Imperial College
London

A%M Ejfwﬁf Meet Hoare {7&0
(e CM@%

Donnacha Oisin Kidney Zhixuan Yang Nicolas Wu

POPL 2024, London

This paper, technically

1. Formalise algebraic effects (on h-sets) in Cubical Agda

2. Define a generic Hoare logic on top of program equalities

3. Prove an interesting theorem

This paper, technically

1. Formalise algebraic effects (on h-sets) in Cubical Agda

2. Define a generic Hoare logic on top of program equalities

3. Prove an interesting theorem

But why?

Language-formalisation checklist

(] Formalise the syntax

[)Formalise the semantics

Language-formalisation checklist

) Formalise the syntax

[)Formalise the semantics

T

What is “semantics’?

Operational semantics

COMPARE BLOCKS

AL i
PTY: _f{’ U

—BLOCK ON T; WAS SHORTER

A programming language Is treated as 2 e mrre g
an abstract (symbolic) machine: . s [\ e -

46008R, 47 « srock on—"[T ioBL.as |
. - . ._i - 2 3_]
BEGINING OF

1 = TNERE wAS 7> WAS
f ZERO SHORTER
B7 471000354
BLOCK ON T2

» Terms are states Y e

2 ZEROS .
29 —>{4"00 235

T

—
MOVE TO RIGHT
END OF BLOCK

Y __
1‘1!4°°BR1$S
%5 oON T .
_ —PROCEED PAST ZEROS
- TO NEXT BLOCK ON T,

99°°ORi41g 35000R, qss| 12010 254
THERE WERE COPY BLOCK
° ° e _ o ° | 3';':*:0; — - FROM_\? 70 Ti(_\\
* Computing Is transitioning Qe —>tohanel [L ——sfagl s i
A 4 TTEXAMINE SYMBOL

%0000R, 4,

THERE WERE
4 ZERQS
@ ﬁ"loensc“

A universal Turing machine by Moore (1952)
which fits into one picture

1011 - L apei N ———
B 2%12 ON T3 i@'seom_él !qmnenzgﬂ

——)@——m—-)v/‘i:s;n—hu'““. q,..x,

just like a Turing machine

But what is a language

In its ordinary sense, languages are systems for describing things

[acatinabag]

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

But what is a language

In its ordinary sense, languages are systems for describing things

[acatinabag]

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

But what is a language

In its ordinary sense, languages are systems for describing things

[acatinabag]

CC-BY-NC-ND 3.0 by
ClassicSonicSatAm

It's not always clear from the operational semantics what the language describes

Why we design languages

Most PLs nowadays are designed for describing certain things easily:

1. some mathematical concepts (sets, domains, -
sheaves, co-groupoids, quasi-Borel space...)

2. terms up to some operational property (T ¢: 7| ¢blah blah in the
(logical predicates/relations, contextual

| y[TEatiS, LU operational semantics }
equivalence, applicative bisimilarity...)

{F tZT}/Eobs

Checklist (ver. 2)

(J Formalise the syntax

[J Formalise the “intended” denotational model (which may be based on
operational semantics)

Checklist (ver. 2)

(J Formalise the syntax

[J Formalise the “intended” denotational model (which may be based on
operational semantics)

—

But there 1s no reason to have just one model:

Set-theoretic Translation to PRY
model

Checklist (final)

(J Formalise the syntax of the language

(] Formalise the general notion of models
(] Define the models that we are interested in

(J Programming and reasoning model-independently if possible

This can be called the logical approach to program verification.

This paper, conceptually

A framework for formalising first-order languages:

* The user specifies a language by operations and equational axioms

* The library provides
* models: a set implementing all operations
* free models: syntactic terms quotiented by equations

* reasoning tools for free models

An example

A language for nondeterministic parsing is specified by

« QOperations
* get, put for accessing the token stream

* or, fail for nondeterministic branching
« Axioms
* These two groups of operations commute with each other
 Some standard equations on each of them, e.g. or(x, or(y, z)) = or(or(x, y), z)

« Models: free models, String -> Bag A, terms up to bisimilarity, ...

An example

Parsers can be defined as elements in the free model (Term below).

A fragment of a parser of binary trees with leaves <> and #:

parse-tree : N - Term Tree
parse-tree zero fail
parse-tree (suc n) (do char '¢': return ¢)
<|> (do char 's#'; return)
<|> (do char '"('; 1 « parse-tree n
char 'x'; r « parse-tree n
char '")'; return (1 & r))

Equational Reasoning

For two elements s and t in the free model,

S equals t

7\

scan be rewrittentotby . s and t have equal
the equational axioms ‘ ’ meanings in all models

An example

In principle, from the equational axioms, we can show that

(do push (print t); parse-tree n) = returnt

for every tree t and sufficiently large n.

An example

In principle, from the equational axioms, we can show that

(do push (print t); parse-tree n) = returnt

for every tree t and sufficiently large n.

A direct equational proof 1s painful...

Hoare-style reasoning

A generic Hoare logic by Schroder and Mossakowski (2003) is formalised:
» Assertions P, Q are programs in the free model returning (h-)propositions Q

» The Hoare triple {P} x < t{Q x} is encoded as an equality:

doa <« P doa <« P
X &1 _ X &1
b < QX o b < QX

return (x, a = b) return (x, True)

Connecting the two worlds

A proposition established using Hoare logic can be used in equational reasoning

Main theorem. Given {} x < t {return @(x)} and v x . ©w(x) = f(x) = g(x) then
(x € t;f(x) = (x <t gx))
Proof (classically). easy

Proof (constructively). surprisingly hard and bizarre...

Usage: turning tedious equational proofs to more intuitive Hoare-style proofs.

An example

It Is easler to first show a Hoare triple

{remaining (print t ++ r)]
t’ < parse-tree n
{return (t' = t) A remaining rj

from which we can derive the earlier goal (do push (print t); parse-tree n) = return t.

Wrap-up

» (Most) programming languages are both languages and machines

« Hoare-style reasoning and equational reasoning complement each other

%@m

