝑀𝐸 is a modular model of
Ec + St𝑆 , the theories of exception and mutable state.

8.6∗3. Coproducts of theories are commutative, Σ +Φ �Φ + Σ, but the composition of
modular models is of course not. For example, the opposite order 𝑀𝐸 ◦𝑀𝑆 of composing
the modular models in Example 8.6∗2 gives rise to another modular model of the coproduct
Ec + St𝑆 . Both 𝑀𝑆 ◦𝑀𝐸 and 𝑀𝐸 ◦𝑀𝑆 satisfy the respective equations of exception and
mutable state, but they validate different interaction equations: 𝑀𝑆 ◦𝑀𝐸 additionally
validates commutativity of stateful operations and exception throwing, so the following
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program equivalence is validated by 𝑀𝑆 ◦𝑀𝐸 :

catch (do put s; throw) h = catch (do throw; put s) h = catch throw h = h,

where the second step throw; put s = throw is due to the algebraicity of throw as a nullary
operation. On the other hand, 𝑀𝐸 ◦𝑀𝑆 validates

catch (do put s; p) h = do put s; catch p h,

so catch (do put s; throw) h = do put s; catch throw h = do put s; h. An operational interpre-
tation is that when an exception is caught, 𝑀𝑆 ◦𝑀𝐸 rolls back to the state before the catch,
whereas 𝑀𝐸 ◦𝑀𝑆 keeps the state as it is. Both behaviours are desirable depending on the
scenario. More discussion about interaction of effects can be found in Yang and Wu (2021).

8.6∗4. A straightforward but useful result about composites of model transformers is
the fusion lemma below: interpreting a term with two model transformers sequentially is
equal to interpreting with the composite model transformer. Therefore two consecutive
interpretations can be combined into one, eliminating the need to generate the intermediate
result that is consumed immediately, a program optimisation known as short-cut fusion (Gill
et al., 1993; Hinze et al., 2011).

Generalising the natural transformation ℎ𝑀 : (− + ¥Ψ)★→𝑀 (−)★ in 7.1∗24, let 𝑃 : A →
T be a fibration with a cleavage such that that all fiber categories have initial objects. We
then have a functor (−)★ : T →A that maps every object Σ ∈T to the initial object 0Σ in
the fiber AΣ, and (−)★ maps every morphism 𝑡 : Σ→ Γ to the unique morphism 0Σ→ 𝑡∗0Γ
followed by the cartesian morphism over 𝑡. For every model transformer𝑀 : A →A of some
functor 𝑇 : T →T , we then have a unique natural transformation ℎ𝑀 : (𝑇−)★→𝑀 (−)★:

A A

T T

𝑀

𝑃 𝑃(−)★

𝑇

ℎ𝑀 (−)★

that interprets the abstract syntax (𝑇Σ)★ with the model 𝑀Σ★ for every Σ ∈T .

8.6∗5 Lemma (Fusion). For 𝑖 ∈ {1, 2, 3}, let 𝑃𝑖 : A 𝑖→T 𝑖 be a cloven fibration such
that every fiber category has initial objects. Given model transformers 𝑁 : A 1→A 2 of
𝑆 : T 1→T 2 and 𝑀 : A 2→A 3 of 𝑇 : T 2→T 3, we have

A 1 A 2 A 3

T 1 T 2 T 2

𝑁 𝑀

(−)★

𝑆

ℎ𝑁

𝑇

ℎ𝑀 (−)★ =

A 1 A 2 A 3

T 1 T 2 T 2

𝑁 𝑀

(−)★

𝑆 𝑇

ℎ𝑀◦𝑁 (−)★

i.e. ℎ𝑀◦𝑁
Σ

= (𝑀ℎ𝑁
Σ
) · ℎ𝑀

𝑆Σ
: (𝑇𝑆Σ)★→𝑀𝑁Σ★ for every Σ ∈T 1.

Proof. The component at Σ of these two natural transformations are both the unique
morphism out of the initial object of the fiber category over 𝑇𝑆Σ. □
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8.7 Modular Models in Symmetric Monoidal Categories

8.7∗1. In this subsection, we will have a look at some constructions of modular models
that are only possible in symmetric monoidal categories E , such as ⟨C , ×, 1⟩ for cartesian
monoids and ⟨Endo𝜅 (Set), ∗, Id⟩ for applicative functors.

8.7∗2. To begin with, we can upgrade ordinary models of algebraic and scoped operations
to modular models by using the fact that in a symmetric E , two monoids ⟨𝐴, 𝜇𝐴, 𝜂𝐴⟩ and
⟨𝐵, 𝜇𝐵, 𝜂𝐵⟩ induces a monoid structure on 𝐴□ 𝐵.

8.7∗3 Theorem (Independent Combination). Let E be a symmetric monoidal category
and F be Alg(E ) or Scp𝑙 (E ). For each ¥Ψ ∈ F , every ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular
model 𝑀 of ¥Ψ ∈ F such that 𝑀 ⟨ ¥Σ, 𝐵, 𝛽⟩ is carried by 𝐴□ 𝐵, and 𝑀 has an updater

𝑢 ¥Σ,𝐵,𝛽 = (𝐵 � 𝐼 □ 𝐵
𝜂𝐴□𝐵
−−−−−→ 𝐴□ 𝐵).

Proof. Given a monoid ⟨𝐵, 𝜇𝐵, 𝜂𝐵⟩, 𝐴□ 𝐵 has the following monoid structure:

𝜂𝐴□𝐵 = (𝐼 � 𝐼 □ 𝐼
𝜂𝐴□𝜂𝐵

−−−−−−→ 𝐴□ 𝐵)
𝜇𝐴□𝐵 =

(
(𝐴□ 𝐵) □ (𝐴□ 𝐵) � (𝐴□ 𝐴) □ (𝐵□ 𝐵) 𝜇

𝐴□𝜇𝐵−−−−−−→ 𝐴□ 𝐵
)

Moreover, we can transform a scoped operation 𝛼 :𝐶 □ 𝐴□ 𝐴→ 𝐴 on 𝐴 to a scoped
operation 𝛼♯ on 𝐴□ 𝐵 as follows:

𝐶 □ (𝐴□ 𝐵) □ (𝐴□ 𝐵) � 𝐶 □ (𝐴□ 𝐴) □ (𝐵□ 𝐵) 𝛼□𝜇
𝐵

−−−−−→ 𝐴□ 𝐵

Symmetrically, every scoped operation on 𝐵 can also be transformed to 𝐴□ 𝐵. Furthermore,
algebraic operations are special cases of scoped operations, so they can be transformed in
the same way. The preservation of (constant) equations of the operation transformation is
the same as the proof of Theorem 8.4∗3. □

8.7∗4. For E = ⟨Endo𝜅 (Set), ∗, Id⟩, the intuition for 𝐴 ∗ 𝐵 is that two applicative-
computations 𝐴 and 𝐵 are combined in the way that they execute independently, and
operations act on 𝐴 ∗ 𝐵 pointwise.

There is another way to compose two applicatives, namely 𝐴 ◦ 𝐵 (McBride and Paterson,
2008). In this way, the 𝐵-computation can depend on the result of 𝐴.

8.7∗5 Theorem (Dependent Combination). Let E be ⟨Endo𝜅 (Set), ∗, Id⟩ and F be
Alg(E ) or Scp𝑙 (E ). For each ¥Ψ ∈ F , every ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular model 𝑀
of ¥Ψ such that 𝑀 ¥Σ⟨𝐵, 𝛽⟩ is carried by 𝐴 ◦ 𝐵, and 𝑀 has an updater 𝑢 ¥Σ,𝐵,𝛽 = 𝜂𝐴 ◦ 𝐵.

Proof sketch. Given two applicative functors ⟨𝐴, 𝜇𝐴, 𝜂𝐴⟩ and ⟨𝐵, 𝜇𝐵, 𝜂𝐵⟩, their composi-
tion 𝐴 ◦ 𝐵 as functors can be equipped with an applicative structure with unit 𝜂𝐴◦𝐵 = 𝜂𝐴 ◦ 𝜂𝐵
and the following multiplication 𝜇𝐴◦𝐵:

((𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐴(𝐵𝑚) × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘
𝑓
−→

∫ 𝑚,𝑘
𝐴(𝐵𝑚) × 𝐴(𝐵𝑘) × (𝐵𝑛)𝐵𝑚×𝐵𝑘

𝑔
−→

∫ 𝑚′ ,𝑘′
𝐴𝑚′ × 𝐴𝑘 ′ × (𝐵𝑛)𝑚′×𝑘′

� (𝐴 ∗ 𝐴) (𝐵𝑛)
𝜇𝐴

−−→ 𝐴(𝐵𝑛)
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where the arrow 𝑔 is the substitution of the bound variables of the coend 𝑚′ = 𝐵𝑚 and
𝑘 ′ = 𝐵𝑘 ; the arrow 𝑓 uses functoriality of the coend and the morphism 𝑛𝑚×𝑘→ (𝐵𝑛)𝐵𝑚×𝐵𝑘
given by the transpose of the following morphism:

𝑛𝑚×𝑘 × 𝐵𝑚 × 𝐵𝑘
𝜄𝑚,𝑘−−−→

∫ 𝑚,𝑘
𝐵𝑚 × 𝐵𝑘 × 𝑛𝑚,𝑘 � (𝐵 ∗ 𝐵)𝑛

𝜇𝐵

−−→ 𝐵𝑛.

To transform a scoped operation 𝛼 : 𝑆 ∗ 𝐴 ∗ 𝐴→ 𝐴 to 𝐴 ◦ 𝐵, we use the fact that there is a
canonical morphism 𝑠 : 𝑆 ∗ (𝐴 ◦ 𝐵) → (𝑆 ∗ 𝐴) ◦ 𝐵 as follows:

(𝑆 ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝑆𝑚 × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝑆𝑚 × 𝐴(𝐵𝑘) × (𝐵𝑛)𝑚×𝐵𝑘

→
∫ 𝑚,𝑘′

𝑆𝑚 × 𝐴𝑘 ′ × (𝐵𝑛)𝑚×𝑘′

� (𝑆 ∗ 𝐴) (𝐵𝑛)

where the first step uses the action of the functor 𝐵 on morphisms: 𝑛𝑘→ (𝐵𝑛) (𝐵𝑘 ) , and the
second steps is the substitution of the bound variable 𝑘 ′ = 𝐵𝑘 . We define the transformation
of 𝛼 to 𝐴 ◦ 𝐵 to be

𝑆 ∗ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
𝑠∗(𝐴◦𝐵)

−−−−−−−−−−−−−−→ ((𝑆 ∗ 𝐴) ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
(𝛼◦𝐵)∗(𝐴◦𝐵)
−−−−−−−−−−−−−−→ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)

𝜇
−→ 𝐴 ◦ 𝐵

where 𝛼 = (𝑆 ∗ 𝐴
𝑆∗𝐴∗𝜂𝐴

−−−−−−→ 𝑆 ∗ 𝐴 ∗ 𝐴 𝛼−→ 𝐴).
To transform a scoped operation 𝛽 :𝐺 ∗ 𝐵 ∗ 𝐵→ 𝐵 to 𝐴 ◦ 𝐵, we need the following

canonical morphism 𝑡 :𝐺 ∗ (𝐴 ◦ 𝐵) → 𝐴 ◦ (𝐺 ∗ 𝐵):

(𝐺 ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐺𝑚 × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝐴(𝐺𝑚 × 𝐵𝑘 × 𝑛𝑚×𝑘)

→
∫ 𝑚,𝑘

𝐴((𝐺 ∗ 𝐵)𝑛)
� 𝐴((𝐺 ∗ 𝐵)𝑛)

where the first step uses the canonical strength of 𝐴 to push 𝐺𝑚 and 𝑛𝑚×𝑘 inwards; the
second step uses the coprojection 𝜄𝑚,𝑘 :𝐺𝑚 × 𝐵𝑘 × 𝑛𝑚×𝑘→ (𝐺 ∗ 𝐵)𝑛. With 𝑡 we define the
transformed scoped operation on 𝐴 ◦ 𝐵:

𝐺 ∗ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
𝑡∗(𝐴◦𝐵)

−−−−−−−−−−−−→ (𝐴 ◦ (𝐺 ∗ 𝐵)) ∗ (𝐴 ◦ 𝐵)
(𝐴◦𝛽)∗(𝐴◦𝐵)
−−−−−−−−−−−−→ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)

𝜇𝐴◦𝐵

−−−−−−−−−−−−→ 𝐴 ◦ 𝐵

where 𝛽 = (𝐺 ∗ 𝐵
𝐺∗𝐵∗𝜂𝐵

−−−−−−−→𝐺 ∗ 𝐵 ∗ 𝐵
𝛽
−→𝐺). □

8.7∗6. To see the difference between Theorem 8.7∗3 and Theorem 8.7∗5, let ¤𝐴 be the
applicative functor induced by the exception monad �̄� + Id. It is a model of the applicative
version of the theory Et𝐸 of exception throwing, equipped with an operation throw :
�̄� ∗ (�̄� + Id) → (�̄� + Id). Using Theorem 8.7∗5, it can be extended to a modular model
using (�̄� + Id) ◦ 𝐵 � (�̄� + 𝐵) for all applicatives 𝐵. In this model, it holds that for all
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elements 𝑥, 𝑦 ∈ (�̄� + 𝐵)𝑋 ,

throw ⟨𝑒, 𝑥⟩ = 𝜄1𝑒 = throw ⟨𝑒, 𝑦⟩,

which means that exception throwing discards any 𝐵-computation. But it is not true for the
independent composition (�̄� + Id) ∗ 𝐵.

8.7∗7. Our final example is an interesting modular model for phased computation, gen-
eralising the construction that Kidney and Wu (2021) and Gibbons et al. (2022) use for
breadth-first search. The theory Pha ∈ Scp(E ) has a unary scoped operation later. The
intention is that a program may have multiple phases of execution, and the operation later𝑝
delays the execution of p to the next phase.

For example, if 𝐹 is an applicative functor in Haskell with later :: F a→ F a, given
𝑝𝑖 :: F a, the following Haskell program of type F a

do later (do later 𝑝3
𝑝21)

𝑝11
later 𝑝22
𝑝12

is supposed to execute 𝑝11 and 𝑝12 at phase 1, 𝑝22 and 𝑝21 at phase 2, and 𝑝3 at phase 3. A
standard example of such an applicative functor F is the nested list functor [ [a] ], where
the 𝑖-th element of the outer list contains all possible outcomes of the computation at phase
𝑖, and later xs = [ [ ] : xs].

In a symmetric closed monoidal category E such that every object has a free monoid
over it, given a monoid ¤𝐴 = ⟨𝐴, 𝜇𝐴, 𝜂𝐴⟩, Kidney and Wu’s [2021] idea can be abstracted as
equipping (the carrier of) the free monoid 𝑆𝐴 = 𝜇𝑋. 𝐴□ 𝑋 + 𝐼 over 𝐴 with a nonstandard
monoid structure ⟨𝑆𝐴, 𝜇𝑆𝐴 , 𝜂𝑆𝐴⟩ with 𝜂𝑆𝐴 : 𝐼→ 𝜇𝑋. 𝐴□ 𝑋 + 𝐼 given by ⊢ in (𝜄2 ∗) where
out : (𝑆𝐴 � 𝐴□ 𝑆𝐴 + 𝐼) : in is the isomorphism for the initial algebra, and 𝜇𝑆𝐴 is denoted by
𝑠 : 𝑆𝐴, 𝑡 : 𝑆𝐴 ⊢𝑚 : 𝑆𝐴 where 𝑚 is

case (out 𝑠, out 𝑡) of
(𝜄1 (𝑎, 𝑥), 𝜄1 (𝑎′, 𝑦)) ↦→ in (𝜄1 (𝜇𝐴(𝑎, 𝑎′), 𝜇𝑆𝐴 (𝑥, 𝑦))
(𝜄2 ∗, 𝑦) ↦→ in 𝑦
(𝑥, 𝜄2 ∗) ↦→ in 𝑥

Note that the use of variable 𝑥 and 𝑎′ in the first case does not match their order in the context,
so we need a symmetric monoidal category, and we also need closedness for interpreting
structural recursion on the initial algebra 𝑆𝐴. This construction is essentially the same idea
as the list object in the category of (ordinary) monoids that we saw in 3.1∗16. The intuition
is that 𝑆𝐴 = 𝜇𝑋.𝐴□ 𝑋 + 𝐼 is a list of 𝐴-computations at each phase, and 𝜇𝑆𝐴 merges two
lists by multiplying computations at the same phase. The later operation on 𝑆𝐴 is defined as

𝑝 : 𝑆𝐴, 𝑘 : 𝑆𝐴 ⊢ 𝜇𝑆𝐴 (in (𝜄1 (𝜂𝐴, 𝑝), 𝑘)) : 𝑆𝐴.

The construction 𝐴 ↦→ 𝑆𝐴 is a functorial monoid transformer, so we can use Theorem 8.4∗10
to obtain a modular model of phasing in Scp𝑙 (E ).



Modular Models of Monoids with Operations by Lifting Functors along Fibrations 87

8.7∗8. To summarise this section, we have studied modular constructions of algebraic
structures in the framework of lifting functors𝑇 : T →T ′ along two fibrations 𝑃 : A →T ′

and 𝑃′ : A ′→T ′. The base categories T and T ′ of the fibrations contain some notion
of algebraic theories, and the total categories A and A ′ contain models of all these
theories. The functor 𝑇 : T →T ′ transforms every theory in a certain way, for example,
by combining it with another fixed theory. Liftings of 𝑇 along 𝑃 and 𝑃′ sends an object in
every fiber category AΣ to an object in the fiber A ′

𝑇𝑃Σ
, so we call them model transformers.

We can intuitively think of a functor 𝑇 : T →T as a theory 𝑇Σ parameterised by some
potential future extension with Σ ∈T , then a model transformer 𝑀 of 𝑇 can be thought of
as a model of the ‘parameterised theory’ 𝑇 .

We have also seen a handful of universal constructions of model transformers as well as
some more concrete constructions, such as using monoid transformers. Lastly, we comment
that liftings along fibrations have many other applications in computer science, such as in
logical relations for computational types (lifting a computational monad 𝑇 along a fibration
of predicates over sets) (Katsumata, 2005), in Hoare logics (lifting a computation monad
𝑇 along a fibration of specifications over types) (Aguirre et al., 2022), and in behaviour
metrics of states of automata (lifting a coalgebra encoding an automaton along a fibrations
of metric spaces over sets) (Baldan et al., 2014). It is an interesting question for the future to
find out whether the lifting techniques developed in these contexts give interesting modular
models of algebraic theories.
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