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But why?
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What is “semantics”?



Operational semantics
A programming language is treated as 
an abstract (symbolic) machine: 

• Terms are states 

• Computing is transitioning 

just like a Turing machine
A universal Turing machine by Moore (1952) 

which fits into one picture



But what is a language
In its ordinary sense, languages are systems for describing things 

⟦ a cat in a bag ⟧    =  
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It’s not always clear from the operational semantics what the language describes



Why we design languages

1. some mathematical concepts (sets, domains, 
sheaves, ∞-groupoids, quasi-Borel space…) 

2. terms up to some operational property 
(logical predicates/relations, contextual 
equivalence, applicative bisimilarity…)

Most PLs nowadays are designed for describing certain things easily:

{ Γ ⊢ t : τ | t blah blah in the  
                   operational semantics }

{ Γ ⊢ t : τ } / ≅obs
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Checklist (ver. 2)
Formalise the syntax 

Formalise the “intended” denotational model (which may be based on 
operational semantics)

But there is no reason to have just one model:

Set-theoretic 
model

Normalisation 
model

Realisability model

Translation to PHP

…



Formalise the syntax of the language 

Formalise the general notion of models 

Define the models that we are interested in 

Programming and reasoning model-independently if possible 

Checklist (final)

This can be called the logical approach to program verification.



This paper, conceptually
A framework for formalising first-order languages: 

• The user specifies a language by operations and equational axioms 

• The library provides  

• models: a set implementing all operations  

• free models: syntactic terms quotiented by equations 

• reasoning tools for free models



An example
A language for nondeterministic parsing is specified by 

• Operations 

• get, put for accessing the token stream 

• or, fail for nondeterministic branching 

• Axioms 

• These two groups of operations commute with each other 

• Some standard equations on each of them, e.g. or(x, or(y, z)) = or(or(x, y), z) 

• Models: free models, String -> Bag A, terms up to bisimilarity, …



An example
Parsers can be defined as elements in the free model (Term below). 

A fragment of a parser of binary trees with leaves ♢ and ♠: 



For two elements s and t in the free model,

Equational Reasoning

s equals t

s can be rewritten to t by 
the equational axioms

s and t have equal 
meanings in all models



In principle, from the equational axioms, we can show that 

for every tree t and sufficiently large n.

An example

(do push (print t); parse-tree n)   =   return t 
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for every tree t and sufficiently large n.

An example

(do push (print t); parse-tree n)   =   return t 

A direct equational proof is painful…



Hoare-style reasoning
A generic Hoare logic by Schröder and Mossakowski (2003) is formalised: 

• Assertions P, Q are programs in the free model returning (h-)propositions Ω 

• The Hoare triple {P} x ← t {Q x} is encoded as an equality:

do a ← P  
     x ← t  
     b ← Q x 
     return (x, a ⇒ b)

do a ← P 
     x ← t  
     b ← Q x 
     return (x, True)

=



Connecting the two worlds
A proposition established using Hoare logic can be used in equational reasoning 

Main theorem. Given {} x ← t {return φ(x)} and ∀ x . φ(x) → f(x) = g(x) then 

(x ← t; f(x))    =    (x ← t; g(x)) 

Proof (classically). easy 

Proof (constructively). surprisingly hard and bizarre… 

Usage: turning tedious equational proofs to more intuitive Hoare-style proofs.



An example
It is easier to first show a Hoare triple 

from which we can derive the earlier goal (do push (print t); parse-tree n) = return t.

{remaining (print t ++ r)}  
t′ ← parse-tree n 
{return (t′ ≡ t) ∧ remaining r}



Wrap-up
• (Most) programming languages are both languages and machines 

• Hoare-style reasoning and equational reasoning complement each other

Thank you


