
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

42

Scoped Effects and Their Algebras

ZHIXUAN YANG, Imperial College London, United Kingdom
MARCO PAVIOTTI, Imperial College London, United Kingdom
NICOLAS WU, Imperial College London, United Kingdom
BIRTHE VAN DEN BERG, KU Leuven, Belgium
TOM SCHRIJVERS, KU Leuven, Belgium

Algebraic effects are not ideal for modularly modelling effect operations that delimit a scope. Two recent
proposals for scoped effects aim to address this shortcoming, one that is more ad-hoc and suited for practical
implementation and the other theoretically founded on a free monad in an indexed category, but less convenient
for implementation purposes.

In this paper we aim to provide the best of both worlds, a theoretically-founded model of scoped effects that
is convenient for implementation. In fact, we present two alternative models based on alternative adjunctions
that give rise to alternative implementations. The first is a simple, less structured approach based on Eilenberg-
Moore algebras that shows how scoped effects can be encoded in existing algebraic effects language. The
second, which we consider to be the sweet spot between between ease of implementation and provided
structure, is based on functorial algebras.

Using comparison functors we show that these two novel approaches are equivalent to one another and the
earlier indexed approach. We exploit this fact with the fusion rules of the different approached to construct
hybrid folds that mix the program syntax of one approach with the algebras of another.

Finally, to demonstrate the practical implementability of functorial algebras we provide a range of examples
in both Haskell and OCaml.

ACM Reference Format:
Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. 2020. Scoped Effects and
Their Algebras. Proc. ACM Program. Lang. 1, ICFP, Article 42 (January 2020), 28 pages.

1 INTRODUCTION
For a long time monads [Moggi 1991] have been the go-to approach for purely functional modelling
of and programming with side effects. However, in recent years an alternative approach, algebraic
effects, is gaining more traction. A big breakthrough has been the introduction of handlers, which
has made algebraic effects suitable for programming and has led to numerous dedicated languages
and libraries.

In comparison to monads, algebraic effects provide a more structured approach for defining and
composing effects, which explains much of their appeal. A disadvantage of algebraic effects is that
they are less expressive; not all effects can be easily expressed or composed within its confines.
Notably, Wu et al. [2014] identified the class of scoped effects that do not fit the mold. Operations
like catch for exception handling or once for restricting nondeterminism are not conventional
algebraic operations because they are not atomic; instead they delimit a computation within their
scope. These operations are also not adequately expressed as handlers because this limits their
compositionality.

Authors’ addresses: Zhixuan Yang, s.yang20@imperial.ac.uk, Department of Computing, Imperial College London, United
Kingdom; Marco Paviotti, m.paviotti@imperial.ac.uk, Department of Computing, Imperial College London, United Kingdom;
Nicolas Wu, n.wu@imperial.ac.uk, Department of Computing, Imperial College London, United Kingdom; Birthe van
den Berg, birthe.vandenberg@kuleuven.be, KU Leuven, Department of Computer Science, Belgium; Tom Schrijvers, tom.
schrijvers@kuleuven.be, KU Leuven, Department of Computer Science, Belgium.

Unpublished working draft. Not for distribution.2020. 2475-1421/2020/1-ART42 $15.00
https://doi.org/

2021-04-06 17:05. Page 1 of 1–28. Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

https://doi.org/

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

42:2 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

To remedy the situation, Wu et al. [2014] proposed a practical, but ad-hoc generalization of
algebraic effects that encompasses scoped effects. Their approach has been adopted by several
algebraic effects libraries. More recently, Piróg et al. [2018] sought to put this ad-hoc approach for
scoped effects on the same formal footing as algebraic effects. Indeed, they wished to derive the
syntax of programs with scoped effects and its handlers from a free monad construction and its
associated recursion scheme. First they sought such a construction on the base category of sets or
types or on the category of endofunctors thereof, because these lead to a relatively straightforward
implementation inmany programming languages. Yet, in the end they had to settle for a construction
on a level-indexed category, which is not ideal for widespread implementation as it requires support
for languages with dependent typing, in at least a limited form like gadts [Johann and Ghani
2008]. Acknowledging this downside, they have partly compensated for it with an ad-hoc hybrid
recursion scheme that requires indexing for the handlers, but not for the program syntax.

This paper revisits the challenge of scoped effects. We present a new characterisation that is both
principled and formally grounded like that of Piróg et al. [2018]. At the same time our approach can
be practically implemented without the need for dependent types or GADTs, making it available
for a wider range of programming languages. The chief insight of our paper is to demonstrate that
there are three ways of interpreting scoped operations: indexed algebras, Eilenberg-Moore algebras,
and functorial algebras. As we shall see, although equivalent in expressivity, these different algebras
come with different trade-offs.
The following diagram summarises the more technical results of this paper, where there are

three ways of interpreting scoped operations, each corresponding to a category:

Fn-Alg
(Section 4)

Ix-Alg
(Section 2)

C𝐸

(Section 3)𝐾Fn
Ix

(Section 5.4, 6.1)
𝐾Ix
EM

(Section 5.2)

𝐾EM
Fn (Section 5.3)

Syntax trees with scoped operations are expressed by a monad 𝐸 : C→ C. The three interpretations
of these operations are in terms of three categories that are connected to C by an adjunction that
gives rise to the monad 𝐸 : C→ C. The indexed algebras inhabit the Ix-Alg category (Section 2),
Eilenberg-Moore algebras inhabit the category C𝐸 (Section 3), and the functorial algebras inhabit
the Fn-Alg category (Section 4).
The Eilenberg-Moore category C𝐸 is built directly from 𝐸, and it has the well-known property

that there is a unique functor to it from all other categories that give rise to 𝐸 through an adjunction
(Section 5.2). To establish that the three representations can be translated into one another, we first
show that there is a functor 𝐾 EM

Fn that translates Eilenberg-Moore algebras to functorial algebras
(Section 5.3). Having established this, we close the circle by showing that the functorial algebras of
Fn-Alg can be translated into an indexed algebra by a functor 𝐾 Fn

Ix (Section 5.4). Crucially, we show
that the functors 𝐾 Fn

Ix , 𝐾 Ix
EM and 𝐾 EM

Fn preserve interpretation, and thus the three kinds of algebras have
equal expressivity for interpreting scoped operations.
We approach this material with the background to the indexed algebras of Piróg et al. [2018]

(Section 2), and then the main contributions of this paper are:
• We show that, by relinquishing structural recursion but not expressivity, we can use Eilenberg-
Moore algebras: these can be implemented in languages with general recursion and higher-
order functions (Section 3).
• We present a construction of scoped effects based on functorial algebras: these do not relin-
quish structural recursion, and are more readily expressed in languages without gadts or
dependent types (Section 4).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020. 2021-04-06 17:05. Page 2 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Scoped Effects and Their Algebras 42:3

• By constructing functors between their respective categories that preserve interpretation we
show that, in terms of expressive power for interpreting scoped operations, Eilenberg-Moore
algebras, functorial algebras and indexed algebras are equal (Section 5).
• We present the fusion laws for interpreting scoped operations, which allows us to establish
that the hybrid fold recursion scheme of Piróg et al. [2018] coincides with interpreting with
indexed algebras, putting it on solid formal footing (Section 6).
• Throughout the paper we demonstrate our techniques with a number of examples using an
implementation in Haskell and in OCaml.

Finally, we discuss related work (Section 7) and conclude (Section 8).

2 SYNTAX AND SEMANTICS OF SCOPED OPERATIONS
In this section we introduce the syntax and semantics for operations with scopes. To provide
intuitions, we start with several programming examples of nondeterministic search with scoped
operations and indexed algebras in Section 2.1, and then we show the formal theory underlying
scoped operations in Section 2.2.

2.1 Working With Scoped Operations
The starting point for scoped operations is that they work with two functors, Σ and Γ, where Σ is
the signature of ordinary algebraic effects, and Γ is the signature of scoped effects.

data Prog Σ Γ a = Return a | Call (Σ (Prog Σ Γ a)) | Enter (Γ (Prog Σ Γ (Prog Σ Γ a)))
This datatype can be used to represent programs that either return a pure value x with Return x ,
call an operation op that has a continuation k with Call (op k), or enter a scoped computation
scope with Enter (scope k).
For instance, the effect of nondeterministic choice can be modelled using the Choice signature,

which is a functor in a:

data Choice a = Fail | Or a a deriving Functor

Operation Fail indicates that there is no choice, and Or x y indicates that either x or y is available.
There is a monad instance of Prog that allows us to compose programs sequentially:

instance (Functor f , Functor g) ⇒ Monad (Prog f g) where
return = Return

Return x >>= f = f x
Call op >>= f = Call (fmap (>>=f) op)
Enter sc >>= f = Enter (fmap (fmap (>>=f)) sc)

With the help of the monadic structure and smart constructors fail = Call Fail and or x y =

Call (Or x y), we can write programs such as the following:

select :: Functor Γ ⇒ [a] → Prog Choice Γ (a, [a])
select [] = fail
select (x : xs) = return (x , xs) ‘or‘ do { (y , ys) ← select xs; return (y , x : ys) }

This program takes a list xs and returns all pairs of the form (z , zs), where z :zs is some permutation
of xs. This can be use to select an element without replacement from xs, leaving the remaining
unselected elements in zs.

To produce all the permutations in a list, we can define the perm program:

perm :: Functor Γ ⇒ [a] → Prog Choice Γ [a]

2021-04-06 17:05. Page 3 of 1–28. Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

42:4 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

perm [] = return []
perm xs = do (y , ys) ← select xs; zs← perm ys; return (y : zs)

This uses select to pick out the first element y in a permutation, and adds this to the result of
permuting the rest of ys. So far, this is is essentially the same as programming within the list monad.

The beauty of algebraic effects stated in this way is that a semantics to this program can be easily
given by stating how Return and the operations Fail and Or should be interpreted. Functions that
interpret Return are called generators, and functions that interpret operations are called algebras.

If using the list monad is desired then the following functions would be enough information to
completely determine a function list :: Functor Γ ⇒ Prog Choice Γ a→ [a], where list (perm xs)
produces all permutations of xs.

returnlist :: a→ [a] calllist :: Choice [a] → [a]
returnlist x = [x] calllist Fail = []

calllist (Or xs ys) = xs ++ ys

With suitable engineering, these functions are used to replace all occurrences of Return, Fail and
Or with computations producing all solutions to a nondeterministic computation. The function list ,
and others like it that use generators and algebras to interpret a program are called handlers.
Handlers allow different interpretations of a program. For instance, here is another generator

and algebra for the same trees:

returnrand :: a→ [Bool] callrand :: Choice ([Bool] → Maybe a) → ([Bool] → Maybe a)
→ Maybe a callrand Fail bs = Nothing

returnrand x bs = Just x callrand (Or fxs fys) (b : bs) = if b then (fxs bs) else (fys bs)
These functions can be used to define rand :: Functor Γ ⇒ Prog Choice Γ a→ [Bool] → Maybe a,
where this time rand (perm xs) bs will return a random permutation of xs when given a random
stream of booleans bs.

So far, we have focused on algebraic effects, which are given by algebras that distribute through
bind. However, not all programs can be interpreted by algebras. For instance, searching for solutions
in a nondeterministic program is rarely done by enumerating all the possibilities: heuristics are
usually employed to reduce the search space. One such heuristic is to use the once operation, which
returns only the first solution of the program in its argument. Piróg et al. [2018] demonstrated that
this is not an algebraic operation, and is instead a scoped operation. To see this, for example, the
following program is intended to return either 0 or 1:

do {x ← once (return 0 ‘or‘ return 1); return x ‘or‘ return (x + 1) }
= do {x ← return 0; return x ‘or‘ return (x + 1) }
= return 0 ‘or‘ return (0 + 1)

but if once is an algebraic operation [Plotkin and Power 2002], then

do {x ← once (return 0 ‘or‘ return 1); return x ‘or‘ return (x + 1) }
= once ((return 0 ‘or‘ return (0 + 1)) ‘or‘ (return 1 ‘or‘ return (1 + 1)))
= return 0

Thus operations like once that delimit a scope but are not algebraic shall be treated differently from
algebraic ones. We represent such scoped operations by the Γ signature:

data Once a = Once a deriving Functor

once :: Functor Σ⇒ Prog Σ Once a→ Prog Σ Once a

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020. 2021-04-06 17:05. Page 4 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Scoped Effects and Their Algebras 42:5

data Nat = Zero | Nat + 1
data IxAlg Σ Γ a =

IxAlg {action :: ∀n. Σ (a n) → a n, demote :: ∀n. Γ (a (n + 1)) → a n, promote :: ∀n. a n→ a (n + 1) }
hfold :: (Functor f , Functor g) ⇒ IxAlg f g a→ ∀n. Prog f g (a n) → a n
hfold ixAlg (Return x) = x
hfold ixAlg (Call op) = action ixAlg (fmap (hfold ixAlg) op)
hfold ixAlg (Enter scope) = demote ixAlg (fmap (hfold ixAlg · fmap (promote ixAlg · hfold ixAlg)) scope)

Fig. 1. The hybrid fold for interpreting monad 𝐸 with indexed algebras [Piróg et al. 2018]

once p = Enter (Once (fmap Return p))

The type of Enter :: Γ (Prog Σ Γ (Prog Σ Γ a)) → Prog Σ Γ a shows that this is no ordinary
operation. Its argument is a program whose leaves are themselves programs: each invocation of
once creates a new nested level of interpretation.

For our example of nondeterminism, if we wish to collect all the solutions using semantics like
that of list , interpreting the part of the program do {x ← once p; k } inside the scope of once
will return a value of type [[a]]. This nested structure must then be collapsed to extract a final
list. We will write [[a]]n to represent a list with n levels of extra nesting. That is, [[a]]0 = [a],
[[a]]1 = [[a]], [[a]]2 = [[[a]]] and so on.
The algebras for working with algebraic operations remain essentially the same, but the scoped

operations require special treatment to deal with the nested structure. Interpreting such operations
requires functions that promote and demote values from scoped contexts.

promoteonce :: ∀(n :: Nat). [[a]]n → [[a]]n+1 demoteonce :: ∀(n :: Nat). Once [[a]]n+1 → [[a]]n
promoteonce xs = [xs] demoteonce (Once []) = []

demoteonce (Once (xs : xss)) = xs

The promoteonce function adds an extra level of nesting, reflecting the fact that we are entering one
extra layer of scope. It does so by simply returning a list containing the given list. The demoteonce

function must remove one level of nesting, and it does so by picking the first nested list if it exists.
Together with the functions returnlist and calllist , it is possible to write a handler for scoped

operations of type Prog Choice Once a → [a] that extracts all possible solutions, modulo those
pruned by the once heuristic. Note that this implementation is only made possible in the presence
of type-level programming because of the natural number indices in the type [[a]]n. In Haskell,
this requires extensions such as gadts and judicial use of types to encode natural numbers, or the
DataKinds extension, that allows values to be treated as types.
Scoped operations can be interpreted by hfold , a function we call a hybrid fold for reasons we

discuss later. The implementation given by Piróg et al. [2018] is in Figure 1.

2.2 Foundations of Scoped Operations
In the rest of this section we introduce the categorical foundation underlying scoped operations and
indexed algebras introduced by [Piróg et al. 2018]. As we will see in later sections, the categorical
formulation not only provides an elegant unifying framework to describe algebras of scoped
operations, but also equips us with useful tools to construct, compare and even optimise them, and
indeed some of our proofs are made much easier by some elementary results in category theory.
Thus we believe that our effort of going abstract here is worthwhile.

2021-04-06 17:05. Page 5 of 1–28. Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

42:6 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

Throughout this paper, we use boldface letters such as C and D for variables of categories and
typewriter font for specific categories such as Set and Ix-Alg. Functors and objects are denoted by
capitalised letters such as 𝐹 ,𝐾 ,𝐺 ,𝑋 ,𝐴 in general, and functors representing signatures are always
denoted by Greek letters Γ and Σ, and some specific functors are denoted by typewriter font such
as Free and Ix. Morphisms and natural transformations are denoted by uncapitalised letters such
as 𝑓 , 𝑔 and ℎ and Greek letters such as 𝛼 , 𝛽 and 𝜏 .
For any two categories C and D, we write C × D for their product category, whose objects

are denoted by ⟨𝑋 ,𝑌 ⟩ where 𝑋 : C and 𝑌 : D and morphisms are also denoted by ⟨𝑓 ,𝑔⟩ where
𝑓 : 𝑋 → 𝑋 ′ and 𝑔 : 𝑌 → 𝑌 ′. The functor category from C to D is denoted by DC. We also use
𝑋 ×𝑌 for the product of two objects in a category and 𝑋 +𝑌 for their coproduct. For coproducts, the
injection morphisms to a coproduct are denoted by 𝜄𝑛 : 𝑋 → 𝑋1+· · ·+𝑋𝑛 , and the unique morphism
from the universal property of the coproduct is denoted by [𝑓1, . . . , 𝑓𝑛] : 𝑋1 + · · · + 𝑋𝑛 → 𝑍 where
𝑓𝑖 : 𝑋𝑖 → 𝑍 for each 𝑖 . Lastly, the (carrier of) initial algebra of an endofunctor𝐺 : C→ C is denoted
by 𝜇𝐺 or 𝜇𝑌 . 𝐺𝑌 , and the catamorphism from it to a 𝐺-algebra 𝛼 : 𝐺𝑋 → 𝑋 is denoted by L𝛼M.

2.2.1 Syntax of Scoped Operations. We assume a categoryC to be the base category where programs
live. The category C is assumed to have finite products and coproducts and, for simplicity, to have
enough initial algebras to model the syntax of programs. A signature Σ is a finite collection of
operations {op𝑖 }1⩽𝑖⩽𝑛 , where each op𝑖 has arity 𝜎 (𝑖) ∈ N

op𝑖 : 𝑋 × · · · × 𝑋︸ ︷︷ ︸
𝜎 (𝑖)

→ 𝑋

and thus can be represented by endofunctors Σ : C→ C such that Σ𝑋 = 𝑋𝜎 (1) + · · · +𝑋𝜎 (𝑛) where
𝑋 𝑖 denotes the 𝑖-fold product of 𝑋 . Throughout this paper, we fix two signature functors Σ and Γ
for algebraic and scoped operations respectively.
As we have seen in the programming examples, the syntax of programs involving scoped

operations are modelled by datatype Prog f g, which is a nested datatype [Bird and Paterson 1999;
Johann and Ghani 2007]. Following Piróg et al. [2018], we model it by an initial algebra in the
endofunctor category CC.

Definition 2.1 (Syntax Endofunctor). Given signature functors Σ and Γ of algebraic and scoped
operations respectively, letting functor 𝐺 : CC → CC be 𝐺𝐻 = Id + Σ𝐻 + Γ𝐻𝐻 , then the syntax
endofunctor 𝐸 : CC is defined to be the initial algebra 𝜇𝐺 , which models syntax trees of programs
involving operations from Σ and Γ.

For modelling sequential composition of programs, Piróg et al. [2018] showed that the syntax
endofunctor 𝐸 can be equipped with a monadic structure based on the free monad induced by the
signature functor (Σ + Γ𝐸). We brief describe the construction below.
Given any endofunctor 𝐹 : CC, an 𝐹 -algebra is a tuple ⟨𝑋 : C,𝛼 : 𝐹𝑋 → 𝑋 ⟩ where the object 𝑋

is called the carrier and the morphism 𝛼 is called the structure map of the algebra, which represents
the operations on the carrier. An 𝐹 -algebra homomorphism from ⟨𝑋 ,𝛼⟩ to ⟨𝑋 ′,𝛼 ′⟩ is a morphism
𝑓 : 𝑋 → 𝑋 ′ in C such that it preserves the operations on the carrier 𝑋 , that is 𝑓 ·𝛼 = 𝛼 ′ · 𝐹 𝑓 . The
category of 𝐹 -algebras is denoted by 𝐹-Alg.

The category 𝐹-Alg is connected to its base category C through the free-forgetful adjunction:

𝐹-Alg C
Free𝐹

U𝐹

⊣ (1)

where U : 𝐹-Alg→ C is the obvious “forgetful” functor forgetting the structure map and returning
the carrier. Its left adjoint takes an object 𝐴 in C and gives an object in 𝐹-Alg called the free

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020. 2021-04-06 17:05. Page 6 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Scoped Effects and Their Algebras 42:7

𝐹 -algebra generated by 𝐴. The carrier of the free algebra is denoted by 𝐹 ∗𝐴 and its structure map is
denoted by op𝐴 : 𝐹𝐹 ∗𝐴→ 𝐹 ∗𝐴. The monad U𝐹Free𝐹 induced by this adjunction is also denoted by
𝐹 ∗ : C→ C.
Now back to scoped operations, as noted by Piróg et al. [2018], the syntax endofunctor 𝐸 is

isomorphic to the free monad (Σ + Γ𝐸)∗ as endofunctors. Thus we can equip 𝐸 with the same
monadic structure as (Σ + Γ𝐸)∗, which is precisely Prog shown in the beginning of Section 2.1.

2.2.2 Semantics of Scoped Operations. For algebraic operations, Plotkin and Pretnar [2013] intro-
duced the notion of handlers to give semantics to syntax trees of programs. Handlers are essentially
Σ-algebras for a signature functor Σ, and thus the adjunction FreeΣ ⊣ UΣ underpins both the syntax
and semantics of programs with algebraic operations: syntax is modelled by the monad induced by
the adjunction Σ∗ = UΣFreeΣ, and semantics is given by the objects in Σ-Alg.
This approach is called the adjoint-theoretic approach to syntax and semantics by Piróg et al.

[2018], and they extended it to incorporate scoped operations that are not algebraic. In particular,
they defined a category Ix-Alg of algebras called indexed algebras of scoped operations, which are
intuitively natural for interpreting programs with scoped operations, and importantly, they showed
that there is an adjunction between Ix-Alg and the base category C that induces the monad 𝐸
modelling syntax of programs with scoped operations. Thus this adjunction mirrors the role played
by the free-forgetful adjunction for algebraic operations and handlers.

Specifically, their adjunction for indexed algebras is constructed by composing two adjunctions:

Ix-Alg C |N | C
↾

⇃UIx

FreeIx

⊣⊣ (2)

Here C |N | is the functor category from the discrete category |N| of natural numbers to the base
category C. That is to say, an object in C |N | is a family of objects 𝐴𝑖 in C indexed by natural
numbers 𝑖 ∈ |N|, and a morphism 𝜏 : 𝐴 → 𝐵 in C |N | is a family of morphisms 𝜏𝑖 : 𝐴𝑖 → 𝐵𝑖 in C
(with no coherence conditions between the levels). An endofunctor Ix : C |N | → C |N | is defined to
characterise indexed algebras:

Ix𝐴 = Σ𝐴 + Γ(⊳𝐴) + (⊲𝐴)
where (⊳) and (⊲) are functors C |N | → C |N | shifting indices such that (⊳𝐴)𝑖 = 𝐴𝑖+1 and (⊲𝐴)0 = 0
and (⊲𝐴)𝑖+1 = 𝐴𝑖 . Then indexed algebras are precisely objects in Ix-Alg. Since an morphism
(⊲𝐴) → 𝐴 is in bijection with 𝐴→ (⊳𝐴), an indexed algebra can be given by the following tuple:

⟨𝐴 : C |N | , 𝑎 : Σ𝐴→ 𝐴, 𝑑 : Σ(⊳𝐴) → 𝐴, 𝑝 : 𝐴→ (⊳𝐴)⟩
the intuition for indexed algebras is that the carrier 𝐴𝑖 at level 𝑖 interprets programs enclosed by 𝑖
layers of scopes, and thus it must provide a way 𝑝 to promote the carrier to the next level when it
enters a scope, and a way 𝑑 to demote the carrier when it exists a scoped operation, and additionally
the morphism 𝑎 interprets ordinary algebraic operations.

Example 2.1. We reformulate our programming example of the indexed algebra for nondetermin-
istic choice with once shown in Section 2.1 here. Let C be the category of sets and Σ𝑋 = 1 + 𝑋 × 𝑋
representing the coproduct of algebraic operations fail and or , and Γ𝑋 = 𝑋 representing the unary
scoped operation once. Let List : Set → Set be the endofunctor mapping a set 𝑋 to the set of
lists whose elements are in 𝑋 . For any set 𝑋 , we define an object 𝐴 : C |N | by 𝐴0 = List 𝑋 and
𝐴𝑖+1 = List 𝐴𝑖 . The object 𝐴 carries an indexed algebra with structure maps
𝑎𝑖 (𝜄1 ★) = nil 𝑎𝑖 (𝜄2 ⟨𝑥 ,𝑦⟩) = 𝑥 ++𝑦 𝑑𝑖 (nil) = nil 𝑑𝑖 (cons x xs) = 𝑥 𝑝𝑖 (𝑥) = cons x nil

where ★ is the only element in singleton set 1, and nil is the empty list, and ++ is list concatenation,
and cons x xs is the list with an element x in front of xs.

2021-04-06 17:05. Page 7 of 1–28. Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

42:8 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

The adjunction FreeIx ⊣ UIx in (2) is the free-forgetful adjunction for endofunctor Ix on C |N | .
The other adjunction ↾⊣⇃ is given by

(↾ 𝑋)0 = 𝑋 (↾ 𝑋)𝑖+1 = 0 ⇃ 𝐴 = 𝐴0

As shown by Piróg et al. [2018], the monad ⇃ UIxFreeIx ↾ induced by adjunction (2) is isomorphic
to monad 𝐸 modelling syntax. Thus we can interpret scoped operations with an indexed algebra by

eval⟨𝐴,𝑎,𝑑 ,𝑝 ⟩ 𝑔 = ⇃ UIx (𝜖 ⟨𝐴,𝑎,𝑑 ,𝑝 ⟩ · FreeIx ↾ 𝑔) : 𝐸𝐴 � (⇃ UIxFreeIx ↾)𝐴→ 𝐴0 (3)

where 𝜖 is the counit of the adjunction (2). The implementation hfold in Figure 1 is not a direct
implementation of eval though. The connection between them will be the subject of Section 6.2.
In summary, the syntax of scoped operations is modelled by an endofunctor 𝐸 = 𝜇𝐺 (Defini-

tion 2.1), which is equipped with the monadic structure of (Σ + Γ𝐸)∗. One way to give semantics
to scoped operations is by indexed algebras whose associated adjunction (2) induces a monad
isomorphic to 𝐸. In the following sections, we will present other kinds of algebras for scoped
operations that avoid certain drawbacks of indexed algebras, and for each way of interpreting
scoped operations, there is always an adjunction inducing an monad isomorphic to 𝐸.

3 INTERPRETING SCOPED OPERATIONS WITH EILENBERG-MOORE ALGEBRAS
A downside of indexed algebras is that their implementation needs types indexed by natural
numbers, which do not exist in themajority of programming languages nowadays. In this section, we
introduce a more implementation-friendly but less structured approach to scoped operations based
on the Eilenberg-Moore adjunction (Section 3.1) and we show it implementable in a programming
language with only higher-order functions and general recursion (Section 3.2).

3.1 Eilenberg-Moore Algebras of Scoped Effects
For a brief background, given any monad 𝑀 : C→ C, an Eilenberg-Moore algebra (EM algebra
for short) [Mac Lane 1998] is an object 𝑋 in C together with a structure map 𝛼 : 𝑀𝑋 → 𝑋 that
“behaves well” w.r.t. the unit and multiplication of the monad as described in the following diagram:

𝑋 𝑀𝑋

𝑋

𝜂

id
𝛼

𝑀𝑀𝑋 𝑀𝑋

𝑀𝑋 𝑋

𝜇𝑋

𝛼

𝛼

𝑀𝛼

For a pair of Eilenberg-Moore algebras ⟨𝑋 ,𝛼⟩ and ⟨𝑋 ′,𝛼 ′⟩, a morphism between them is a morphism
𝑓 : 𝑋 → 𝑋 ′ inC that respects the algebra structure, that is 𝑓 ·𝛼 = 𝛼 ′ ·𝑀𝑓 . The category of Eilenberg-
Moore algebras and their morphisms is denoted by C𝑀 . An adjunction 𝐿 ⊣ 𝑅 for some 𝐿 : C→ D is
monadic if D and C𝑅𝐿 are equivalent, and is strictly monadic if these two categories are isomorphic.
Notably, adjunction Free𝐹 ⊣ U𝐹 is strictly monadic, and thus 𝐹-Alg is isomorphic to C𝐹 ∗ .
Since handlers of algebraic operations are essentially Eilenberg-Moore algebras over the free

monad Σ∗ of the signature functor Σ, we are interested in using the Eilenberg-Moore algebras over
the syntax monad 𝐸 (Definition 2.1) for interpretation as well. As we explained in Section 2, the
monadic structure of 𝐸 is given by the free monad (Σ + Γ𝐸)∗, so the Eilenberg-Moore algebras of 𝐸
are equivalent to those of (Σ+ Γ𝐸)∗. Furthermore, since the adjunction inducing (Σ+ Γ𝐸)∗ is strictly
monadic [Mac Lane 1998], the Eilenberg-Moore algebras of (Σ + Γ𝐸)∗ are equivalent to the algebras
over the endofunctor (Σ + Γ𝐸), which are objects 𝑋 in C paired with a morphism Σ𝑋 + Γ𝐸𝑋 → 𝑋

with no coherence conditions.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020. 2021-04-06 17:05. Page 8 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Scoped Effects and Their Algebras 42:9

Based on these observations, we obtain a way of interpreting scoped operations based on the
free-forgetful adjunction FreeΣ+Γ𝐸 ⊣ UΣ+Γ𝐸 : give an EM algebra of 𝐸 in the form of

⟨𝑋 : C, 𝛼Σ : Σ𝑋 → 𝑋 , 𝛼Γ : Γ𝐸𝑋 → 𝑋 ⟩

then for any morphism 𝑔 : 𝐴→ 𝑋 and 𝐴 : C, the interpretation of 𝐸𝐴 by 𝑔 and this EM algebra is

eval⟨𝑋 ,𝛼Σ ,𝛼Γ ⟩ 𝑔 = UΣ+Γ𝐸 (𝜖 ⟨𝑋 ,𝛼Σ ,𝛼Γ ⟩ · FreeΣ+Γ𝐸 𝑔) : 𝐸𝐴 � (Σ + Γ𝐸)∗𝐴→ 𝑋 (4)

The morphism 𝑔 transforms the returned value 𝐴 into the carrier 𝑋 , so it corresponds to the ‘return
clause’ of effect handlers [Plotkin and Pretnar 2013]. The formula (4) can be turned into a more
direct form by the following standard result relating free algebras and initial algebras [Barr 1970].

Lemma 3.1. For any functor 𝐹 : C→ C on some category C, if the initial algebra ⟨𝜇𝑌 . 𝑋 + 𝐹𝑌 , in⟩
exists for any 𝑋 : C, then the free algebra (𝐹 ∗𝑋 , op𝑋 : 𝐹𝐹 ∗𝑋 → 𝐹 ∗𝑋) is isomorphic to

⟨𝜇𝑌 . 𝑋 + 𝐹𝑌 , in · 𝜄2 : 𝐹 (𝜇𝑌 . 𝑋 + 𝐹𝑌) → (𝜇𝑌 . 𝑋 + 𝐹𝑌)⟩

Moreover, if the isomorphism between them is 𝜙 : 𝐹 ∗𝑋 → 𝜇𝑌 .𝑋 + 𝐹𝑌 , then the unit and counit of the
free-forgetful adjunction Free𝐹 ⊣ U𝐹 are

𝜂𝑋 = 𝜙−1 · in · 𝜄1 : 𝑋 → 𝐹 ∗𝑋 𝜖 ⟨𝐶 ,𝛽 :𝐹𝐶→𝐶 ⟩ = L[id, 𝛽]M ·𝜙 : ⟨𝐹 ∗𝐶 , op𝐶⟩ → ⟨𝐶 , 𝛽⟩ (5)

and the multiplication of the monad 𝐹 ∗𝑋 satisfies

𝜇𝑋 = U𝐹 (𝜖Free𝐹𝑋) = L[id, op𝑋]M ·𝜙 : 𝐹 ∗ (𝐹 ∗𝑋) → 𝐹 ∗𝑋

Theorem 3.2 (Interpreting with EM Algebras). Given an Eilenberg-Moore algebra carried by 𝑋 : C
with structure maps 𝛼Σ : Σ𝑋 → 𝑋 and 𝛼Γ : Γ𝐸𝑋 → 𝑋 , for any morphism 𝑔 : 𝐴→ 𝑋 in C for some 𝐴,
the interpretation of 𝐸𝐴 with this algebra and 𝑔 satisfies

eval⟨𝑋 ,𝛼Σ ,𝛼Γ ⟩ 𝑔 = [𝑔, 𝛼Σ · Σ(eval⟨𝑋 ,𝛼Σ ,𝛼Γ ⟩ 𝑔), 𝛼Γ · ΓΣ(eval⟨𝑋 ,𝛼Σ ,𝛼Γ ⟩ 𝑔)] · in◦𝐴 (6)

where in◦ : 𝐸 → Id + Σ𝐸 + Γ𝐸𝐸 is the isomorphism between 𝐸 and 𝐺𝐸.

Proof. It directly follows from the formula of 𝜖 (5) for the free-forgetful adjunction. □

3.2 Implementation of EM Algebras of Scoped Effects
The chief advantage of Eilenberg-Moore algebras of scoped operations is its simplicity in terms
of implementation. Based on our Haskell representation Prog Σ Γ of syntax trees of programs
in Section 2.1, an Eilenberg-Moore algebra is a carrier type x with two functions Σ x → x and
Γ (Prog Σ Γ x) → x where Σ and Γ are the signature functors of algebraic and scoped operations.
We represent these data as a record

data EMAlg Σ Γ x = EM {callEM :: Σ x → x , enterEM :: Γ (Prog Σ Γ x) → x }

with two components respectively interpreting calls to algebraic operations and entering scopes.
Then formula (6) can be straightforwardly translated into a recursive program interpreting programs
with an EM algebra:

evalEM :: (Functor Σ, Functor Γ) ⇒ (EMAlg Σ Γ x) → (a→ x) → Prog Σ Γ a→ x
evalEM alg gen (Return x) = gen x
evalEM alg gen (Call op) = (callEM alg · fmap (evalEM alg gen)) op
evalEM alg gen (Enter op) = (enterEM alg · fmap (fmap (evalEM alg gen))) op

2021-04-06 17:05. Page 9 of 1–28. Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

42:10 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

Example 3.1. The scoped operation once in Section 2 can be interpreted by the following EM
algebra:

onceAlgEM :: EMAlg Choice Once [a]
onceAlgEM = EM { . . } where

callEM :: Choice [a] → [a]
callEM Fail = []
callEM (Or x y) = x ++ y

enterEM :: Once (Prog Choice Once [a]) → [a]
enterEM (Once p) =

case evalEM onceAlgEM (𝜆x → [x]) p of
[] → []
(x : _) → x

Note that this algebra interprets the program inside the scope of once by a recursive call to evalEM

with the algebra itself.

As demonstrated in the example above, EM algebras have complete control over how to handle
the program inside scopes, which can be considered harmful since it does not adequately reflect the
structures in the algebras of scoped operations, making optimisation and reasoning more difficult.
Yet, the merit of EM algebras is their simplicity—their implementation is readily ported to any
language with higher-order functions and inductive datatypes, which is not a strong requirement.

4 INTERPRETING SCOPED OPERATIONS WITH FUNCTORIAL ALGEBRAS
We have seen that Eilenberg-Moore algebras are easier to implement than indexed algebras but less
structured. In this section, we present another way of interpreting scoped operations by functorial
algebras, which we believe is at a sweet point in the trade-off between structuredness and simplicity.
The idea of functorial algebras stems from the fact that the syntax of scoped operations is modelled
by an initial algebra 𝐸 = 𝜇𝐺 inCC. Following the fruitful line of research on initial algebra semantics
[Goguen et al. 1977; Hagino 1987; Johann and Ghani 2007, 2008], a natural way to interpret 𝐸 is
by an endofunctor 𝐻 carrying a 𝐺-algebra 𝛼𝐺 : 𝐺𝐻 → 𝐻 , which then induces the catamorphism
L𝛼𝐺M : 𝐸 → 𝐻 in CC. However, since we presuppose that programs live in the base category C, at
the end of the day, we need to interpret programs by morphisms 𝐸𝐴→ 𝑋 for some 𝐴 and 𝑋 in the
base category C. Hence we additionally equip a𝐺-algebra𝐻 with an object𝑋 : C that interprets the
part of a program not inside any scoped operation, and use the endofunctor 𝐻 only for interpreting
the inner layers of the program. We call such a pair 𝐻 and 𝑋 a functorial algebra.
After defining functorial algebras formally (Section 4.1), we show that there is an adjunction

between the category of functorial algebras and the base category (Section 4.2), and importantly,
this adjunction induces a monad isomorphic to 𝐸 that models the syntax of programs with scoped
operations. Hence functorial algebras can be used to interpret scoped operations modelled by the
monad 𝐸. Finally, we show a Haskell implementation of interpreting scoped operations of functorial
algebras and examples (Section 4.3).

4.1 Functorial Algebras
A functorial algebra is carried by a pair of an endofunctor 𝐻 : C→ C and an object 𝑋 in C. The
endofunctor 𝐻 is equipped with a morphism 𝛼𝐺 from 𝐺𝐻 (i.e. Id + Σ𝐻 + Γ𝐻𝐻) to 𝐻 in CC, and
the object 𝑋 is equipped with a morphism 𝛼 𝐼 : Σ𝑋 + Γ𝐻𝑋 → 𝐻 in C. The intuition is that given a
program of type 𝐸𝑋 � 𝑋 +Σ𝐸𝑋 +Γ𝐸𝐸𝑋 , the middle 𝐸 in Γ𝐸𝐸 corresponds to the part of the program
inside scoped operations, and it is interpreted as 𝐻 by 𝛼𝐺 . After this, 𝛼 𝐼 interprets the outermost
layer of the program as 𝑋 just as with interpreting free monads with no scoped operations.
We formalise the idea on the product category CC × C. Let 𝐼 : CC × C → C be a (bi-)functor

such that 𝐼𝐻𝑋 = Σ𝑋 + Γ𝐻𝑋 for any 𝐻 : CC and 𝑋 : C. Its action on morphisms is given by
𝐼𝜎 𝑓 = Σ𝑓 + Γ(𝜎 ◦ 𝑓) for any 𝜎 : 𝐻 → 𝐻 ′ and 𝑓 : 𝑋 → 𝑋 ′ where ◦ is horizontal composition.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 10 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Scoped Effects and Their Algebras 42:11

Then we define an endofunctor Fn on CC × C by Fn⟨𝐻 ,𝑋 ⟩ = ⟨𝐺𝐻 , 𝐼𝐻𝑋 ⟩ with the evident action on
morphisms.

Definition 4.1 (Functorial Algebras). A functorial algebra is an object ⟨𝐻 ,𝑋 ⟩ in CC × C paired
with a structure map Fn⟨𝐻 ,𝑋 ⟩ → ⟨𝐻 ,𝑋 ⟩, or equivalently a functorial is a quadruple〈

𝐻 : CC, 𝑋 : C, 𝛼𝐺 : 𝐺𝐻 → 𝐻 , 𝛼 𝐼 : 𝐼𝐻𝑋 → 𝑋
〉

Example 4.1. We reformulate the indexed algebra of nondeterminism with once here. Assuming
the notation in Example 2.1, we define natural transformations 𝛼Σ : ΣList → List and 𝛼Γ :
ΓListList → List by

𝛼Σ
𝑋 (𝜄1 ★) = nil 𝛼Σ

𝑋 (𝜄2 ⟨𝑥 ,𝑦⟩) = 𝑥 ++ 𝑦 𝛼Γ
𝑋 (nil) = nil 𝛼Γ

𝑋 (cons x xs) = 𝑥

Then for any set 𝑋 , ⟨List , List X⟩ carries a functorial algebra with structure maps

𝛼𝐺 = [𝜂List ,𝛼Σ,𝛼Γ] : 𝐺List → List 𝛼 𝐼 = [𝛼Σ
𝑋 ,𝛼

Γ
𝑋] : 𝐼List𝑋 → 𝑋

where 𝜂List : Id → List wraps any element into a singleton list.

Example 4.2. The last example demonstrates a common pattern in practice that the object com-
ponent 𝑋 of a functorial algebra is simply 𝐻𝑋 where 𝐻 is the endofunctor component, but it is not
necessarily so. For example, if one is only interested in the final number of possible outcomes, then
a functorial algebra is ⟨List ,N,𝛼𝐺 ,𝛼 𝐼 ⟩ where

𝛼 𝐼 (𝜄1 (𝜄1★)) = 0 𝛼 𝐼 (𝜄1 (𝜄2⟨𝑥 ,𝑦⟩)) = 𝑥 + 𝑦 𝛼 𝐼 (𝜄2 nil) = 0 𝛼 𝐼 (𝜄2 cons n ns) = 𝑛

4.2 An Adjunction for Functorial Algebras
In this subsection we show how functorial algebras can be used to interpret programs involving
scoped operations modelled by the monad 𝐸. We first construct an adjunction ⇑ ⊣ ⇓ (7) between the
base categoryC andCC×C, which is then composed with the free-forgetful adjunction FreeFn ⊣ UFn
between CC × C and Fn-Alg. The resulting adjunction (8) is proven to induce a monad isomorphic
to 𝐸 (Theorem 4.4), and by the adjoint-theoretic approach to syntax and semantics (Section 2.2.2),
this adjunction provides a means to interpret scoped operations modelled with the monad 𝐸.

We start with constructing ⇑ ⊣ ⇓ between CC and C. Let ⇑ : C→ CC ×C be the functor mapping
an object 𝑋 to ⟨0,𝑋 ⟩ where 0 : CC is the constant functor to the initial object in C. The action of ⇑
on morphisms is ⇑ 𝑓 = ⟨!, 𝑓 ⟩, where ! is the unique morphism from the initial object. The functor ⇑
is left adjoint to the projection functor, which we call ⇓ : CC × C→ C, mapping ⟨𝐻 ,𝑋 ⟩ to 𝑋 with
the obvious action on morphisms.

Lemma 4.1. For all 𝐻 in CC and 𝑋 in C, there is an isomorphism of of hom-sets

⌊·⌋ : CC × C(⇑𝐴, ⟨𝐻 ,𝑋 ⟩) � C(𝐴, ⇓⟨𝐻 ,𝑋 ⟩) : ⌈·⌉ (7)

natural in 𝐴 and ⟨𝐻 ,𝑋 ⟩.

Proof. Given a map 𝑓 : ⇑𝐴 → ⟨𝐻 ,𝑋 ⟩, that is a map ⟨𝑓1, 𝑓2⟩ : ⟨0,𝐴⟩ → ⟨𝐻 ,𝑋 ⟩, we define
⌈𝑓 ⌉ = 𝑓2. Conversely, given a map 𝑔 : 𝐴→ ⇓⟨𝐻 ,𝑋 ⟩, that is 𝑔 : 𝐴→ 𝑋 , we define ⌊𝑔⌋ = ⟨!,𝑔⟩ where
! : 0→ 𝐻 is the unique map from the initial object 0 in CC. Then it is easy to see that ⌈·⌉ and ⌊·⌋
are mutual inverses, and that this isomorphism satisfies the naturality requirements. □

Assuming enough initial algebras exist, let FreeFn be the functor mapping an object ⟨𝐻 ,𝑋 ⟩ in
CC × C to the free Fn-algebra and UFn be the forgetful functor. Then we have two adjunctions

2021-04-06 17:05. Page 11 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

42:12 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

depicted in the following diagram:

Fn-Alg CC × C C⊥
UFn

FreeFn
⊥
⇓

⇑
𝑇 (8)

The two adjunctions can be composed to an adjunction FreeFn ⇑ ⊣ ⇓ UFn between Fn-Alg and C.
We call the monad induced by this adjunction 𝑇 = ⇓ UFnFreeFn ⇑.

In the rest of this section, we prove that 𝑇 is isomorphic to 𝐸 in the category of monads, which
plays an essential role in this paper, since it allows us to interpret scoped operations 𝐸 with
functorial algebras. We first establish a lemma characterising the free Fn-algebra on the product
category CC ×C in terms of the free algebras in C and CC. The intuition is that the first component
of Fn⟨𝐻 ,𝑋 ⟩ is𝐺𝐻 , which does not depend on 𝑋 . Thus the first component of FreeFn⟨𝐻 ,𝑋 ⟩ should
be determined only by 𝐻 too.

Lemma 4.2. When𝐺∗𝐻 and (𝐼𝐺∗𝐻)∗𝑋 exists for any ⟨𝐻 ,𝑋 ⟩ : CC ×𝐶 , there is a natural isomorphism
between FreeFn and the functor FFn : CC × C→ Fn-Alg such that

FFn⟨𝐻 ,𝑋 ⟩ =
〈
⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩, ⟨op𝐺

∗

𝐻 , op(𝐼𝐺∗𝐻)
∗

𝑋
⟩
〉

with the evident action on morphisms.

Proof. By Lemma 3.1, the free Fn-algebra generated by ⟨𝐻 ,𝑋 ⟩ can be constructed from the
initial algebra of a functor Fn⟨𝐻 ,𝑋 ⟩ : CC × C→ CC × C where Fn⟨𝐻 ,𝑋 ⟩𝑌 = ⟨𝐻 ,𝑋 ⟩ + Fn𝑌 . Then we
show that an initial Fn⟨𝐻 ,𝑋 ⟩-algebra carried by ⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩ with structure map

⟨𝑖1, 𝑖2⟩ : Fn⟨𝐻 ,𝑋 ⟩ ⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩ = ⟨𝐻 +𝐺𝐻 ,𝑋 + 𝐼𝐺∗𝐻 ((𝐼𝐺∗𝐻)∗𝑋)⟩ → ⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩

where 𝑖1 = [𝜂𝐺
∗

𝐻
, op𝐺∗

𝐻
] : 𝐻 +𝐺 (𝐺∗𝐻) → 𝐺∗𝐻 and

𝑖2 = [𝜂 (𝐼𝐺∗𝐻)
∗

𝑋
, op(𝐼𝐺∗𝐻)

∗

𝑋
] : 𝑋 + 𝐼𝐺∗𝐻 ((𝐼𝐺∗𝐻)∗𝑋) → (𝐼𝐺∗𝐻)∗𝑋 .

To see that this Fn⟨𝐻 ,𝑋 ⟩-algebra is initial, consider any ⟨𝐶 ,𝐷⟩ in CC × C with structure map
⟨ 𝑗1, 𝑗2⟩ : Fn⟨𝐻 ,𝑋 ⟩ ⟨𝐶 ,𝐷⟩ → ⟨𝐶 ,𝐷⟩. We have

⟨𝑘1,𝑘2⟩ : Fn⟨𝐻 ,𝑋 ⟩-Alg
(〈
⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩, ⟨𝑖1, 𝑖2⟩

〉
,
〈
⟨𝐶 ,𝐷⟩, ⟨ 𝑗1, 𝑗2⟩

〉)
⇔

(
𝑘1 ∈ (𝐻 +𝐺−)-Alg

(
⟨𝐺∗𝐻 , 𝑖1⟩, ⟨𝐶 , 𝑗1⟩

))
∧

(
𝑘2 ∈ (𝑋 + 𝐼𝐺∗𝐻−)-Alg

(
⟨𝐼𝐺∗𝐻𝑋 , 𝑖2⟩, ⟨𝐷 , 𝑗2 ·(𝑋 + 𝐼𝑘1 id)⟩

))
⇔ 𝑘1 = ⌈ 𝑗1 · 𝜄1⌉ ⟨𝐶 ,𝑗1 · 𝜄2 ⟩ ∧ 𝑘2 = ⌈ 𝑗2 ·(𝑋 + 𝐼𝑘1) · 𝜄1⌉ ⟨𝐷 ,𝑗2 · (𝑋+𝐼𝑘1) · 𝜄2 ⟩

where we use subscripts of ⌈·⌉ to indicate the 𝐵 for some ⌈𝑓 ⌉ : 𝐿𝐴 → 𝐵. The calculation shows
that the Fn⟨𝐻 ,𝑋 ⟩-algebra homomorphism (𝑘1,𝑘2) uniquely exists, and thus ⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩ with
structure map ⟨𝑖1, 𝑖2⟩ is initial. Then by Lemma 3.1, this initial algebra gives the free Fn-algebra
generated by ⟨𝐻 ,𝑋 ⟩, and thus we have the isomorphism between FreeFn and FFn in the lemma. □

This characterisation of free Fn-algebras also allows us to express the unit and counit of the
adjunction FreeFn ⊣ UFn in terms of those of some simpler adjunctions.

Lemma 4.3. Letting the 𝜙 be the isomorphism in Lemma 4.2, the unit of adjunction FreeFn ⊣ UFn is

𝜂 ⟨𝐻 ,𝑋 ⟩ = ⟨𝐻 ,𝑋 ⟩ ⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩ Fn∗⟨𝐻 ,𝑋 ⟩
⟨𝜂𝐺∗

𝐻
,𝜂 (𝐼𝐺∗𝐻)

∗
𝑋

⟩ 𝜙−1

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 12 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Scoped Effects and Their Algebras 42:13

and its counit 𝜖 at some Fn-algebra ⟨⟨𝐻 ,𝑋 ⟩, ⟨𝛽1, 𝛽2⟩⟩ is

𝜖 = FreeFn⟨𝐻 ,𝑋 ⟩
〈
⟨𝐺∗𝐻 , (𝐼𝐺∗𝐻)∗𝑋 ⟩, ⟨op𝐺

∗

𝐻
, op(𝐼𝐺∗𝐻)

∗

𝑋
⟩
〉

⟨⟨𝐻 ,𝑋 ⟩, ⟨𝛽1, 𝛽2⟩⟩
𝜙 ⟨𝑒1 ,𝑒2 ⟩

where 𝑒1 = U𝐺 (𝜖𝐺
∗

⟨𝐻 ,𝛽1 ⟩) and 𝑒2 = U𝐼𝐺∗𝐻 (𝜖
(𝐼𝐺∗𝐻)∗
⟨𝑋 ,𝛽2 · 𝐼𝑒1 ⟩

).

Proof Sketch. It can be calculated from (5) and Lemma 4.2. □

Theorem 4.4. The monad 𝐸 is isomorphic to 𝑇 in the category of monads.

Proof. Since 𝐸 � (Σ + Γ𝐸)∗ = (𝐼𝐸)∗ as monads, it is sufficient to show that 𝑇 is isomorphic to
(𝐼𝐸)∗ as monads. Recall that 𝐸 = 𝜇𝐺 � (𝐺∗0) as endofunctors. Let𝜓 : 𝐺∗0→ 𝐸 be the isomorphism.
Then by Lemma 4.2, for any 𝑋 : C,

𝑇𝑋 = (⇓ UFn𝐹Fn ⇑)𝑋 = (⇓ Fn∗)⟨0,𝑋 ⟩
⇓𝜙
� ⇓(𝐺∗0, ⟨𝐼𝐺∗0⟩∗𝑋) = (𝐼𝐺∗0)∗𝑋

(𝐼𝜓)∗
� (𝐼𝐸)∗𝑋 (9)

where 𝜙 is the isomorphism between Fn∗ and UFnFFn as in Lemma 4.2. Thus 𝑇 is isomorphic to
(𝐼𝐸)∗ as endofunctors.
What remains is to show that the isomorphism (9) preserves their units and multiplications. The

unit of𝑇 is precisely the unit of the adjunction (FreeFn ⇑) ⊣ (⇓ UFn) composed from the adjunctions
⇑ ⊣ ⇓ and FreeFn ⊣ UFn. Therefore the unit of 𝑇 is 𝜂𝑇

𝑋
= ⇓(𝜂Fn∗⇑𝑋) ·𝜂

⇓ ⇑
𝑋

where 𝜂⇓ ⇑ and 𝜂Fn∗ are the
units of the adjunctions ⇑ ⊣ ⇓ and FreeFn ⊣ UFn respectively. Hence by Lemma 4.3, we have

𝜂𝑇𝑋 = ⇓(𝜂Fn∗⇑𝑋) ·𝜂
⇓ ⇑
𝑋

= ⇓(𝜂Fn∗⇑𝑋) · id = ⇓(𝜙−1 ·⟨𝜂𝐺∗0 ,𝜂
(𝐼𝐺∗0)∗
𝑋

⟩) = ⇓(𝜙−1) ·𝜂 (𝐼𝐺∗0)
∗

𝑋
= ⇓𝜙 ·(𝐼𝜓 ∗)−1 ·𝜂 (𝐼𝐸)

∗

𝑋

which shows that the isomorphism (9) preserves the units of 𝑇 and (𝐼𝐸)∗.
Proving the preservation of the multiplications of the two monads is also direct verification but

slightly more involved. By definition, 𝜇𝑇
𝑋
= ⇓ UFn𝜖𝑇FreeFn ⇑𝑋 where 𝜖𝑇 is the counit of the adjunction

(FreeFn ⇑) ⊣ (⇓ UFn) satisfying

𝜖𝑇FreeFn ⇑𝑋 = 𝜖Fn
∗

FreeFn ⇑𝑋 · FreeFn (𝜖
⇓ ⇑
Fn∗ ⇑𝑋) = 𝜖

Fn∗

FreeFn ⇑𝑋 · FreeFn⟨!, id⟩

where ! is the unique 𝐺-algebra homomorphism from 𝐺∗0 to 𝐺∗𝐺∗0. Then by Lemma 4.3, we have
𝜖Fn

∗

FreeFn ⇑𝑋 = ⟨𝑒1, 𝑒2⟩ ·𝜙 where 𝑒1 = U𝐺 (𝜖𝐺
∗

(𝐺∗0, op𝐺∗0)
) : 𝐺∗𝐺∗0 → 𝐺∗0 and 𝑒2 = U𝐼𝐺∗𝐺∗0 (𝜖

(𝐼𝐺∗𝐺∗0)∗

𝑏
)

where 𝑏 is the 𝐼𝐺∗𝐺∗0-algebra ⟨(𝐼𝐺∗0)∗𝑋 , op
(𝐼𝐺∗0)∗
𝑋

· 𝐼𝑒1⟩. Hence we have

𝜇𝑇𝑋 = ⇓ UFn (𝜖𝑇FreeFn ⇑𝑋)

= U𝐼𝐺∗𝐺∗0 (𝜖
(𝐼𝐺∗𝐺∗0)∗

𝑏
) · ⇓𝜙 · ⇓ UFnFreeFn (!, id)

= U𝐼𝐺∗𝐺∗0 (𝜖
(𝐼𝐺∗𝐺∗0)∗

𝑏
) · ⇓𝜙 · ⇓(𝜙−1 ·⟨𝐺∗!, (𝐼𝐺∗!)∗⟩ ·𝜙)

= U𝐼𝐺∗𝐺∗0 (𝜖
(𝐼𝐺∗𝐺∗0)∗

𝑏
) ·(𝐼𝐺∗!)∗ · ⇓𝜙

where (𝐼𝐺∗!)∗ is a natural transformation from (𝐼𝐺∗0)∗ to (𝐼𝐺∗𝐺∗0)∗. Then by base functor fusion
[Hinze 2013] i.e. the naturality of the free-forgetful adjunction in the base functor, we have

𝜇𝑇𝑋 = U𝐼𝐺∗𝐺∗0 (𝜖
(𝐼𝐺∗𝐺∗0)∗

𝑏
) ·(𝐼𝐺∗!)∗ · ⇓𝜙 = U𝐼𝐺∗0 (𝜖

(𝐼𝐺∗0)∗

𝑏′) · ⇓𝜙

where 𝑏 ′ is the 𝐼𝐺∗0-algebra with the same carrier as 𝑏 and with 𝑏’s structure map precomposed
with 𝐼𝐺∗!:

op
(𝐼𝐺∗0)∗
𝑋

· 𝐼𝑒1 · 𝐼𝐺∗! = op
(𝐼𝐺∗0)∗
𝑋

· 𝐼𝑒1 · ! = op
(𝐼𝐺∗0)∗
𝑋

· 𝐼id = op
(𝐼𝐺∗0)∗
𝑋

2021-04-06 17:05. Page 13 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

42:14 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

where the second equality follows from that 𝑒1 · ! : 𝐺∗0→ 𝐺∗0 is a 𝐺-algebra homomorphism, and
thus 𝑒1 · ! = id since 𝐺∗0 is an initial 𝐺-algebra. Finally we have

𝜇𝑇𝑋 = U𝐼𝐺∗0 (𝜖
(𝐼𝐺∗0)∗

⟨(𝐼𝐺∗0)∗𝑋 ,op
(𝐼𝐺∗0)∗

𝑋
⟩
) · ⇓𝜙 = U𝐼𝐸 (𝜖

𝐼 ∗
𝐸

⟨𝐼 ∗
𝐸
𝑋 ,op(𝐼𝐸)

∗
𝑋

⟩
) ·((𝐼𝜓)∗ · ⇓𝜙) ·𝑇 ((𝐼𝜓)∗ · ⇓𝜙)

which means exactly that the isomorphism (9) preserves the multiplications of 𝑇 and (𝐼𝐸)∗. □

Remark 4.1. In general, the adjunction FreeFn ⇑ ⊣ ⇓ UFn is not monadic since the right adjoint
⇓ UFn does not reflect isomorphisms, which is a necessary condition for it to be monadic by Beck’s
monadicity theorem [Mac Lane 1998]. This entails that the category Fn-Alg of functorial algebras
is not equivalent to the category of Eilenberg-Moore algebras. Nonetheless, as we will see later in
Section 5, functorial algebras and Eilenberg-Moore algebras have the same expressive power for
interpreting scoped operations in the base category.

4.3 Implementation
Now our hard work in the previous subsection pays off: for any functorial algebra ⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩ as
in Definition 4.1, and any morphism 𝑔 : 𝐴→ 𝑋 in the base category C, there is a morphism

eval⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩ 𝑔 = ⇓ UFn (𝜖 ⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩ · FreeFn ⇑𝑔) : 𝑇𝐴 � 𝐸𝐴→ 𝑋 (10)

which interprets programs with scoped operations modelled as 𝐸𝐴 by the functorial algebra
⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩. Furthermore, we can derive a recursive formula for this interpretation morphism
using Lemma 4.3, which can be straightforwardly translated into an implementation.

Lemma 4.5 (Interpreting with Functorial Algebras). For any functorial algebra 𝛼 = ⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩
as in Definition 4.1, and any morphism 𝑔 : 𝐴 → 𝑋 for some 𝐴 in the base category C, letting
ℎ = L𝛼𝐺M : 𝐸 → 𝐻 be the catamorphism from the initial 𝐺-algebra 𝐸 to ⟨𝐻 ,𝛼𝐺 ⟩, the interpretation of
𝐸𝐴 with this algebra 𝛼 and 𝑔 satisfies

eval𝛼 𝑔 = [𝑔, 𝛼 𝐼Σ · Σ(eval𝛼 𝑔), 𝛼 𝐼Γ · Γℎ𝑋 · Γ𝐸 (eval𝛼 𝑔)] · in◦𝐴 : 𝐸𝐴→ 𝑋 (11)

where in◦ : 𝐸 → Id + Σ𝐸 + Γ𝐸𝐸 is the isomorphism between 𝐸 and 𝐺𝐸, and 𝛼 𝐼Σ = 𝛼 𝐼 · 𝜄1 : Σ𝑋 → 𝑋 ,
and 𝛼 𝐼Γ = 𝛼 𝐼 · 𝜄2 : Γ𝐻𝑋 → 𝑋 are the two components of 𝛼 𝐼 : Σ𝑋 + Γ𝐻𝑋 → 𝑋 .

Proof Sketch. It can be calculated by plugging in the formula for 𝜖 in Lemma 4.3 in (10). □

The formula (11) is readily translated into the Haskell implementation of Figure 2, and a OCaml
implementation in a similar spirit is listed and explained in the Appendix. The datatype EndoAlg
represents 𝛼𝐺 ; datatype BaseAlg corresponds to 𝛼 𝐼 ; function hcata implements L𝛼𝐺M; and the three
arguments of eval implement the three components in (11) respectively.
From a pragmatic perspective, functorial algebras are a sweet spot in the design space because

they provide a framework that make it relatively easy to define new algebras. There is no need to
resort to the complexities of the indexed types we saw in Section 2, and the algebras are nevertheless
just as expressive.

For instance, here is how list is defined, using returnlist and calllist from Section 2:

list :: Prog Choice Once a→ [a]
list = eval (EndoAlg returnlist calllist enter list)

(BaseAlg calllist enter list) returnlist

enter list :: Once [[a]] → [a]
enter list (Once []) = []
enter list (Once (xs : xss)) = xs

The counterparts to demoteonce and promoteonce from the indexed algebra version are enter list and
returnlist . The versions that use functorial algebras do not require any indexed types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 14 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Scoped Effects and Their Algebras 42:15

data BaseAlg Σ Γ f a =

BaseAlg {callB :: Σ a→ a
, enterB :: Γ (f a) → a}

data EndoAlg Σ Γ f =

EndoAlg { returnE :: ∀x . x → f x
, callE :: ∀x . Σ (f x) → f x
, enterE :: ∀x . Γ (f (f x)) → f x }

hcata :: (Functor Σ, Functor Γ) ⇒ (EndoAlg Σ Γ f) → Prog Σ Γ a→ f a
hcata alg (Return x) = returnE alg x
hcata alg (Call op) = (callE alg · fmap (hcata alg)) op
hcata alg (Enter scope) = (enterE alg · fmap (hcata alg · fmap (hcata alg))) scope

eval :: (Functor Σ, Functor Γ) ⇒ (EndoAlg Σ Γ x) → (BaseAlg Σ Γ x b) → (a→ b) → Prog Σ Γ a→ b
eval ealg balg gen (Return x) = gen x
eval ealg balg gen (Call op) = (callB balg · fmap (eval ealg balg gen)) op
eval ealg balg gen (Enter scope) = (enterB balg · fmap (hcata ealg · fmap (eval ealg balg gen))) scope

Fig. 2. A Haskell implementation of the evaluation function of functorial algebras

Notice that in this handler calllist and enter list are reused in the definition of both the base algebra
and the endo algebra. This is because the intermediate datatype between a scoped operation and
its outer parent is always the same in this instance. This need not be the case in general.
A more complex heuristic than once is to consider how depth-bounded search might be imple-

mented. This heuristic allows a program to be annotated with a depth that bounds the branches of
nondeterminism by some natural number. As usual, the starting point is to define the syntax of this
scoped operation, where depth d p will limit the nondeterminsm in the program p by the depth d :

data Depth a = Depth Int a deriving Functor

depth :: Int → Prog Choice Depth a→ Prog Choice Depth a
depth d p = Enter (Depth d (fmap return p))

Interpreting this syntax requires a carrier that is sensitive to the current depth, so this will be a
function from the depth to a list of results:

newtype DepthCarrier a = DepthCarrier (Int → [a])
As for the handler for programs that have this operation, here is dbs:

dbs :: Prog Choice Depth a→ [a]
dbs = eval (EndoAlg returndbs calldbs enterdbs) (BaseAlg calllist exitdbs) returnlist where

returndbs :: a→ DepthCarrier a
returndbs x = DepthCarrier (const [x])
calldbs :: Choice (DepthCarrier a) → DepthCarrier a
calldbs Fail = DepthCarrier (const [])
calldbs (Or (DepthCarrier fxs) (DepthCarrier fys))

= DepthCarrier (𝜆d → if d ≡ 0 then [] else fxs (d − 1) ++ fys (d − 1))
enterdbs :: Depth (DepthCarrier (DepthCarrier a)) → DepthCarrier a
enterdbs (Depth d (DepthCarrier fxs)) =

DepthCarrier (𝜆d ′→ concat [fys d ′ | DepthCarrier fys← fxs d])
exitdbs :: Depth (DepthCarrier [a]) → [a]
exitdbs (Depth d (DepthCarrier fxs)) = concat (fxs d)

2021-04-06 17:05. Page 15 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

42:16 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

Fn-Alg CC × C C

Ix-Alg CN C

C𝐸 C

𝐾Fn
Ix

𝐾Ix
EM

Free

U

Free

U

↾

⇃

⇑

⇓

U𝐸

Free𝐸

Fn

Ix

𝐾EM
Fn

⊣

⊣
⊣

⊣
⊣

Fig. 3. The resolutions of functorial, indexed and Eilenberg-Moore algebras

Although this handler makes use of theDepthCarrier a type tomanage the state of the depth counter,
this type is not exposed externally. This is because exitdbs converts from the types DepthCarrier [a]
to [a], thus hiding the complexities of this semantics from users.

5 COMPARING THE EXPRESSIVITY OF THE MODELS
At this point we have seen three ways for interpreting scoped operations: indexed, Eilenberg-Moore
and functorial algebras. They structure interpretation in different ways, making them suitable for
different applications. In this section, we compare the expressivity of the three models and show that
their expressive power is in fact equivalent. To do this, we construct comparison functors between
the respective categories of the three kinds of algebras, which translate one kind of algebras to
another and preserve the induced interpretation in the base category. Categorically, these functors
are morphisms in the category of resolutions of the monad 𝐸 (Section 5.1). In this category, the
Eilenberg-Moore adjunction is the terminal object, and thus it automatically gives us comparison
functors translating indexed and functorial algebras to EM algebras (Section 5.2). To complete the
circle of translations, we then construct comparison functors 𝐾 EM

Fn : C𝐸 → Fn-Alg translating EM
algebras to functorial ones (Section 5.3) and 𝐾 Fn

Ix : Fn-Alg→ Ix-Alg translating functorial algebras
to indexed ones (Section 5.4). The situation is pictured in Figure 3.

5.1 Comparison of Resolutions
We have followed the adjoint approach to syntax and semantics of scoped operations—any ad-
junction inducing the monad 𝐸 modelling the syntax of scoped operations provides a way to give
semantics to scoped operations. As shown in [Lambek and Scott 1986; Riehl 2017], these adjunctions
form a category, on which we compare the three kinds of algebras in the rest of this section.

Definition 5.1 (Resolutions and Comparison Functors). Given amonad ⟨𝑀 ,𝜂, 𝜇⟩ onC, the category
Res(𝑀) of resolutions of𝑀 has as objects adjunctions

⟨ D C
𝐿

𝑅

⊥ ,𝜂 : Id → 𝑅𝐿, 𝜖 : 𝐿𝑅 → Id⟩

whose induced monad 𝑅𝐿 is𝑀 . A morphism from a resolution ⟨D,𝐿,𝑅,𝜂, 𝜖⟩ to ⟨D′,𝐿′,𝑅′,𝜂 ′, 𝜖 ′⟩ is
a functor 𝐾 : D→ D′ such that it commutes with the left and right adjoints

𝐾𝐿 = 𝐿′ and 𝑅′𝐾 = 𝑅

which is called a comparison functor.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 16 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Scoped Effects and Their Algebras 42:17

As we have seen in previous sections, there are three adjunctions

FreeIx ↾ ⊣ ⇃ UIx FreeΣ+Γ𝐸 ⊣ UΣ+Γ𝐸 FreeFn ⇑ ⊣ ⇓ UFn
for indexed algebras, EM algebras and functorial algebras respectively, each inducing the monad 𝐸
up to isomorphism, so they can all be identified with some objects in the category Res(𝐸). For each
resolution ⟨D,𝐿,𝑅,𝜂, 𝜖⟩ of 𝐸, we use the objects 𝐷 in D to interpret scoped operations modelled by
𝐸: for any morphism 𝑔 : 𝐴→ 𝑅𝐷 in C, the interpretation of 𝐸𝐴 by 𝐷 and 𝑔 is

eval𝐷 𝑔 = 𝑅(𝜖𝐷 · 𝐿𝑔) : 𝐸𝐴 = 𝑅𝐿𝐴→ 𝑅𝐷

Crucially, we show that interpretations are preserved by comparison functors.

Lemma 5.1 (Preservation of Interpretation). Let 𝐾 : D→ D′ be any comparison functor between
resolutions ⟨D,𝐿,𝑅,𝜂, 𝜖⟩ and ⟨D′,𝐿′,𝑅′,𝜂 ′, 𝜖 ′⟩ of some monad𝑀 : C→ C. For any object 𝐷 in D and
any morphism 𝑔 : 𝐴→ 𝑅𝐷 in C, it holds that

eval𝐷 𝑔 = eval𝐾𝐷 𝑔 : 𝑀𝐴→ 𝑅𝐷 (= 𝑅′𝐾𝐷) (12)

where each side interprets𝑀𝐴 using the adjunctions 𝐿 ⊣ 𝑅 and 𝐿′ ⊣ 𝑅′ respectively.

Proof. Because 𝐿 ⊣ 𝑅 and 𝐿′ ⊣ 𝑅′ induce the same monad, their unit must coincide 𝜂 = 𝜂 ′.
Together with the commutativity properties 𝐾𝐿 = 𝐿′ and 𝑅′𝐾 = 𝑅, it makes a comparison functor
a special case of a map of adjunctions [Mac Lane 1998]. Then by Proposition 1 in [Mac Lane 1998,
page 99], it holds that 𝐾𝜖 = 𝜖 ′𝐾 , and we have

eval𝐾𝐷 𝑔 = 𝑅′(𝜖 ′𝐾𝐷 · 𝐿′𝑔) = 𝑅′(𝐾𝜖𝐷 · 𝐿′𝑔) = 𝑅𝜖𝐷 ·𝑅′𝐿′𝑔 = 𝑅𝜖𝐷 ·𝑅𝐿𝑔 = eval𝐷 𝑔

which completes the proof. □

The implication of this lemma is that if there is a comparison functor 𝐾 from some resolution
𝐿 ⊣ 𝑅 to 𝐿′ ⊣ 𝑅′ of the monad 𝐸 where 𝐿 : C → D and 𝐿′ : C → D′, then 𝐾 can translate a D
object to a D′ object that preserves the induced interpretation. Thus the expressive power of D
for interpreting 𝐸 is not greater than D′, in the sense that every eval𝐷 𝑔 that one can obtain from
𝐷 : D can also be obtained by some algebra in D′, namely, 𝐾𝐷 . Thus the three kinds of algebras
for interpreting scoped operations have the same expressive power if we can construct a circle of
comparison functors between their categories, which is what we do in the rest of this section.

5.2 Translating to EM Algebras
As shown in [Mac Lane 1998], an important property of the Eilenberg-Moore adjunction is that it
is the terminal object in the category Res(𝑀) for any monad𝑀 , which means that there uniquely
exists a comparison functor from any resolution to the Eilenberg-Moore resolution. Specifically,
given a resolution ⟨D,𝐿,𝑅⟩ of a monad𝑀 , the unique comparison functor 𝐾 from D to the category
C𝑀 of the Eilenberg-Moore algebras is

𝐾𝐷 =
(
𝑀 (𝑅𝐷) = 𝑅𝐿𝑅𝐷 𝑅𝜖𝐷−−−→ 𝑅𝐷

)
and 𝐾 (𝐷

𝑓
−→ 𝐷 ′) = 𝑅𝑓

This result immediately give us comparison functors to Eilenberg-Moore algebras.

Lemma 5.2. There uniquely exist comparison functors 𝐾 Ix
EM : Ix-Alg→ C𝐸 and 𝐾 Fn

EM : Fn-Alg→ C𝐸
from the respective resolutions of indexed algebras and functorial algebras to the resolution of Eilenberg-
Moore algebras.

Specifically, given an indexed algebra ⟨𝐴 : C |N | ,𝛼 : Ix𝐴 → 𝐴⟩ the comparison functor 𝐾 Ix
EM

translates it into an EM algebra carried by 𝐴0 with structure map ⇃ UIx𝜖 ⟨𝐴,𝛼 ⟩ : 𝐸𝐴0 → 𝐴0. As we

2021-04-06 17:05. Page 17 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

42:18 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

mentioned in Section 3.1, an EM algebra of 𝐸 is equivalent to an algebra of the endofunctor (Σ+Γ𝐸).
In this case, 𝐾 Ix

EM (⟨𝐴,𝛼⟩) is equivalent to the (Σ + Γ𝐸) algebra carried by 𝐴0 : C with structure map

(Σ + Γ𝐸)𝐴0
(Σ+Γ𝐸) (𝜂𝐴0)−−−−−−−−−−→ (Σ + Γ𝐸) (Σ + Γ𝐸)∗𝐴0

op
−−→ (Σ + Γ𝐸)∗𝐴0

𝜓
−→ 𝐸𝐴0

⇃UIx𝜖⟨𝐴,𝛼⟩−−−−−−−→ 𝐴0

where𝜓 is the isomorphism between 𝐸 and (Σ + Γ𝐸)∗.

5.3 Translating EM Algebras to Functorial Algebras
Now we move on to constructing a comparison functor 𝐾 EM

Fn : C𝐸 → Fn-Alg translating Eilenberg-
Moore algebras to functorial ones. The idea is straightforward: given an Eilenberg-Moore algebra
𝑋 , we map it to the functorial algebra with 𝑋 for interpreting the outermost layer and the functor
𝐸 for interpreting the inner layers, which leaves the inner layers uninterpreted.

Since C𝐸 is isomorphic to (Σ + Γ𝐸)-Alg, we can define 𝐾 EM
Fn on (Σ + Γ𝐸)-algebras instead. Given

any ⟨𝑋 : C,𝛼 : (Σ + Γ𝐸)𝑋 → 𝑋 ⟩ with no coherence conditions on 𝛼Σ and 𝛼Γ , it is mapped by 𝐾 EM
Fn

to the functorial algebra

⟨𝐸, 𝑋 , in : 𝐺𝐸 → 𝐸, 𝛼 : (Σ + Γ𝐸)𝑋 → 𝑋 ⟩

and for any morphism 𝑓 in (Σ + Γ𝐸)-Alg, it is mapped to ⟨id𝐸 , 𝑓 ⟩.

Lemma 5.3. Functor 𝐾 EM
Fn is a comparison functor from the Eilenberg-Moore resolution of 𝐸 to the

resolution FreeFn ⇑ ⊣ ⇓ UFn of functorial algebras.

Proof. By Definition 5.1, we need to show that 𝐾 EM
Fn commutes with left and right adjoints of

both resolutions. For right adjoints, we have

UΣ+Γ𝐸 ⟨𝑋 ,𝛼⟩ = 𝑋 = ⇓ UFn𝐾 EM
Fn ⟨𝑋 ,𝛼⟩

and for left adjoints, we have

𝐾 EM
Fn (FreeΣ+Γ𝐸𝑋) =𝐾 EM

Fn ⟨(Σ + Γ𝐸)∗𝑋 , op : (Σ + Γ𝐸) (Σ + Γ𝐸)∗𝑋 → (Σ + Γ𝐸)𝑋 ⟩
= ⟨𝐸, (Σ + Γ𝐸)∗𝑋 , in, op⟩ {𝐸 � 𝐺∗0 and (Σ + Γ𝐸) = 𝐼𝐸 (Section 4.1)}

� ⟨𝐺∗0, (𝐼𝐺∗0)∗𝑋 , op𝐺
∗

0 , op
(𝐼𝐺∗0)∗
𝑋

⟩ {By Lemma 4.2}
� FreeFn (⇑𝑋)

and similarly for the actions on morphisms. Here we only have 𝐾 EM
FnFreeΣ+Γ𝐸 being isomorphic to

FreeFn ⇑ instead of a strict equality, since these two resolutions induce the monad 𝐸 only up to
isomorphism. To remedy this, one can generalise the definition of comparison functors to take an
isomorphism into account, but we leave it out here since it is not very instructive. □

Remark 5.1. Now that we have comparison functors 𝐾 EM
Fn : C𝐸 → Fn-Alg and 𝐾 Fn

EM : Fn-Alg→ C𝐸
that translate between EM algebras and functorial algebras in a way preserving the induced inter-
pretation, thus their expressive power for interpretation is equivalent. This is not a contradiction
to the fact that the categories C𝐸 and Fn-Alg themselves are not equivalent (Remark 4.1): although
functorial algebras have richer structures than EM ones, when we use them for interpretation, we
only care about what we can observe in the base category. As an analogy, real numbers have richer
structures than integers, but if we observe them by the floor function, they give the same set of
observations.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 18 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Scoped Effects and Their Algebras 42:19

5.4 Translating Functorial Algebras to Indexed Algebras

At this point we have comparison functors Ix-Alg
𝐾Ix
EM−−−→ C𝐸

𝐾EM
Fn−−−→ Fn-Alg. To complete the circle of

translations, we construct a comparison functor 𝐾 Fn
Ix : Fn-Alg→ Ix-Alg in this subsection. The

idea of this translation is that given a functorial algebra carried by endofunctor 𝐻 : CC and object
𝑋 : C, we map it to an indexed algebra by iterating the endofunctor 𝐻 on 𝑋 .

More formally, 𝐾 Fn
Ix : Fn-Alg→ Ix-Alg maps a functorial algebra

⟨𝐻 : CC, 𝑋 : C, 𝛼𝐺 : Id + Σ𝐻 + Γ𝐻𝐻 → 𝐻 , 𝛼 𝐼 : Σ𝑋 + Γ𝐻𝑋 → 𝑋 ⟩

to an indexed algebra carried by 𝐴 : C |N | such that 𝐴𝑖 = 𝐻 𝑖𝑋 , i.e. iterating 𝐻 𝑖-times on 𝑋 . The
structure maps of this indexed algebra are ⟨𝑎 : Σ𝐴→ 𝐴, 𝑑 : Γ(⊳𝐴) → 𝐴, 𝑝 : 𝐴→ (⊳𝐴)⟩ given by

𝑎0 = (𝛼 𝐼 · 𝜄1) : Σ𝑋 → 𝑋 𝑑0 = (𝛼 𝐼 · 𝜄2) : Γ𝐻𝑋 → 𝑋

𝑎𝑖+1 = (𝛼𝐺𝐻 𝑖𝑋
· 𝜄2) : Σ𝐻𝐻 𝑖𝑋 → 𝐻 𝑖+1𝑋 𝑑𝑖+1 = (𝛼𝐺𝐻 𝑖𝑋

· 𝜄3) : Γ𝐻𝐻𝐻 𝑖𝑋 → 𝐻 𝑖+1𝑋

and 𝑝𝑖 = 𝛼𝐺𝐻 𝑖𝑋
· 𝜄1 : 𝐻 𝑖𝑋 → 𝐻𝐻 𝑖𝑋 . On morphisms,𝐾 Fn

Ix maps a morphism ⟨𝜏 : 𝐻 → 𝐻 ′, 𝑓 : 𝑋 → 𝑋 ′⟩
in Fn-Alg to 𝜎 : 𝐻 𝑖𝑋 → 𝐻 ′𝑖𝑋 ′ in Ix-Alg such that 𝜎0 = 𝑓 and 𝜎𝑖+1 = 𝜏 ◦𝜎𝑖 where ◦ is horizontal
composition. It is straightforward to check this functor is well-defined.

Lemma 5.4. Functor 𝐾 Fn
Ix is a comparison functor from the resolution FreeFn ⇑ ⊣ ⇓ UFn of functorial

algebras to the resolution FreeIx ↾ ⊣ ⇃ UIx of indexed algebras.

Proof. We need to show that 𝐾 Fn
Ix satisfies the required commutativities

⇓ UFn � ⇃ UIx𝐾
Fn
Ix and 𝐾 Fn

IxFreeFn ⇑ � FreeIx ↾

in Definition 5.1 for it to be a comparison functor. First it is easy to see that it commutes with the
right adjoints:

⇃ UIx (𝐾 Fn
Ix ⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩) = ⇃ UIx⟨𝐴,𝑎,𝑑 ,𝑝⟩ = 𝐴0 = 𝑋 = ⇃ UIx (𝐾 Fn

Ix ⟨𝐻 ,𝑋 ,𝛼𝐺 ,𝛼 𝐼 ⟩)

Its commutativity with the left adjoints is slightly more involved, and we show a sketch here. Piróg
et al. [2018] show that FreeIx ↾𝑋 is isomorphic to the indexed algebras carried by 𝐸+

𝑋
: C |N | such

that (𝐸+
𝑋
)𝑖 = 𝐸𝑖+1𝑋 with structure maps

𝑘Σ𝑛 =

(
Σ(𝐸+𝑋)𝑛 = Σ𝐸𝐸𝑛𝑋

in · 𝜄2−−−−→ 𝐸𝐸𝑛𝑋 = (𝐸+𝑋)𝑛
)

𝑘Γ⊳𝑛 =

(
(Γ ⊳ 𝐸+𝑋)𝑛 = Γ𝐸𝐸𝐸𝑛𝑋

in · 𝜄3−−−−→ 𝐸𝐸𝑛𝑋 = (𝐸+𝑋)𝑛
)

𝑘⊲𝑛 =

(
(𝐸+𝑋)𝑛 = 𝐸𝐸𝑛𝑋

in · 𝜄1−−−−→ 𝐸𝐸𝐸𝑛𝑋 = (⊳𝐸+𝑋)𝑛
)

where in : Id + Σ𝐸 + Γ𝐸𝐸 → 𝐸 is the isomorphism between 𝐸 and 𝐺𝐸. Also by Lemma 4.2,
we know that FreeFn ⇑𝑋 is isomorphic to the functorial algebra ⟨𝐸,𝐸𝑋 , in, [in · 𝜄2, in · 𝜄3]⟩. Clearly
𝐾 Fn

IxFreeFn ⇑ and FreeIx ↾ agree on the carrier 𝐸+
𝑋
. It can be checked that they agree on the structure

maps and the action on morphisms too. □

Since comparison functors preserve interpretation (Lemma 5.1), the lemma above implies that the
expressivity of functorial algebras is not greater than indexed ones. Together with the comparison
functors defined earlier, we conclude that the three kinds of algebras—indexed, functorial and
Eilenberg-Moore algebras—have the same expressivity for interpreting scoped operations. Figure 3
summarises the comparison functors and resolutions that we have studied.

2021-04-06 17:05. Page 19 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

42:20 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

6 FUSION LAWS AND HYBRID FOLD
A crucial advantage of the adjoint-theoretic approach to syntax and semantics is that the natu-
rality of an adjunction directly offers fusion laws of interpretation that fuse a morphism after an
interpretation into a single interpretation, which have proven to be a powerful tool for reasoning
and optimisation [Coutts et al. 2007; Hinze et al. 2011; Takano and Meijer 1995; Wadler 1988; Wu
and Schrijvers 2015]. In this section, we show that the three adjunctions for the three kinds of
algebras give us three fusion laws (Section 6.1), and the comparison functors constructed in the
previous section allow us to switch from one kind of algebra to another whose fusion law is easier
to work with. As a case study and another contribution of this paper, we use the fusion laws to
show that the hybrid recursion scheme in [Piróg et al. 2018] is equivalent to interpreting with
indexed algebras (Section 6.2).

6.1 Fusion Laws of Interpretation
Recall that given any resolution 𝐿 ⊣ 𝑅 of some monad 𝑀 : C→ C where 𝐿 : C→ D, adjunction
𝐿 ⊣ 𝑅 corresponds to a natural isomorphism

⌊·⌋ : D(𝐿𝐴,𝐷) � C(𝐴,𝑅𝐷) : ⌈·⌉ (13)

and for any 𝑔 : 𝐴→ 𝑅𝐷 , we have an interpretation morphism

eval𝐷 𝑔 = 𝑅⌈𝑔⌉ = 𝑅(𝜖𝐷 · 𝐿𝑔) : 𝑀𝐴→ 𝑅𝐷

Then if there is a morphism in the form of (ℎ · eval𝐷 𝑔)—an interpretation followed by some
morphism—the following fusion law allows one to fuse it into a single interpretation.

Lemma 6.1 (Interpretation Fusion). Assume 𝐿 ⊣ 𝑅 is a resolution of monad 𝑀 : C → C where
𝐿 : C → D. For any 𝐷 : D and ℎ : 𝑅𝐷 → 𝑋 , if there is some 𝐷 ′ in D and 𝑓 : 𝐷 → 𝐷 ′ such that
𝑅𝐷 ′ = 𝑋 and 𝑅𝑓 = ℎ, then

ℎ · eval𝐷 𝑔 = eval𝐷′ (ℎ ·𝑔) (14)

Proof. We have ℎ · eval𝐷 𝑔 = 𝑅𝑓 ·𝑅⌈𝑔⌉ = 𝑅(𝑓 ·⌈𝑔⌉). Then by the naturality of (13) in 𝐷 , 𝑓 ·⌈𝑔⌉ =
⌈𝑅𝑓 ·𝑔⌉. Thus 𝑅(𝑓 ·⌈𝑔⌉) = 𝑅(⌈𝑅𝑓 ·𝑔⌉) = 𝑅(⌈ℎ ·𝑔⌉) = eval𝐷′ (ℎ ·𝑔). □

Applying the lemma to the three resolutions of 𝐸 gives us three fusion laws: for any 𝐷 : D where
D ∈ {Ix-Alg, Fn-Alg,C𝐸}, one can can fuse ℎ · eval𝐷 𝑔 into a single interpretation if one can make
ℎ a D-homomorphism.

Although the three kinds of algebras for interpreting scoped operations have the same expressivity
theoretically, sometimes it is practically easier to make ℎ an algebra homomorphism for a particular
kind of algebras. The comparison functors in Section 5 allow one to switch from one kind of algebra
to another that may be easier to work with: Let 𝐾 : D→ D′ be a comparison functor, if there is
some 𝑓 in D′ such that 𝑅′𝑓 = ℎ, then

ℎ · eval𝐷 𝑔 = ℎ · eval𝐾𝐷 𝑔 = eval𝐹𝐷 (ℎ · 𝑔)

In this case, we start with interpreting using D-algebras and we switch to D′ by comparison functor
𝐾 and do the fusion in that category.

In the rest of this section, we demonstrate how the fusion laws and comparison functors can be
used to prove that a recursion scheme in [Piróg et al. 2018], which we call a hybrid fold, coincides
with interpretation with indexed algebras.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 20 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Scoped Effects and Their Algebras 42:21

6.2 Case Study: Hybrid Fold
Although Piróg et al. [2018] propose the adjunction FreeIx ↾⊣⇃ UIx for interpreting scoped opera-
tions with indexed algebras, they use a recursive function hfold (Figure 1) different from eval in
their Haskell implementation to interpret 𝐸 with indexed algebras. Compared to a faithful imple-
mentation of eval, their hfold is more efficient since it skips transforming 𝐸 to the free indexed
algebra ⇃ UIxFreeIx ↾ but directly interprets 𝐸 with an indexed algebra. Thus we call it a hybrid
fold since it works on a data structure 𝐸 that does not directly match its type of indexed algebra.
While the definition of hfold is computationally intuitive, Piróg et al. [2018] do not provide a

formal theory underlying the semantics of this recursive definition. In this subsection, we fill the
gap by showing that hfold coincides with eval with indexed algebras. We divide the proof into
three parts for clarity: after making the problem clear (Section 6.2.1), we first show that the hfold
for an indexed algebra A is can be determined by a catamorphism from 𝐸 in CC (Section 6.2.2),
which is then shown to be a special case of interpreting with functorial algebras (Section 6.2.3),
and finally we translate this functorial algebra into the category Ix-Alg of indexed algebras using
𝐾 Fn

Ix , and show that it induces the same interpretation as the one from the indexed algebra 𝐴 that
we start with (Section 6.2.4).

6.2.1 Semantic Problem of Hybrid Fold. Fix an indexed algebra carried by 𝐴 : C |N | throughout this
section

⟨𝐴 : C |N | , 𝑎 : Σ𝐴→ 𝐴, 𝑑 : Γ(⊳𝐴) → 𝐴,𝑝 : 𝐴→ (⊳𝐴)⟩
For notational convenience, we define a functor 𝑆 : |N| → |N| such that 𝑆𝑛 = 𝑛 + 1, then ⊳𝐴 = 𝐴𝑆

since (⊳𝐴)𝑛 = 𝐴𝑛+1 = 𝐴(𝑆𝑛). With functor 𝑆 , we can view 𝑝 and 𝑑 as 𝑝 : 𝐴→ 𝐴𝑆 and 𝑑 : Γ𝐴𝑆 → 𝐴.
Then the recursive definition of hfold in Figure 1 can be understood as a morphism ℎ : 𝐸𝐴→ 𝐴 in
C |N | satisfying the equation

ℎ = [ℎ1,ℎ2,ℎ3] · in◦𝐴 (15)
where in◦ : 𝐸 → Id +Σ𝐸 + Γ𝐸𝐸 is the isomorphism between 𝐸 and𝐺𝐸, and ℎ1, ℎ2 and ℎ3 correspond
to the three cases of hfold respectively:

ℎ1 =
(
Id𝐴

id−→ 𝐴
)

ℎ2 =
(
Σ𝐸𝐴

Σℎ−−→ Σ𝐴
𝑎−→ 𝐴

)
ℎ3 =

(
Γ𝐸𝐸𝐴

Γ𝐸ℎ−−−→ Γ𝐸𝐴
Γ𝐸𝑝
−−−→ Γ𝐸𝐴𝑆

Γℎ−−→ Γ𝐴𝑆
𝑑−→ 𝐴

)
In general, an equation in the form of (15) does not necessarily have a solution or a unique solution.
Thus the semantics of the recursively defined function hfold is obscure. We settle this problem
with the following result.

Theorem 6.2 (Hybrid Folds Coincide with Interpretation). There exists a unique solution to (15)
and it coincides with interpretation with indexed algebra 𝐴 at level 0 (Equation 3):

ℎ0 = eval⟨𝐴,𝑎,𝑑 ,𝑝 ⟩ id : 𝐴0 → 𝐴0

We prove the theorem in the rest of this section with the tools that we have developed.

6.2.2 Hybrid Fold Is an Adjoint Fold. The first step of our proof is to show the unique existence of
the solution to (15) based on the observation that it is an adjoint fold equation [Hinze 2013] with
the adjunction between right Kan extension [Hinze 2012; Mac Lane 1998] and composition with 𝐴.
Hinze [2013] shows the following theorem stating that there is a unique solution to such adjoint
fold equations.

Theorem 6.3 (Mendler-style Adjoint Folds [Hinze 2013]). Given any functor 𝐿 : C→ D left adjoint
to some 𝑅 : D→ C, an endofunctor 𝐺 : D→ D whose initial algebra ⟨𝜇𝐺 , in⟩ exists, and a natural

2021-04-06 17:05. Page 21 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

42:22 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

transformation Φ : C(𝐿−,𝐵) → C(𝐿𝐷−,𝐵) for some 𝐵 : C, then there exists a unique 𝑥 : 𝐿(𝜇𝐺) → 𝐵

satisfying
𝑥 = Φ𝜇𝐺 (𝑥) · 𝐿in◦ (16)

and the unique solution satisfies ⌊𝑥⌋ = L ⌊Φ𝑅𝐵 (𝜖𝐵)⌋ M where ⌊·⌋ : C(𝐿𝐷 ,𝐶) → D(𝐷 ,𝑅𝐶) is the
isomorphism for the adjunction 𝐿 ⊣ 𝑅.

Since ℎ : 𝐸𝐴 → 𝐴 and 𝐸 = 𝜇𝐺 : CC, to apply this theorem to (15), we only need to (i) make
(−𝐴) : CC → C |N | a left adjoint and (ii) make [ℎ1,ℎ2,ℎ3] in (15) an instance of Φ𝐸 (ℎ) for some
natural transformation Φ:
• For (i), it is standard that the functor−𝐴 is left adjoint to the right Kan extension along𝐴 [Hinze
2012; Mac Lane 1998], that is a functor Ran𝐴 : C |N | → CC which is usually constructed by
the end formula Ran𝐴 𝐵 𝑋 =

∫
𝑛: |N | 𝐵

C(𝑋 ,𝐴𝑛)
𝑛 or in the notation of type systems, polymorphic

functions ∀n. (X → A n) → B n. Yet we do not need the explicit formulas for Ran𝐴 in our
proof, and we only need the properties of Ran𝐴 as the right adjoint to −𝐴.
• For (ii), we define a natural transformation Φ : C |N | (−𝐴,𝐴) → C |N | ((𝐺−)𝐴,𝐴) such that for
any 𝐻 : CC and 𝑓 ∈ C |N | (𝐻𝐴,𝐴), Φ𝐻 (𝑓) = [𝑓1, 𝑓2, 𝑓3] where

𝑓1 =
(
Id𝐴

id−→ 𝐴
)

𝑓2 =
(
Σ𝐻𝐴

Σ𝑓
−−→ Σ𝐴

𝑎−→ 𝐴
)

(17)

𝑓3 =
(
Γ𝐻𝐻𝐴

Γ𝐻 𝑓
−−−→ Γ𝐻𝐴

Γ𝐻𝑝
−−−→ Γ𝐻𝐴𝑆

Γ𝑓
−−→ Γ𝐴𝑆

𝑑−→ 𝐴
)

and ⟨𝑎,𝑑 ,𝑝⟩ are the structure maps carried by 𝐴. It is straightforward to check that (15) is
exactly ℎ = Φ𝐸 (ℎ) · in◦𝐴.

Then by Theorem 6.3 we have the following result.

Lemma 6.4 (Unique Existence of Hybrid Fold). The recursive definition ℎ : 𝐸𝐴→ 𝐴 (15) of hybrid
folds has a unique solution if Ran𝐴 : C |N | → CC exists, and

ℎ =
(
𝐸𝐴

L ⌊ΦRan𝐴𝐴 (𝜖𝐴) ⌋M𝐴
−−−−−−−−−−−−−→ (Ran𝐴𝐴)𝐴

𝜖𝐴−−→ 𝐴
)

(18)

where 𝜖𝐴 : (Ran𝐴𝐴)𝐴 → 𝐴 is the counit of the adjunction (−𝐴) ⊣ Ran𝐴, and L⌊ΦRan𝐴𝐴 (𝜖𝐴)⌋M is the
catamorphism from the initial 𝐺-algebra 𝐸 to the 𝐺-algebra carried by Ran𝐴𝐴 with structure map
⌊ΦRan𝐴𝐴 (𝜖𝐴)⌋.

6.2.3 Catamorphism as Interpretation. We have shown that the hybrid fold of any indexed algebra
𝐴 uniquely exists, but recall that we also want to show its coincidence with the interpretation
morphism eval with the same indexed algebra 𝐴 (the second part of Theorem 6.2). To this end, we
show that the hybrid fold coincides with interpreting with some functorial algebra, and then use
the comparison functor 𝐾 Fn

Ix (Section 5.4) to translate this functorial algebra into an indexed algebra.
Recall that Lemma 6.4 states that the hybrid fold can be determined by a catamorphism induced

by a 𝐺-algebra, which is very close to a functorial algebra. We have the following simple general
result to relate them.

Lemma 6.5. For any 𝐺-algebra ⟨𝐻 : CC,𝛼𝐺 : 𝐺𝐻 → 𝐻 ⟩ and any 𝑋 : C, let 𝛼 be the functorial
algebra ⟨𝐻 , 𝐻𝑋 , 𝛼𝐺 , 𝛼𝐺

𝑋
·[𝜄2, 𝜄3] : Σ𝐻𝑋 + Γ𝐻𝐻𝑋 → 𝐻𝑋 ⟩. Then it holds that

L𝛼𝐺M𝑋 = eval𝛼 (𝛼𝐺𝑋 · 𝜄1) : 𝐸𝑋 → 𝐻𝑋

Proof. It directly follows from the fact that the formula (11) for computing eval with the
functorial algebra 𝛼 here is exactly the defining equation of the catamorphism L𝛼𝐺M𝑋 . □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 22 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Scoped Effects and Their Algebras 42:23

Now consider the𝐺-algebra in Lemma 6.4 carried by Ran𝐴𝐴with structuremap𝛼𝐺 = ⌊ΦRan𝐴𝐴 (𝜖𝐴)⌋.
If we instantiate 𝑋 = 𝐴0 in Lemma 6.5, then we get

L𝛼𝐺M𝐴0 = eval𝛼 (𝛼𝐺𝐴0
· 𝜄1)

where 𝛼 is the functorial algebra ⟨Ran𝐴𝐴, (Ran𝐴𝐴)𝐴0,𝛼𝐺 ,𝛼𝐺 ·[𝜄2, 𝜄3]⟩. Plugging the last equation
into (18), we obtain

ℎ0 = (𝜖𝐴)0 · eval𝛼 (𝛼𝐺𝐴0
· 𝜄1) (19)

Note that the right hand side takes exactly the form of an interpretation followed by a morphism
(𝜖𝐴)0 : (Ran𝐴𝐴)𝐴0 → 𝐴0. Thus we try to use interpretation fusion (Lemma 6.1) to simplify it.
Unsurprisingly, we consider the functorial algebra 𝛼 ′ = ⟨Ran𝐴𝐴, 𝐴0, 𝛼𝐺 , 𝛼 𝐼 ⟩ where

𝛼 𝐼 = [𝑎0 : Σ𝐴0 → 𝐴0,𝑑0 · Γ(𝜖𝐴)0 · Γ(Ran𝐴𝐴)𝑝] : Σ𝐴0 + Γ(Ran𝐴𝐴)𝐴0 → 𝐴0

where 𝑎 : Σ𝐴 → 𝐴, 𝑑 : Γ𝐴𝑆 → 𝐴 and 𝑝 : 𝐴 → 𝐴𝑆 are the structure maps of indexed algebra 𝐴.
It can be checked that ⟨id, (𝜖𝐴)0⟩ is a functorial algebra homomorphism from 𝛼 to 𝛼 ′. Thus by
Lemma 6.1, we obtain that

ℎ0 = eval𝛼
(
(𝜖𝐴)0 ·(𝛼𝐺)𝐴0 · 𝜄1

)
= eval𝛼′ id : 𝐸𝐴0 → 𝐴0 (20)

which means that the hybrid fold coincides with the interpretation with functorial algebra 𝛼 ′.

6.2.4 Translating Back to Indexed Algebras. The last step of our proof is translating the functorial
algebra 𝛼 ′ back to an indexed algebra using comparison functor 𝐾 Fn

Ix (Section 5.4), and showing that
the resulting indexed algebra induces the same interpretation morphism as the one induced by 𝐴.

Recall that the comparison functor 𝐾 Fn
Ix maps a functorial algebra carried by ⟨𝐻 ,𝑋 ⟩ to an indexed

algebra carried by 𝑖 ↦→ 𝐻 𝑖𝑋 . Thus 𝐾 Fn
Ix𝛼
′ is an indexed algebra carried by 𝑖 ↦→ (Ran𝐴𝐴)𝑖𝐴0 and by

Lemma 5.1 and (20), 𝐾 Fn
Ix preserves the induced interpretation:

ℎ0 = eval𝛼′ id = eval𝐾Fn
Ix𝛼
′ id : 𝐸𝐴0 → 𝐴0 (21)

What remains is to prove that eval𝐾Fn
Ix𝛼
′ id = eval𝐴 id, and we show this by interpretation fusion

again: we define a morphism 𝜏 from 𝑖 ↦→ (Ran𝐴𝐴)𝑖𝐴0, which is the carrier of 𝐾 Fn
Ix𝛼
′, to 𝐴 in C |N |

such that 𝜏0 = id : (Ran𝐴𝐴)0𝐴0 → 𝐴0 and

𝜏𝑖+1 =
(
(Ran𝐴𝐴) (Ran𝐴𝐴)𝑖𝐴0

(Ran𝐴𝐴)𝜏𝑖−−−−−−−−→ (Ran𝐴𝐴)𝐴𝑖
(Ran𝐴𝐴)𝑝−−−−−−−→ (Ran𝐴𝐴)𝐴𝑖+1

𝜖𝐴−−→ 𝐴𝑖+1
)

and it can be checked that 𝜏 is an indexed algebra homomorphism from 𝐾 Fn
Ix𝛼
′ to ⟨𝐴,𝑎,𝑑 ,𝑝⟩. Note

that we have ⇃ UIx𝜏 equals id : 𝐴0 → 𝐴0, and by Lemma 5.1, we have that

ℎ0 = eval𝐾Fn
Ix𝛼
′ id = id · eval𝐾Fn

Ix𝛼
′ id = (⇃ UIx)𝜏 · eval𝐾Fn

Ix𝛼
′ id = eval𝐴 id

This completes our proof of Theorem 6.2.

Remark 6.1. We only stated in Theorem 6.2 that the hybrid fold coincides with eval at level 0 since
it simplifies the proof and in practice usually only the component ℎ0 is used by the programmer
once ℎ is defined. Yet it is straightforward to generalise the proof above to prove that for any 𝑛 : |N|,

ℎ𝑛 = eval⊳𝑛𝐴 id : 𝐸𝐴𝑛 → 𝐴𝑛

where ⊳𝑛𝐴 is the indexed algebra obtained from 𝐴 by shifting the indices by 𝑛: (⊳𝑛𝐴)𝑖 = 𝐴𝑛+𝑖 .

Remark 6.2. This proof demonstrates the flexibility that we get by having more than one type
of algebras to interpret scoped operations, provided with comparison functors to switch between
them: in the proof, we first use interpretation fusion in the category of functorial algebras, and
translate it to the category of indexed algebras by 𝐾 Fn

Ix and use another interpretation fusion there.

2021-04-06 17:05. Page 23 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

42:24 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

7 RELATEDWORK
The most closely related work is of course that of Piróg et al. [2018] on categorical models of
scoped effects. That work in turn builds on Wu et al. [2014] who introduced the notion of scoped
effects after identifying modularity problems with using algebraic effect handlers for catching
exceptions [Plotkin and Pretnar 2013]. Scoped effects have found their way into several Haskell
implementations of algebraic effects and handlers [King 2019; Maguire 2019; Rix et al. 2018].

Effect Handlers and Modularity. Moggi [1989] and Wadler [1990] popularized monads for respec-
tively modeling and programming with computational effects. Soon after, the desire arose to define
complex monads by combining modular definitions of individual effects [Jones and Duponcheel
1993; Steele 1994], and monad transformers were developed to meet this need [Liang et al. 1995].

Yet, several years later, algebraic effects were proposed as an alternative more structured approach
for defining and combining computational effects [Hyland et al. 2006; Plotkin and Power 2002, 2003].
The addition of handlers [Plotkin and Pretnar 2013] has made them practical for implementation and
many languages and libraries have been developed since. Schrijvers et al. [2019] have characterized
modular handlers by means of modular carriers, and shown that they correspond to a subclass
of monad transformers. Forster et al. [2019] have also shown that algebraic effects, monads and
delimited control are macro-expressible in terms of each other. It would be interesting to extend
these investigations and formally position the expressivity of scoped effects with respect to these
other approaches.

Scoped operations are generally not algebraic operations in the original design of algebraic effects
[Plotkin and Power 2002], but as we have seen in Section 3, an alternative view on Eilenberg-Moore
algebras of scoped operations is regarding them as handlers of algebraic operations of signature
(Σ + Γ𝐸). Note that the functor (Σ + Γ𝐸) mentions the type 𝐸 modelling computations, and thus it
is not a valid signature of algebraic effects in the original design of effect handlers [Plotkin and
Pretnar 2009, 2013], in which the signature of algebraic effects can only be built from some base
types to avoid the interdependence of the denotations of signature functors and computations. In
spite of that, many later implementations of effect handlers such as Eff [Bauer and Pretnar 2014],
Koka [Leijen 2017] and Frank [Lindley et al. 2017] do not impose this restriction on signature
functors (at the cost that the denotational semantics involves solving recursive domain-theoretic
equations), and thus scoped operations can be implemented in these languages with EM algebras as
handlers. In particular, languages supporting shallow handlers [Hillerström and Lindley 2018] like
Frank are a good fit for this purpose, since they allow general recursion and case splits over the
type 𝐸 of computations, which is usually needed to concisely implement the component Γ𝐸𝑋 → 𝑋

of an Eilenberg-Moore algebra of scoped operations.
Other variations of scoped effects have recently been suggested. Recently, Poulsen et al. [2021]

have proposed a notion of staged or latent effect, which is a variant of scoped effects, for modelling
the deferred execution of computations inside lambda abstractions and similar constructs. In Ahman
and Pretnar [2021] the authors investigate asynchronous effects. The authors note that asynchronous
effects are in fact scoped algebraic operations. We have not yet investigated this in our framework,
but it will be an interesting use case.

Abstract Syntax. This work focusses on the problem of abstract syntax and semantics of pro-
gramming language. The benefit of abstract syntax is that it allows for generic programming in
programming languages like Haskell that have support for, e.g. type classes, gadts [Johann and
Ghani 2008] and so on. As an example, Swierstra [2008] showed that it is possible to modularly
create compilers by formalising syntax with Haskell data types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 24 of 1–28.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Scoped Effects and Their Algebras 42:25

The problem of formalising abstract syntax for languages with variable binding was first ad-
dressed by Fiore et al. [1999]; Fiore and Turi [2001]. Subsequently, Ghani et al. [2006] model the
abstract syntax of explicit substitutions as an initial algebra in the endofunctor category and show
that it is a monad. In this paper we use a monad 𝐸, which is a slight generalisation of the monad of
explicit substitutions, to model the syntax of scoped operations. Ghani et al. [2006] also comment
on the apparent lack of modularity in their approach in the sense that the monad representing
a combined language cannot be decomposed by the coproduct of the monads representing its
sub-languages. Piróg et al. [2018] point out the resolution FreeIx ↾⊣⇃ UIx of 𝐸 via indexed algebras
restores some modularity in the sense that

𝐸 � ⇃ (Σ − +Γ(⊳−) + (⊲−))∗ ↾ � ⇃ (Σ∗ +Mnd (Γ(⊳−) + (⊲−))∗) ↾
where +Mnd is the coproduct in the category of monads on C |N | . This kind of modularity also holds
for the resolution via functorial algebras, but we have not yet explored using this form of modularity
to implement modular interpretation of scoped effects.
Hyland et al. [2006] develop uniform ways to combine algebraic effects presented as Lawvere

theories or equational theories, such as by adding commutativity equations of operations. In this
paper, we have not considered equations of scoped operations. A possible direction towards this is
the framework of second-order algebraic operations by Fiore and Mahmoud [2010].

Recursion schemes and Adjoint Folds. Recursion schemes have received a considerable amount of
attention. Of particular relevance to us are recursion schemes for nested datatypes, which were
first investigated by Bird and Paterson [1999], who added some extra parameters to the natural
transformations. This was later given a categorical treatment by Johann and Ghani [2007], who
describe initial algebras of endofunctors as a way to formalise recursion schemes for nested data
types under the slogan “Initial algebras are enough”. We support this view by using the higher-order
endofunctor 𝐺 to define the monad 𝐸 that models syntax of scoped operations.
The study of nested types gave rise to the adjoint folds of Hinze [2013], who provided the

framework that our construction follows closely. This work introduces adjoints folds of form
𝐿𝜇𝐷 → 𝐴 for some adjunction 𝐿 ⊣ 𝑅 as a generalisation of catamorphisms 𝜇𝐷 → 𝐴 that encompass
many recursion schemes such as mutumorphisms, paramorphisms, and recursion schemes from
comonads [Hinze and Wu 2016], thus supporting the view that “adjoint functors arise everywhere”.
In comparison, our interpretation scheme eval𝐷 𝑔 : 𝐺𝐹𝑋 → 𝐴 for some adjunction 𝐹 ⊣ 𝐺 can be
understood as another way of generalising catamorphisms (𝜇𝐷 �) U𝐷Free𝐷0 → 𝐴 where the
free-forgetful adjunction is replaced by an arbitrary resolution 𝐹 ⊣ 𝐺 . These two generalisations
are orthogonal, and one can consider adjoint interpretations 𝐿𝐺𝐹𝑋 → 𝐴 to implement more
sophisticated forms of handlers of scoped operations, such as parameterised handlers [Leijen 2017]
and multihandlers [Lindley et al. 2017].
We also show that the hybrid fold recursion scheme in Piróg et al. [2018] is an adjoint fold

with the adjunction of right Kan extension, and that it coincides with interpretation with indexed
algebras. As future work we wish to consider if there is a systematic way of obtaining such hybrid
recursion schemes as efficient implementations of interpretations with other kinds of algebras.

Step-Indexing. It is interesting to note here that the operators ⊲ and ⊳ used here and first discovered
in Piróg et al. [2018] are very similar to ▶ and ◀ (also pronounced “later” and “previous”) used in
guarded recursion [Birkedal et al. 2012]. The intended meaning is that ⊲ and ▶ decrease the index
while ⊳ and ◀ increase it, but while ⊲ and ⊳ live in C |N | , the guarded recursive counterparts live
in the category of presheaves over 𝜔 , namely Set𝜔

op . It is also interesting to note that the type
𝑀𝐴 � 𝐴 + ⊲𝑀𝐴 is very similar to the partiality monad from Atkey and McBride [2013]. However,
it is not very clear to what extent these two areas of research connect.

2021-04-06 17:05. Page 25 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

42:26 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

8 CONCLUSION
Motivated by the implementation difficulty of indexed algebras, this paper presented two alternative
ways of interpreting scoped operations, namely, Eilenberg-Moore algebras and functorial algebras,
which trade off structuredness for simplicity in different ways, and thus can be implemented
with more modest programming language features, as demonstrated in our Haskell and OCaml
implementations and programming examples.

We put the three models of interpreting scoped operations in the same framework of resolutions
of the monad modelling syntax, and by constructing interpretation-preserving functors between the
three kinds of algebras, we showed that they have equivalent expressivity for interpreting scoped
operation, although they form non-equivalent categories. The uniform theoretical framework also
gave rise to fusion laws of interpretation in a straightforward way, which we used to provide a
solid theoretical foundation for the hybrid fold recursion scheme in [Piróg et al. 2018] which was
previously missing.

There are two strains of work that should be pursued from here. The first one would be investigat-
ing modularity of algebras of scoped operations, in particular, ways to forward scoped operations
that is not handled. The second one would be the design of a language supporting handlers of
scoped operations natively and its type system and operational semantics.

REFERENCES
Danel Ahman and Matija Pretnar. 2021. Asynchronous effects. Proc. ACM Program. Lang. POPL (2021). https://doi.org/10.

1145/3434305
Robert Atkey and Conor McBride. 2013. Productive coprogramming with guarded recursion. In ACM SIGPLAN International

Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo
Uustalu (Eds.).

Michael Barr. 1970. Coequalizers and free triples. Mathematische Zeitschrift (1970).
Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Logical Methods in Computer

Science 10, 4 (Dec 2014). https://doi.org/10.2168/lmcs-10(4:9)2014
Richard S. Bird and Ross Paterson. 1999. Generalised folds for nested datatypes. Formal Aspects Comput. (1999). https:

//doi.org/10.1007/s001650050047
Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First steps in synthetic guarded

domain theory: step-indexing in the topos of trees. Log. Methods Comput. Sci. (2012).
Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream Fusion: From Lists to Streams to Nothing at All.

SIGPLAN Not. 42, 9 (Oct. 2007), 315–326. https://doi.org/10.1145/1291220.1291199
Marcelo Fiore and Ola Mahmoud. 2010. Second-Order Algebraic Theories. In Mathematical Foundations of Computer Science

2010, Petr Hliněný and Antonín Kučera (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 368–380.
Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In 14th Annual IEEE

Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999.
Marcelo P. Fiore and Daniele Turi. 2001. Semantics of Name and Value Passing. In 16th Annual IEEE Symposium on Logic in

Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings.
Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:

Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. https://doi.org/10.1017/
S0956796819000121

Neil Ghani, Tarmo Uustalu, and Makoto Hamana. 2006. Explicit substitutions and higher-order syntax. High. Order Symb.
Comput. (2006).

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. 1977. Initial Algebra Semantics and Continuous Algebras. J.
ACM 24, 1 (Jan. 1977), 68–95. https://doi.org/10.1145/321992.321997

T. Hagino. 1987. Category Theoretic Approach to Data Types. Ph.D. Dissertation. University of Edinburgh.
Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. Lecture Notes in Computer Science 11275 LNCS (2018),

415–435. https://doi.org/10.1007/978-3-030-02768-1_22
Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Mathematics of

Program Construction, Jeremy Gibbons and Pablo Nogueira (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 324–362.
https://doi.org/978-3-642-31113-0_16

Ralf Hinze. 2013. Adjoint folds and unfolds—An extended study. Science of Computer Programming (2013).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 26 of 1–28.

https://doi.org/10.1145/3434305
https://doi.org/10.1145/3434305
https://doi.org/10.2168/lmcs-10(4:9)2014
https://doi.org/10.1007/s001650050047
https://doi.org/10.1007/s001650050047
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/321992.321997
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/978-3-642-31113-0_16

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Scoped Effects and Their Algebras 42:27

Ralf Hinze, Thomas Harper, and Daniel W. H. James. 2011. Theory and Practice of Fusion. In Implementation and Application
of Functional Languages, Jurriaan Hage and Marco T. Morazán (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
19–37. https://doi.org/10.1007/978-3-642-24276-2_2

Ralf Hinze and Nicolas Wu. 2016. Unifying structured recursion schemes - An Extended Study. J. Funct. Program. (2016).
Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining Effects: Sum and Tensor. Theor. Comput. Sci. 357, 1 (July

2006), 70–99. https://doi.org/10.1016/j.tcs.2006.03.013
Patricia Johann and Neil Ghani. 2007. Initial Algebra Semantics Is Enough!. In Typed Lambda Calculi and Applications, TLCA

(Lecture Notes in Computer Science). Springer. https://doi.org/10.1007/978-3-540-73228-0_16
Patricia Johann and Neil Ghani. 2008. Foundations for structured programming with GADTs. In Proceedings of the 35th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 297–308. https://doi.org/10.1145/1328438.1328475

Mark P. Jones and Luc Duponcheel. 1993. Composing Monads. Research Report YALEU/DCS/RR-1004. Yale University, New
Haven, Connecticut, USA. http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf

Alexis King. 2019. eff – screaming fast extensible effects for less. https://github.com/hasura/eff.
J. Lambek and P. J. Scott. 1986. Introduction to Higher Order Categorical Logic.
Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,
New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA) (POPL ’95). ACM, 333–343.
https://doi.org/10.1145/199448.199528

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,
New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

Saunders Mac Lane. 1998. Categories for the Working Mathematician, 2nd edn. Springer, Berlin.
Sandy Maguire. 2019. polysemy: Higher-order, low-boilerplate free monads. https://hackage.haskell.org/package/polysemy.
Eugenio Moggi. 1989. An Abstract View of Programming Languages. Technical Report ECS-LFCS-90-113. Edinburgh

University, Department of Computer Science.
Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55 – 92. https:

//doi.org/10.1016/0890-5401(91)90052-4 Selections from 1989 IEEE Symposium on Logic in Computer Science.
Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics for Operations with Scopes. In

Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, Anuj Dawar and Erich Grädel (Eds.).

Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Foundations of Software Science and
Computation Structures, 5th International Conference (FOSSACS 2002), Mogens Nielsen and Uffe Engberg (Eds.). Springer,
342–356. https://doi.org/10.1007/3-540-45931-6_24

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1 (2003),
69–94. https://doi.org/10.1023/A:1023064908962

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, Giuseppe
Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–94. https://doi.org/10.1007/978-3-642-00590-9_7

Gordon Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (Dec 2013).
https://doi.org/10.2168/lmcs-9(4:23)2013

Casper Bach Poulsen, Cas van der Rest, and Tom Schrijvers. 2021. Staged Effects and Handlers for Modular Languages with
Abstraction. To Appear.

Emily Riehl. 2017. Category Theory in Context. Dover Publications.
Rob Rix, Patrick Thomson, Nicolas Wu, and Tom Schrijvers. 2018. fused-effects: A fast, flexible, fused effect system.

https://hackage.haskell.org/package/fused-effects.
Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. 2019. Monad transformers and modular algebraic effects:

what binds them together. In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP
2019, Berlin, Germany, August 18-23, 2019. 98–113. https://doi.org/10.1145/3331545.3342595

Guy L. Steele, Jr. 1994. Building Interpreters by Composing Monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ’94), Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin
(Eds.). ACM, 472–492. https://doi.org/10.1145/174675.178068

Wouter Swierstra. 2008. Data types à la carte. J. Funct. Program. 18, 4 (2008), 423–436. https://doi.org/10.1017/
S0956796808006758

Akihiko Takano and Erik Meijer. 1995. Shortcut Deforestation in Calculational Form. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture. Association for Computing

2021-04-06 17:05. Page 27 of 1–28.Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.

https://doi.org/10.1007/978-3-642-24276-2_2
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1145/1328438.1328475
http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf
https://github.com/hasura/eff
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3009837.3009897
https://hackage.haskell.org/package/polysemy
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/lmcs-9(4:23)2013
https://hackage.haskell.org/package/fused-effects
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/174675.178068
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

42:28 Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers

Machinery, New York, NY, USA. https://doi.org/10.1145/224164.224221
Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73, 2 (Jan. 1988), 231–248.

https://doi.org/10.1016/0304-3975(90)90147-A
Philip Wadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming

(Nice, France) (LFP ’90). ACM, 61–78. https://doi.org/10.1145/91556.91592
Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free. In Mathematics of Program Construction, Ralf Hinze and Janis

Voigtländer (Eds.). Springer International Publishing, Cham, 302–322. https://doi.org/978-3-319-19797-5_15
Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. SIGPLAN Not. (2014).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 42. Publication date: January 2020.2021-04-06 17:05. Page 28 of 1–28.

https://doi.org/10.1145/224164.224221
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/91556.91592
https://doi.org/978-3-319-19797-5_15

	Abstract
	1 Introduction
	2 Syntax and Semantics of Scoped Operations
	2.1 Working With Scoped Operations
	2.2 Foundations of Scoped Operations

	3 Interpreting Scoped Operations with Eilenberg-Moore Algebras
	3.1 Eilenberg-Moore Algebras of Scoped Effects
	3.2 Implementation of EM Algebras of Scoped Effects

	4 Interpreting Scoped Operations with Functorial Algebras
	4.1 Functorial Algebras
	4.2 An Adjunction for Functorial Algebras
	4.3 Implementation

	5 Comparing the Expressivity of the Models
	5.1 Comparison of Resolutions
	5.2 Translating to EM Algebras
	5.3 Translating EM Algebras to Functorial Algebras
	5.4 Translating Functorial Algebras to Indexed Algebras

	6 Fusion Laws and Hybrid Fold
	6.1 Fusion Laws of Interpretation
	6.2 Case Study: Hybrid Fold

	7 Related Work
	8 Conclusion
	References

