
Algebraic Effects Meet Hoare Logic

in Cubical Agda

Donnacha Oisín Kidney Zhixuan Yang Nicolas Wu

POPL 2024, London

This paper, technically
1. Formalise algebraic effects (on h-sets) in Cubical Agda

2. Define a generic Hoare logic on top of program equalities

3. Prove an interesting theorem

This paper, technically
1. Formalise algebraic effects (on h-sets) in Cubical Agda

2. Define a generic Hoare logic on top of program equalities

3. Prove an interesting theorem

But why?

Language-formalisation checklist

 Formalise the syntax

 Formalise the semantics

Language-formalisation checklist

 Formalise the syntax

 Formalise the semantics

What is “semantics”?

Operational semantics
A programming language is treated as
an abstract (symbolic) machine:

• Terms are states

• Computing is transitioning

just like a Turing machine
A universal Turing machine by Moore (1952)

which fits into one picture

But what is a language
In its ordinary sense, languages are systems for describing things

⟦ a cat in a bag ⟧ =

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

But what is a language
In its ordinary sense, languages are systems for describing things

⟦ a cat in a bag ⟧ =

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

But what is a language
In its ordinary sense, languages are systems for describing things

⟦ a cat in a bag ⟧ =

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

It’s not always clear from the operational semantics what the language describes

Why we design languages

1. some mathematical concepts (sets, domains,
sheaves, ∞-groupoids, quasi-Borel space…)

2. terms up to some operational property
(logical predicates/relations, contextual
equivalence, applicative bisimilarity…)

Most PLs nowadays are designed for describing certain things easily:

{ Γ ⊢ t : τ | t blah blah in the
 operational semantics }

{ Γ ⊢ t : τ } / ≅obs

Checklist (ver. 2)
Formalise the syntax

Formalise the “intended” denotational model (which may be based on
operational semantics)

Checklist (ver. 2)
Formalise the syntax

Formalise the “intended” denotational model (which may be based on
operational semantics)

But there is no reason to have just one model:

Set-theoretic
model

Normalisation
model

Realisability model

Translation to PHP

…

Formalise the syntax of the language

Formalise the general notion of models

Define the models that we are interested in

Programming and reasoning model-independently if possible

Checklist (final)

This can be called the logical approach to program verification.

This paper, conceptually
A framework for formalising first-order languages:

• The user specifies a language by operations and equational axioms

• The library provides

• models: a set implementing all operations

• free models: syntactic terms quotiented by equations

• reasoning tools for free models

An example
A language for nondeterministic parsing is specified by

• Operations

• get, put for accessing the token stream

• or, fail for nondeterministic branching

• Axioms

• These two groups of operations commute with each other

• Some standard equations on each of them, e.g. or(x, or(y, z)) = or(or(x, y), z)

• Models: free models, String -> Bag A, terms up to bisimilarity, …

An example
Parsers can be defined as elements in the free model (Term below).

A fragment of a parser of binary trees with leaves ♢ and ♠:

For two elements s and t in the free model,

Equational Reasoning

s equals t

s can be rewritten to t by
the equational axioms

s and t have equal
meanings in all models

In principle, from the equational axioms, we can show that

for every tree t and sufficiently large n.

An example

(do push (print t); parse-tree n) = return t

In principle, from the equational axioms, we can show that

for every tree t and sufficiently large n.

An example

(do push (print t); parse-tree n) = return t

A direct equational proof is painful…

Hoare-style reasoning
A generic Hoare logic by Schröder and Mossakowski (2003) is formalised:

• Assertions P, Q are programs in the free model returning (h-)propositions Ω

• The Hoare triple {P} x ← t {Q x} is encoded as an equality:

do a ← P
 x ← t
 b ← Q x
 return (x, a ⇒ b)

do a ← P
 x ← t
 b ← Q x
 return (x, True)

=

Connecting the two worlds
A proposition established using Hoare logic can be used in equational reasoning

Main theorem. Given {} x ← t {return φ(x)} and ∀ x . φ(x) → f(x) = g(x) then

(x ← t; f(x)) = (x ← t; g(x))

Proof (classically). easy

Proof (constructively). surprisingly hard and bizarre…

Usage: turning tedious equational proofs to more intuitive Hoare-style proofs.

An example
It is easier to first show a Hoare triple

from which we can derive the earlier goal (do push (print t); parse-tree n) = return t.

{remaining (print t ++ r)}
t′ ← parse-tree n
{return (t′ ≡ t) ∧ remaining r}

Wrap-up
• (Most) programming languages are both languages and machines

• Hoare-style reasoning and equational reasoning complement each other

Thank you

