
STRUCTURE AND LANGUAGE

OF HIGHER-ORDER

ALGEBRAIC EFFECTS

ZHIXUAN YANG

A thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy at

Department of Computing

Imperial College London

September

2024



Abstract

The research programme of algebraic effects studies non-pure features in pro-

gramming languages, commonly referred to as computational effects, through

the lens of algebraic theories of effectful operations. The free algebra monad

induced by an algebraic theory provides the necessary structure for interpreting

the computational effect in a programming language. Moreover, the universal

property of free algebras can be internalised in programming languages as a

useful programming construct known as effect handlers.
This thesis presents a generalisation of algebraic effects, called higher-order

algebraic effects in this thesis, widening the range of effects that can be treated

algebraically. The central idea is to shift focus from algebraic theories of operations

to algebraic theories of monads equipped with operations, or more generally, theories

of monoids equipped with operations in a monoidal category.

Part I of the thesis first develops a convenient categorical framework and a

syntactic language for presenting algebraic theories of operations on monoids,

and categorical properties of such theories are studied within this framework.

Additionally, a formal theory of modular constructions of algebraic structures is

proposed, based on lifting functors along fibrations.

In Part II of the thesis, a programming language with higher-order impred-

icative polymorphism and a restricted form of higher-order algebraic effects is

presented. The consistency and the computational interpretation of the language

are given by a realizability model. The canonicity of closed terms is proven

using synthetic Tait computability. An extension of the language with general

recursion is considered and is modelled using synthetic domain theory.

i



Examination Committee

Philippa Gardner

Imperial College London

Jonathan Sterling

University of Cambridge

Tarmo Uustalu

Reykjavik University

Tallinn University of Technology

Statement of Originality

The author certifies that the thesis presented here is solely my own work other

than where I have clearly indicated that it is the work of others.

Open Access

The copyright of this thesis rests with the author. Its contents are licensed under

a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC

BY-NC). Under this licence, you may copy and redistribute the material in any

medium or format. You may also create and distribute modified versions of the

work. This is on the condition that: you credit the author and do not use it, or

any derivative works, for a commercial purpose. When reusing or sharing this

work, ensure you make the licence terms clear to others by naming the licence

and linking to the licence text. Where a work has been adapted, you should

indicate that the work has been changed and describe those changes. Please seek

permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.

ii

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Acknowledgements

I’m forever indebted to my supervisor Nick Wu, who took me under his wings

when I was at the lowest point of my life, and since then has been unreservedly

supportive to me, helping me become a better researcher and a better person in

many ways. Also, if it weren’t Nick’s previous work on scoped effects, I wouldn’t

be writing a thesis about higher-order algebraic effects at all. Having Nick as my

mentor is one of the luckiest things that ever happened to me.

My second biggest source of knowledge during the last four years has been the

online programming language theory community: Jon Sterling, Ende Jin, Max

New, Tesla Zhang, Chris Grossack ˆ_ˆ, Joey Eremondi, Nathan Corbyn, Danielle

Marshall, Zanzi, and many many other names that I can’t fully enumerate here. I

can’t overstate how much I learnt from them by just reading their tweets/toots.

Without this vibrant and friendly community, I wouldn’t have even heard of

some of the mathematics that was used critically in this thesis.

I’m especially indebted to Jon Sterling – his insights into type theory and

many other things that he shared online and in his writings completely reshaped

my understanding of programming language theory. If Nick is the person who

taught me the most through direct guidance, Jon is then the person who taught

me the most through his writings. It isn’t exaggerating to say that Part II of this

thesis is my naive fan fiction of Jon’s work.

My longtime friend Josh Ko, also my de facto supervisor when we were in

Japan, was the person who introduced me to real programming language theory

and serious scientific work in general. Without him, I might end up writing

ridiculous software engineering papers using large language models. When my

academic life as a graduate student was falling apart in Japan, it was Josh and

Josh’s former PhD supervisor Jeremy Gibbons who encouraged and helped me to

come to the UK for a second chance. Josh was also the person who advised me:

‘if you want to work on algebraic effects, you have to learn category theory and

figure out what these scary integration symbols mean’ when I knew absolutely

nothing about category theory in 2019 – I’m glad I took his advice. Although

we’ve been working on different research topics now, Josh is still a role model to

me of pursuing a high standard of research and writing.

I cherish my friendships with the people that I met at Imperial College London:

Jamie Willis, Marco Paviotti, Csongor Kiss, Matthew Pickering, Donnacha Oisín

iii



Kidney, David Davies, Niels Bunkenburg, Omar Tahir, Shing Hin Ho, Paulo

Emílio de Vilhena, Jacob Yu, Alyssa Renata. I’m also very grateful to our

departmental PhD programme manager Dr Amani El-Kholy for consistently

providing me with the most prompt help in administrative matters.

Lastly, I couldn’t be more grateful to my girlfriend Sĳia Chen and my parents

Jubo Yang and Xumei Chen for their love and unlimited support. I hope I will be

a better partner and a better son in the future.

Zhixuan Yang

Canterbury

September 2024

iv



Contents

1 Prologue 1
1.1 Denotational Semantics in the 70s and 80s . . . . . . . . . . . . . . 1

1.2 Computational Effects as Monads . . . . . . . . . . . . . . . . . . . 3

1.3 Computational Effects Post-Moggi . . . . . . . . . . . . . . . . . . 5

1.4 Higher-Order Algebraic Effects . . . . . . . . . . . . . . . . . . . . 6

1.5 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 How to Read This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

I Structure 12

2 Algebraic Theories of Monoids with Operations 13
2.1 Notions of Computation as Monoids in Monoidal Categories . . . 15

2.2 Equational Systems and Translations . . . . . . . . . . . . . . . . . 26

2.3 A Type Theory for Monoidal Categories . . . . . . . . . . . . . . . 43

2.4 Equational Systems for Monoids with Operations . . . . . . . . . 53

2.5 Families of Operations . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Modular Constructions of Algebraic Structures 68
3.1 Modular Models of Monoids . . . . . . . . . . . . . . . . . . . . . 68

3.2 Model Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Constructions of Model Transformers . . . . . . . . . . . . . . . . 85

II Language 110

4 A Logical Framework for LCCCs 111
4.1 Syntax of the Logical Framework . . . . . . . . . . . . . . . . . . . 113

4.2 Functorial Semantics of Signatures . . . . . . . . . . . . . . . . . . 119

4.3 Diagrammatic Semantics of Signatures . . . . . . . . . . . . . . . . 123

4.4 Equivalence of Two Notions of Models . . . . . . . . . . . . . . . . 134

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

v



5 A Polymorphic Language with Effects 145
5.1 The Signature of System Fω

ha
. . . . . . . . . . . . . . . . . . . . . . 146

5.2 Realizability Model of Fω
ha

. . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Logical Relations, Categorically and Synthetically . . . . . . . . . 160

5.4 Canonicity of System Fω
ha

. . . . . . . . . . . . . . . . . . . . . . . . 173

5.5 Parametricity and Free Theorems . . . . . . . . . . . . . . . . . . . 188

5.6 General Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6 Epilogue 204

Bibliography 208

A Complete Signatures of Languages 229
A.1 Signature of System Fω

ha
. . . . . . . . . . . . . . . . . . . . . . . . 229

A.2 Effect Families in Fω
ha

. . . . . . . . . . . . . . . . . . . . . . . . . . 232

vi



Chapter 1

Prologue

1*1. Natural languages evolved to describe things around us. Logical lan-

guages are formulated to denote mathematical objects. Programming languages

are invented to compose computational procedures. But since the late 1960s,

programming language theorists have known that it is fruitful to not just use

programming languages for denoting computations, but to study the general
class of mathematical objects that a programming language can denote, in the same

tradition of how logicians study the model theory of logical languages.

The field of studying what mathematical objects programming languages

denote is known as denotational semantics, which is the area that this thesis belongs

to. This thesis focuses on one specific topic: higher-order algebraic effects. What are

higher-order algebraic effects? And what are they good for? To answer these

questions, I beg the reader’s indulgence as we take a step back to discuss a bit of

the history of denotational semantics and computational effects.

1.1 Denotational Semantics in the 70s and 80s

1.1*1. The starting point of denotational semantics of programming languages

was Dana Scott’s 1969 report A Type-Theoretical Alternative to ISWIM, CUCH,
OWHY, which was widely circulated but unpublished until 1993. In this report,

Scott advocated typed programming languages that have clear mathematical

denotations over untyped programming languages, which the acronyms in the

title refer to, that by then had been purely syntactic/formalistic.

The programming language and program logic in Scott’s paper would later

be known as PCF (Programming Computable Functions) and LCF (Logic for

Computable functions). The denotational semantics of a context Γ or a type 𝜏

of PCF is a partial order JΓK or J𝜏K that has an bottom element and a join for all

𝜔-chains, now called a pointed 𝜔-cpo. The semantics of every program Γ ⊢ 𝑡 : 𝜏 of

PCF is then a monotone function J𝑡K : JΓK→ J𝜏K that preserves joins of 𝜔-chains.

Crucially, the existence of least elements and joins of 𝜔-chains allow one to

interpret general recursion at all types.

1



1.1*2. Scott’s denotational approach to programming language gained great

momentum in the 70s and 80s. A spectacular achievement was Scott’s discovery

of models of untyped 𝜆-calculus by constructing continuous lattices 𝐷 that are

isomorphic to the function space 𝐷𝐷
[Scott 1972] and subsequently a universal

model in the powerset of natural numbers [Scott 1976]. The study of these

kinds of special partial orders became a whole new field of mathematics, domain
theory, and solving recursive equations of mixed variance like 𝐷 � 𝐷𝐷

thereafter

remained a central topic in domain theory, as they model not just untyped

languages but also recursively defined datatypes in typed languages.

1.1*3. Apart from general recursion, the semantics of concurrency was another

notable topic studied from the 1970s onwards. Several constructions of power
domains, analogues of power sets for domains, were introduced for modelling

nondeterminism [Plotkin 1976; Smyth 1978; Winskel 1985].

1.1*4. Another influential piece of work in the 70s was Plotkin’s [1977] treatment

on the connection between the denotational semantics and operational semantics

of PCF. Two questions that Plotkin studied for PCF would later be repeatedly

asked for all sorts of programming languages by computer scientists in the

following decades: adequacy (whether the denotation of a program determines

its operational behaviour) and full abstraction (whether two programs have the

same denotation if and only if they are operationally equivalent).

1.1*5. The 1970s and 80s also saw the adoption of category theory in theoretical

computer science. Notable contributions are made by Goguen et al. (more

commonly known as the ADJ group) [1977], who promoted the view of abstract

syntax as initial algebras of endofunctors, Arbib and Manes [1975], and Adámek

[1974], who initiated studying automata as algebras of endofunctors.

During this period, categorical logic, pioneered by William Lawvere, was also

under rapid development; see Marquis and Reyes [2004] for a detailed historical

account. The methodology of categorical logic – organising the syntax of a logic

as a category with certain structure and semantic models as structure-preserving
functors – would be quickly embraced by programming language theorists. For

instance, the denotational semantics of polymorphism [Asperti and Martini 1992;

Moggi 1987; Pitts 1987] developed in the 80s had been using category theory way

more extensively than denotational semantics from the 70s.

1.1*6. Why are we interested in denotational semantics? The motivation is

multifold. Firstly, it makes it possible to manipulate some complex mathematical

objects using simpler, usually mechanisable, formal languages, thus making the

tools developed by programming language theorists useful to more branches of

mathematics. This approach is sometimes known as synthetic mathematics, and a

2



notable example is the development of homotopy type theory, which enables one to

manipulate homotopy types (i.e.∞-groupoids) using a relatively simple language,

namely, Martin-Löf type theory with a univalence axiom [Hou (Favonia) 2017;

Kapulkin and Lumsdaine 2021; Univalent Foundations Program 2013].

Secondly, even if only programming itself is concerned, programming lan-

guage theorists may be interested in meta-theoretic properties of their languages, for

example, whether programs of a language always terminate, whether a program

is definable in a language, whether two programs have the same behaviour,

whether programs of a language never leak critical information, and so on. Deno-

tational methods proved to be an important, if not the most important approach to

answering such questions, by constructing models of the programming language

that prove or disprove the property in question. Moreover, the syntax and

semantics of programming languages are dialectic: it is common that studying

the underlying semantic structure suggests how a language can be designed or

extended. (This is also why the title of this thesis is Structure and Language of
[. . . ] rather than Syntax and Semantics of [. . . ].)

Thirdly, even in practical programming, software with customisable be-

haviours usually implements some domain-specific languages, such as languages

for automating a workflow, languages for configuring a system, and languages

for querying a certain kind of data. As the joke ‘Greenspun’s Tenth Rule of

Programming’ [Greenspun 2003] goes:

Any sufficiently complicated C or Fortran program contains an ad-

hoc, informally-specified bug-ridden slow implementation of half of

Common Lisp.

Implementing such domain-specific languages in functional programming can then

take direct inspiration from the study of denotational semantics, since functional

programming languages are close to the mathematical language.

1.2 Computational Effects as Monads

1.2*1. By the end of the 1980s, programming language theorists had studied a

variety of languages that are a pure language, usually some kind of 𝜆-calculus,

extended with some computational features: partiality, exceptions, side-effect,

non-determinism, continuation, user input/output, etc. These features are

collectively referred to as computational effects, generalising the term side-effects,
which is reserved for the effect of reading and writing memory.

1.2*2. A unified semantic account of all these computational effects was proposed

by Moggi [1989a,b, 1991], whose idea was that values of a type 𝜏 and computations
of a type 𝜏 in a programming language should be given different semantics.

3



More precisely, to interpret a language 𝐿 with some computational effect in a

category 𝒞, if values of type 𝜏 are interpreted as an object J𝜏K ∈ 𝒞, computations

of type 𝜏 should be interpreted as another object 𝑇J𝜏K ∈ 𝒞, where 𝑇 : 𝒞→ 𝒞 is

some mapping from values to effectful computations.

The structure that Moggi demanded for 𝑇 was that of monads, a basic concept

in category theory. A monad on a category 𝒞, in the so-called Kleisli-triple

formulation, consists of the following data (subject to certain laws):

1. an object 𝑇𝐴 ∈ Obj𝒞 for every object 𝐴 ∈ Obj𝒞,

2. a morphism 𝜂𝐴 : 𝐴→ 𝑇𝐴 in 𝒞 for every 𝐴 ∈ Obj𝒞, and

3. a morphism 𝑓 ∗ : 𝑇𝐴→ 𝑇𝐵 for every 𝐴, 𝐵 ∈ Obj𝒞 and 𝑓 : 𝐴→ 𝑇𝐵.

As mentioned earlier, the object 𝑇𝐴 is used for interpreting computations

producing 𝐴-values. The morphism 𝜂𝐴 : 𝐴→ 𝑇𝐴 is used for embedding values

as computations that perform no effects. The morphism 𝑓 ∗ is used for sequential
composition of two computations: given 𝑓 : 𝐴 → 𝑇𝐵 and 𝑔 : 𝐵 → 𝑇𝐶, we

have 𝑔∗ · 𝑓 : 𝐴→ 𝑇𝐶. When the programming language to be interpreted has

structural contexts of variables, an additional piece of data called a strength
𝑠Γ,𝐵 : Γ × 𝑇𝐴→ 𝑇(Γ × 𝐴) is needed for the interaction of contexts and effects, but

let us leave them out in this introduction for the sake of simplicity.

The structure of monads is what Moggi used as the ‘backbone’ for interpreting

computational effects. For specific effects, we also need ‘flesh’ – additional

operations on the monad 𝑇 that give semantics to the specific effectful operations.

For example, to interpret side-effect, we would also need the monad 𝑇 to come

with operations that interpret memory reading and writing.

1.2*3. The following are a few by now standard examples of monads on the

category of sets that respectively model a computational effect. For brevity we

only show the mapping on objects for each monad (c.f. Moggi [1989a,b, 1991]).

* The state monad 𝐴 ↦→ (𝐴 × 𝑆)𝑆 for a fixed set 𝑆 models the effect of a single

mutable state storing a value of 𝑆.

* The continuation monad 𝐴 ↦→ 𝐴(𝑅
𝐴)

for a fixed set 𝑅 models the effect of

call with current continuation (call/cc).

* The finite distribution monad 𝐴 ↦→ 𝐷𝐴 models the effect of probabilistic

choice, where the set 𝐷𝐴 contains all functions 𝑝 : 𝐴 → [0, 1] such that

𝑝(𝑥) ≠ 0 for finitely many 𝑥 ∈ 𝐴 and

∑
𝑥∈𝐴 𝑝(𝑥) = 1.

* The exception monad 𝐴 ↦→ 𝐸 + 𝐴 for a fixed set 𝐸 models the effect of

throwing and catching exceptions from the set 𝐸.

* The powerset monad 𝐴 ↦→ 𝒫𝐴 models non-deterministic choice.

4



In addition to these simple ones, there has been a large body of research on

monads for more realistic computational effects since Moggi’s proposal. Two

notable lines of work are the monads for mutable state that supports memory

allocation [Plotkin and Power 2002; Staton 2010], storing pointers [Kammar et al.

2017], storing higher-order functions [Levy 2002; Sterling et al. 2023, 2024] and

the huge family of monads for probabilistic/statistic/randomised programming

languages that we cannot enumerate here (see nLab [2024c] for a table).

1.3 Computational Effects Post-Moggi

1.3*1. Aside from the prolific work on monads for specific computational effects,

there have also been two conceptual developments of Moggi’s framework of

computational effects as monads, both of which are directly related to this thesis.

1.3*2. The first development is that categorical structures that are similar to

monads but not exactly monads have been suggested for modelling computational

effects in ways that are either more general or more precise than using monads:

Hugh’s arrows [Hughes 2000; Jacobs et al. 2009; Lindley et al. 2011], applicative

functors [Mcbride and Paterson 2008; Paterson 2012], graded monads [Katsumata

2014; Katsumata et al. 2022; McDermott and Uustalu 2022a], and parameterised

monads [Atkey 2009; Orchard et al. 2020]. This diversity of categorical structure is

then re-unified by the concept of monoids in monoidal categories [Rivas and Jaskelioff

2017], a concept that encompasses monads and all the concepts mentioned above.

1.3*3. The second development is the research programme commonly known

as algebraic effects, initiated by Plotkin and Power [2002, 2004], who advocated

another uniform framework of modelling computational effects by studying

algebraic theories (to be technically precise, enriched algebraic theories) of the

operations of computational effects. For example, a possible theory of nondeter-

minism is that of a binary operation 𝑥 + 𝑦 for nondeterministic choice and the

equations (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧), 𝑥 + 𝑦 = 𝑦 + 𝑥, and 𝑥 + 𝑥 = 𝑥.

Unlike the generalisation to monoids in 1.3*2, the point of using algebraic

theories instead of monads is not about generality or expressivity. In fact, algebraic

theories and monads are roughly equivalent mathematically: every algebraic

theory generates a monad by the free algebra construction (which can then be

used for giving semantics to programming languages with effects) and every

monad determines a possibly infinitary algebraic theory [Linton 1966].

The point of using algebraic theories to model computational effects is instead

conceptual simplicity and naturality, acknowledging our intuition that it is the

effectful operations rather than the structure of monads (sequential composition

and returning a pure value) that are the ‘flesh’ of a computational effect. For many

5



monads used for modelling computational effects, Plotkin and Power [2002]

showed that they can be generated from some very simple algebraic theories. For

example, in the category of directed cpos, the theory of nondeterminism above

generates the convex power domain monad. Therefore, using algebraic theories,

we can give semantics to a computational effect by simply listing the operations

and equations that we wish to hold. Having an concise explicit formula of

the corresponding monad is useful for mathematical calculation and efficient

implementation, but they logically come after the algebraic theories.

1.3*4. While the research programme of algebraic effects initially focused solely

on the semantics of computational effects, as previously mentioned, the study of

semantics can influence the design of syntax too. This proved true for algebraic

effects after Plotkin and Pretnar [2009, 2013] proposed a new programming

language feature, effect handlers, internalising the universal property of monads

generated from algebraic theories in a programming language.

From a programming perspective, effect handlers make a programming

language extensible: the programmer can on the fly add new effectful operations

to the language, using the new operations to write programs, and then give

semantics to those new operations wherever needed by supplying a model (called

a handler in this context), and possibly different models in different scenarios.

The flexibility of effect handlers makes them quickly adopted by the pro-

gramming language theory community and there has been a large body of

research on almost every aspect of effect handlers: operational semantics,

type systems for tracking effects precisely, efficient compilation, effect poly-

morphism, connections to other primitives such as delimited continuations, so

on and so forth. It is impossible to review even a tiny fraction of this devel-

opment here without omitting something equally worth mentioning, so we

shall just refer the reader to the community-maintained online bibliography at

https://github.com/yallop/effects-bibliography.

1.4 Higher-Order Algebraic Effects

1.4*1. However, there is limitation in Plotkin and Pretnar [2009, 2013]’s frame-

work on what kind of operations can be added to the programming language and

interpreted by handlers. To explain limitation more precisely, let us suppose

that 𝒞 is some suitable category that we use for interpreting types and pure

programs of the programming language; for example, 𝒞 may be Set, ωCpo, or

some topos. Under some conditions, every (𝒞-enriched) algebraic theory 𝑇 over

𝒞 determines a strong monad 𝑀𝑇 on 𝒞 such that every operation 𝑜 of the theory

𝑇 induces a natural transformation 𝑜𝑋 : 𝑃 × (𝑀𝑇𝑋)𝑁 → 𝑀𝑇𝑋 for some objects

6

https://github.com/yallop/effects-bibliography


𝑃, 𝑁 ∈ 𝒞 making the following diagram commute:

𝑃 × (𝑀𝑇(𝑀𝑇𝑋))𝑁 𝑀𝑇(𝑀𝑇𝑋)

𝑃 × (𝑀𝑇𝑋)𝑁 𝑀𝑇𝑋

𝑜𝑀𝑇𝑋

𝑃×𝜇𝑁
𝑋

𝜇𝑋

𝑜𝑋

where 𝜇 is the multiplication of 𝑀𝑇 . Operations 𝑜𝑋 : 𝑃 × (𝑀𝑇𝑋)𝑁 → 𝑀𝑇𝑋 satis-

fying this diagram is sometimes called algebraic operations in the literature [Plotkin

and Power 2003]. Since monadic multiplication is used for interpreting sequential
composition of computations in programming languages, what this diagram says

is that the effectful operation 𝑜 commutes with sequential composition. In more

conventional programming language syntax, this means(
do x← 𝑜(𝑝,𝜆𝑛. 𝑎); 𝑘

)
= 𝑜

(
𝑝,𝜆𝑛. (do x← 𝑎; 𝑘)

)
(1.1)

where 𝑜 is the effectful operation taking a parameter 𝑝 of type 𝑃 and 𝑁-many

computations as arguments, represented as a 𝜆-function with a bound variable

𝑛 of type 𝑁 , and 𝑘 is a computation with a free variable 𝑥. The computation

(do x← a; k) first does 𝑎, binds its return value to 𝑥, then does 𝑘.

The equation (1.1) is reasonable for some effectful operations in practice. For

example, if 𝑜 is the operation that makes a non-deterministic choice of continuing

as one of its 𝑛 arguments, then both sides of (1.1) are operationally the same:

making a non-deterministic choice of 𝑖 ∈ {1, . . . 𝑛}, doing 𝑎𝑖 , and then doing 𝑘.

However, there is no reason to expect all effectful operations to take the form

of 𝑜𝑋 : 𝑃 × (𝑀𝑇𝑋)𝑁 → 𝑀𝑇𝑋 and satisfies the equation (1.1). For example, the

operation of call/cc on a monad 𝑀 may be formulated as a family of morphisms

𝑐𝑋,𝑌 : ((𝑋 ⇒ 𝑀𝑌) ⇒ 𝑀𝑋) → 𝑀𝑋

natural in 𝑋,𝑌 ∈ 𝒞, where the notation 𝑋 ⇒ 𝑌 means the exponential 𝑌𝑋 , so

𝑐 does not fit in the form 𝑜𝑋 : 𝑃 × (𝑀𝑇𝑋)𝑁 → 𝑀𝑇𝑋. Moreover, even when an

effectful operation 𝑜 is of the form 𝑃 × (𝑀𝑋)𝑁 → 𝑀𝑋, it does not necessarily

satisfy the equation (1.1). For example, if 𝑜 is the operation that runs its 𝑛

arguments in parallel (and combines their return values in some way), then the

two sides of (1.1) behave differently: the left-hand side runs 𝑎1, . . . , 𝑎𝑛 in parallel,

combines their return values, and then does 𝑘 once, whereas 𝑘 is run 𝑛-times in

parallel on the right-hand side.

1.4*2. To overcome these problems, we develop higher-order algebraic effects in this

thesis. The idea is simple: instead of considering algebraic theories over the base

category 𝒞 (for interpreting types of the programming language), we consider

algebraic theories in the endofunctor category Endo(𝒞), in particular, theories

7



of monads with operations. Here an operation on a monad 𝑀 means a morphism

Σ𝑀 → 𝑀 in Endo(𝒞), where Σ is a functor Endo(𝒞) → Endo(𝒞). The special

case of Σ𝑀 = 𝑃 × (𝑀−)𝑁 recovers algebraic operations, and of course a general

Σ : Endo(𝒞) → Endo(𝒞) allows a richer class of operations to be modelled.

Under some conditions, every such a theory 𝑇 of monads with operations has an

initial algebra, which is a monad equipped with 𝑇-operations, and we can use

this monad for interpreting effectful programming languages as usual.

1.4*3. An additional advantage of shifting our attention from 𝒞 to Endo(𝒞)
is that the latter readily suggests a further generalisation to consider algebraic

theories of monoids with operations in an arbitrary monoidal category ℰ. This

gives us a unified and generalised account of the development of computational
effects as monoids (1.3*2) and computational effects as algebraic theories (1.3*3).

1.5 Structure of This Thesis

1.5*1. This thesis has two parts. In Part I, we study the categorical foundation of

higher-order algebraic effects. In Part II, we study programming languages for

higher-order algebraic effects and their meta-theoretic properties.

1.5*2 (Part I). In Chapter 2, we first develop a convenient way of presenting

algebraic theories over monoidal categories by using equational systems originally

proposed by Fiore and Hur [2009] and the internal language of monoidal cate-

gories, which we call monoidal algebraic theories. Then we study some subcategories

of algebraic theories of monoids equipped with additional operations.

In Chapter 3, we propose a general theory for modularity in algebraic structures.
The main idea is to define a modular model 𝑀 of an algebraic theory Σ to be a

lifting of the functor (− + Σ) : 𝒯 → 𝒯 along the fibration 𝑃 : 𝒜→ 𝒯

𝒜 𝒜

𝒯 𝒯

𝑀

𝑃

−+Σ

𝑃′

where 𝒯 is the category of algebraic theories in question and 𝑃 : 𝒜→ 𝒯 is the

fibration given by the Grothendieck construction for (−)-Alg : 𝒯
op→ CAT, so

𝒜 is the category contains all models of all theories in 𝒯.

This idea is then generalised to considering liftings 𝑀 : 𝒜 → 𝒜
′

of an

arbitrary functor 𝑇 : 𝒯 → 𝒯
′
along two possibly different fibrations 𝑃 : 𝒜→ 𝒯

and 𝑃′ : 𝒜
′ → 𝒯

′
. The informal intuition is that the functor 𝑇 is a theory 𝑇Γ

parameterised by a generic ‘future extension’ Γ to the theory, and the functor

𝑀 : 𝒜 → 𝒜
′

is then a model of 𝑇 that parameterised by a generic model of

8



Γ, so we call the lifting 𝑀 a model transformers of 𝑇. A number of universal

constructions and concrete constructions of model transformers are then given.

The theory of this chapter applies to not just higher-order algebraic effects,

but to modularity of denotational semantics in general. Although the results in

this chapter are preliminary, the author finds them interesting and encouraging.

1.5*3 (Part II). In Chapter 4, we first study the meta-theory of a logical framework

originally due to Sterling [2021] in some detail, which will be a powerful tool

for us to study programming languages for higher-order algebraic effects later

chapters. The main result of this chapter is a categorical equivalence

𝑆-Mod(𝒞) � LCCC�(Jdg 𝑆,𝒞)

for every signature 𝑆 defined in this logical framework, where 𝑆-Mod(𝒞) is

the category of models of 𝑆 in a locally cartesian closed (LCC) category 𝒞 and

LCCC�(Jdg 𝑆,𝒞) is the category of LCC-functors from an LCC category Jdg 𝑆 to

𝒞 and natural isomorphisms between these functors.

In Chapter 5, we present Fω
ha

, an extension of Girard’s [1972] System Fω with (a

special case of) higher-order algebraic effects. The language is intended to be an

idealised model of functional programming languages nowadays extended with

higher-order algebraic effects, so there is no full dependent types, in particular

equality types, in the language, forcing us to consider only lawless algebraic

theories in this language. This degeneracy makes the language somewhat

detached from the categorical foundations developed in previous chapters, but it

also makes this language interesting: even if the handlers in this language are

only lawless ‘raw monads’, the computation judgements still satisfy the monadic

laws strictly. For its meta-theoretic properties, we show its consistency by a

realizability model and its closed-term canonicity using synthetic Tait computability.

A consequence of these two results is that for every closed term t : bool in Fω
ha

,

there is a halting Turing machine that halts with 0 or 1 iff 𝑡 is judgementally

equal to tt or ff in Fω
ha

. Moreover, we show how Fω
ha

can be extended with general
recursion and give it a denotational model using synthetic domain theory.

1.5*4. Chapter 2 and 3 are a revision and generalisation of the materials in the

paper [Yang and Wu 2023]. The other chapters are new materials not published

elsewhere. A complete list of papers by the author on (higher-order) algebraic

effects published during his PhD is as follows:

1. Sam Lindley, Cristina Matache, Sean Moss, Sam Staton, Nicolas Wu, and

Zhixuan Yang. Scoped Effects as Parameterized Algebraic Theories. ESOP 2024.

doi:10.1007/978-3-031-57262-31.

2. Donnacha Oisín Kidney, Zhixuan Yang, and Nicolas Wu. Algebraic Effects
Meet Hoare Logic in Cubical Agda. POPL 2024. doi:10.1145/3632898.

9

https://doi.org/10.1007/978-3-031-57262-31
https://doi.org/10.1145/3632898


3. Zhixuan Yang and Nicolas Wu. Modular Models of Monoids with Operations.
ICFP 2023. doi:10.1145/3607850.

4. Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom

Schrĳvers. Structured Handling of Scoped Effects. ESOP 2022. doi:10.1007/978-

3-030-99336-817.

5. Zhixuan Yang and Nicolas Wu. Fantastic Morphisms and Where to Find Them:
A Guide to Recursion Schemes. MPC 2022. doi:10.1007/978-3-031-16912-09.

6. Zhixuan Yang and Nicolas Wu. Reasoning about Effect Interaction by Fusion.

ICFP 2021. doi:10.1145/3473578.

1.6 How to Read This Thesis

1.6*1. As the reader must have noticed, the paragraphs in this thesis are arranged

into numbered blocks, so that their visual structure matches their semantic

structure. There are exactly two counters used throughout the thesis: numbers

that do not contain ‘*’, such as (1.1), are used exclusively for equations and

are always surrounded by parentheses. Numbers containing ‘*’ are used for

everything else, such as paragraphs, lemmas, theorems, and a number 𝑥.𝑦∗𝑧
means the 𝑧-th block in Section 𝑥.𝑦.

1.6*2. This thesis is written with the assumption that the reader is comfort-

able with basic category theory: categories, functors, natural transformations,

(co)limits, exponentials, adjunctions, monads, (co)ends. Any reasonable intro-

ductory textbook on category theory covers all these concepts; the author’s

favourites are Mac Lane’s [1998] classic textbook and Borceux’s [1994a; 1994b;

1994c] comprehensive and extremely readable handbook. When we occasionally

use some not-so-basic categorical concepts, I will try to be self-contained – I

apologise in advance if I failed to do so.

It is also assumed that the reader is knowledgeable in programming language

theory, including 𝜆-calculus and its connection with cartesian closed categories,

dependent type theories [Angiuli and Gratzer 2024; Nordström et al. 1990], and

their interpretation in presheaf categories [Hofmann 1997; Jacobs 1999]. Some

basic familiarity with topos theory will also be valuable for Chapter 5.

1.6*3 (Foundation). We will use a traditional set-theoretic language to discuss

category theory, so when we say ‘a category𝒞’, we mean a set of objects Obj𝒞 and

a family of sets 𝒞(𝑎, 𝑏) of morphisms for all 𝑎, 𝑏 ∈ Obj𝒞 equipped with identity

morphisms id𝑎 ∈ 𝒞(𝑎, 𝑎) and composition (− · −) : 𝒞(𝑏, 𝑐) × 𝒞(𝑎, 𝑏) → 𝒞(𝑎, 𝑐).
Size issues are dealt with using Grothendieck universes, which are roughly sets of

(smaller) sets and closed under the usual set-forming operations [Shulman 2008].

Given any Grothendieck universe𝑈 , a set 𝐴, and a category 𝒞,

10

https://doi.org/10.1145/3607850
https://doi.org/10.1007/978-3-030-99336-817
https://doi.org/10.1007/978-3-030-99336-817
https://doi.org/10.1007/978-3-031-16912-09
https://doi.org/10.1145/3473578


* 𝐴 is called𝑈-small if 𝐴 ∈ 𝑈 ,

* 𝒞 is called locally𝑈-small if 𝒞(𝑎, 𝑏) ∈ 𝑈 for all 𝑎, 𝑏 ∈ Obj𝒞,

* 𝒞 is called globally𝑈-small if Obj𝒞 ∈ 𝑈 , and

* 𝒞 is called𝑈-small if it is both locally and globally𝑈-small.

We assume that there are two (arbitrary) Grothendieck universes 𝑈1 and 𝑈2

such that 𝑈1 ∈ 𝑈2. Moreover, 𝑈1-small sets will just be called small sets, and

the category of small sets is denoted by Set; 𝑈1-small categories will be called

small categories, and their category will be denoted by Cat. Similarly, 𝑈2-small

categories will be called large categories, and their category is denoted by CAT.

11



Part I

Structure

12



Chapter 2

Algebraic Theories of Monoids with Operations

2*1. In this chapter we carry out the plan of higher-order algebraic effects, or

more accurately but less memorably computational effects as algebraic theories of
monoids with operations that we motivated in Section 1.4. Concretely, we develop

a categorical framework, as well as a syntactic language, for presenting algebraic

theories over monoidal categories. The structure of this chapter is as follows:

* In Section 2.1, we first review the concept of monoids in monoidal categories
and some examples relevant in the treatment of computational effects.

* In Section 2.2, we develop Fiore and Hur [2009]’s equational systems, a

convenient framework for presenting algebraic theories. In particular, we

study morphisms between equational systems and their colimits, allowing

us to construct equational systems by ‘gluing’ smaller ones.

* In Section 2.3, we develop a type theory for describing constructions and

equational systems over monoidal categories.

* With all the machinery in hand, in Section 2.4 we come back to theories of

monoids with operations and see some concrete examples.

* Finally, in Section 2.5 we classify operations on monoids into finer families

and study the connections between these families.

2*2 Remark. Although the framework that we will develop in this chapter does

allow us to present strictly more monads than the classical framework of algebraic

effects (enriched algebraic theories over locally 𝜅-presentable categories), this

is not the main point of higher-order algebraic effects. Instead, the point is

to present more operations: even if (the initial algebra of) a theory (of monads

with operations) over Endo(𝒞) and (the free algebra monad of) a theory over 𝒞

may generate the same monad, the associated operations on the monad can be

different, and crucially, the notion of models/handlers can be different.

2*3 (Bibliographical note). The idea of considering theories of monads with
operations was already hinted in Moggi’s [1989a] technical report, and he showed

how algebraic operations can be lifted along monad transformers. Inspired by

13



Moggi’s work, Liang et al. [1995] implemented theories of monads with operations

as typeclasses in a functional programming language, which later inspired the

widely used Haskell library mtl. On the theory side, there does not seem to be

a lot of work after Moggi, except that Jaskelioff’s [2009] construction of lifting

first-order operations (called scoped operations in this thesis) along a special class

of monad transformers. Jaskelioff’s construction was clarified by Jaskelioff and

Moggi [2010] and generalised to monoid transformers.

Although equations of operations are sometimes considered in the above

line of work, it was Plotkin and Power’s [2002] insight that many monads that

we use to model computational effects can be generated from some algebraic

theories of operations and equations. In the same way, several examples of monad

transformers in practice are determined by certain combinations of algebraic

theories [Hyland et al. 2006]. In this line of work, non-algebraic operations, such

as exception catching and parallel composition, are treated as fundamentally

different from algebraic operations. Quoting Plotkin and Power [2003],

Of the various operations, handle is of a different computational

character and, although natural, it is not algebraic. Andrzej Filin-

ski (personal communication) describes handle as a deconstructor,

whereas the other operations are constructors (of effects).

This view naturally led to Plotkin and Pretnar’s [2009; 2013] treatment of exception

handling as a model of the algebraic theory of exception throwing, rather than

an operation in the theory of exception, and led to their introduction of effect

handlers, which internalises homomorphisms out of free models of algebraic

theories as a programming language construct.

Later, Wu et al. [2014] argues that the treatment of non-algebraic operations as

handlers poses certain non-composability problems in programming, which we

will also discuss in 2.4*10. They proposed two solutions in Haskell: the bracketing
approach and the more general higher-order syntax approach.

The bracketing approaches uses two algebraic operations begin and end to

delimit the scope of an operation, much like how the commands \begin and

\end of LATEX works under the hood. The category theory of this solution is

later developed by Piróg et al. [2018] and is shown to be related to a variant of

parameterised algebraic theories [Lindley et al. 2024].

On the other hand, the second solution of Wu et al. [2014] directly constructs

the monad of programs with scoped operations as the initial algebra of a higher-

order endofunctor. This solution is later developed by Yang et al. [2022], Yang

and Wu [2023], and van den Berg and Schrĳvers [2024].

The present chapter is a revised version of Sections 2-4 of the paper [Yang and

Wu 2023], which aims to generalises and develop a formal categorical foundation

for Wu et al. [2014]’s idea of constructing the monad of effectful programs as the

14



initial algebra of a higher-order endofunctor. The resulting theory is what we call

higher-order algebraic effects. I apologise to the reader that this chapter somewhat

lacks concrete examples of higher-order algebraic effects. The reader can find

more examples in the cited papers in the last paragraph, especially the paper by

van den Berg and Schrĳvers [2024].

2.1 Notions of Computation as Monoids in Monoidal Categories

2.1*1. A monoidal category is a categoryℰ equipped with a functor □ : ℰ×ℰ→ℰ,

called the monoidal product (and sometimes the tensor product), an object 𝐼 ∈ ℰ,

called the monoidal unit, and three natural isomorphisms

𝛼𝐴,𝐵,𝐶 : 𝐴□ (𝐵 □ 𝐶) � (𝐴□ 𝐵)□ 𝐶, 𝜆𝐴 : 𝐼 □ 𝐴 � 𝐴, 𝜌𝐴 : 𝐴□ 𝐼 � 𝐴

satisfying some coherence axioms [Mac Lane 1998, §VII.1] that guarantee there is

a unique way using 𝛼, 𝜆, and 𝜌 to re-bracket an expression involving monoidal

products to another [Mac Lane 1998, §VII.2] . A monoidal category is strict if the

isomorphisms are identity morphisms. A monoidal category is (right) closed if all

functors −□ 𝐴 have right adjoints −/𝐴 : ℰ→ℰ.

2.1*2. A monoid ⟨𝑀, 𝜇, 𝜂⟩ in a monoidal categoryℰ is an object 𝑀 ∈ ℰ equipped

with two morphisms: a multiplication 𝜇 : 𝑀 □ 𝑀 → 𝑀 and a unit 𝜂 : 𝐼 → 𝑀

making the following diagrams commute:

(𝑀 □𝑀)□𝑀 𝑀 □ (𝑀 □𝑀)

𝑀 □𝑀 𝑀 𝑀 □𝑀

𝜇□𝑀

𝜇

𝛼𝑀,𝑀,𝑀

𝑀□𝜇

𝜇

𝐼 □𝑀 𝑀 □𝑀

𝑀

𝜂□𝑀

𝜆𝑀
𝜇

𝑀 □ 𝐼 𝑀 □𝑀

𝑀

𝑀□𝜂

𝜌𝑀
𝜇

2.1*3. In the following until Section 2.3, we present a collection of examples of

monoidal categories, in which monoids model different flavours of notions of
computations, and will serve as the main application of the theory developed in

this thesis. The main messages are that

1. monoids in monoidal categories are an expressive abstraction that unifies

different notions of computations;

2. by imposing suitable conditions, these monoidal categories for notions of

computations can be made closed and (co)complete, so are suitable for

doing algebraic theories over them later.

15



The reader does not need to fully understand all the details in the following

examples to proceed to Section 2.3, since some of the examples are quite technical

and my description is deliberately sketchy. If the reader is interested in any of

these examples, the citations are good places to find more information.

2.1.1 Monads and Size Issues

2.1.1*1 (Monads). The category Endo(𝒞)of endofunctors𝒞→ 𝒞 on a category𝒞

can be turned into a monoidal category by equipping it with functor composition

𝐹 ◦ 𝐺 as the monoidal product and the identity functor Id : 𝒞 → 𝒞 as the

unit. Monoids in this category are called monads on 𝒞, and they are used to

model computational effects, also called notions of computation, in programming

languages [Moggi 1989a, 1991], where the unit 𝜂 : Id → 𝑀 is understood as

embedding pure values into computations, and the multiplication 𝜇 : 𝑀 ◦𝑀 → 𝑀

is understood as flattening computations of computations into computations by

sequentially executing them. The understanding of 𝜇 as sequential composition

is better exhibited by the following co-Yoneda isomorphism:

(𝐹 ◦ 𝐺)𝐴 = 𝐹(𝐺𝐴) �
∫ 𝑋∈𝒞 ∐

𝒞(𝑋,𝐺𝐴) 𝐹𝑋

where

∫ 𝑋
denotes a coend and

∐
𝒞(𝑋,𝐺𝐴) denotes a 𝒞(𝑋, 𝐺𝐴)-fold coproduct.

The informal reading of the coend is that 𝐹𝑋 is the first computation, returning a

value of type 𝑋, and the second computation is determined by the result of 𝐹𝑋,

given as a function 𝑋 → 𝐺𝐴. So 𝜇 : 𝑀 ◦𝑀 → 𝑀 is sequential composition of

two computations in which the second is determined by the first one.

2.1.1*2. However, the category Endo(𝒞) is usually not as well behaved as we

would like for doing algebraic theories in it, even when 𝒞 itself is a very nice

category such as Set. In particular, Endo(Set) is not closed with respect to either

cartesian products or functor composition. Moreover, Endo(Set) is not a nice

category for doing algebraic theories; for example, some objects in Endo(Set),
such as the covariant powerset functor 𝒫, do not have free monads over them.

These issues about Endo(Set) are fundamentally related to sizes of sets. For

instance, if 𝒫 : Set → Set were to have a free monad 𝐹, then 𝐹 would also

be algebraically free [nLab 2024a, Theorem 3.2], so 𝐹∅ would carry the initial

𝒫-algebra. By Lambek’s lemma [Lambek 1968], we would then have a set 𝐹∅
satisfying 𝐹∅ � 𝒫(𝐹∅), contradicting Cantor’s theorem [nLab 2024a].

There are two ways to rectify the size issues: (1) we can consider some

‘extremely nice’ categories 𝒞, namely, (small-) complete small categories, or (2) we

can restrict our attention to ‘reasonably nice endofunctors’ on a ‘reasonably nice’

category 𝒞, namely, 𝜅-accessible functors on locally 𝜅-presentable categories. We will

describe both approaches below.

16



2.1.1*3. When 𝒞 is a small category that is also small-complete, the monoidal

structure ⟨◦, Id⟩ on Endo(𝒞) is closed, with the right adjoint −/𝐺 to − ◦ 𝐺 for

every 𝐺 : 𝒞→ 𝒞 given by right Kan extension [Mac Lane 1998, §X]:

(𝐹/𝐺)𝐴 =
∫
𝐵∈𝒞

∏
Set(𝐴,𝐺𝐵) 𝐹𝐵, (2.1)

which exists since the ‘bound of the end’ 𝐵 ∈ 𝒞 is small and 𝒞 is small-complete.

The unit of the adjunction − ◦ 𝐺 ⊣ −/𝐺 is given by the natural transformations

𝜂𝐹 : 𝐹→ (𝐹 ◦ 𝐺)/𝐺 whose component at every 𝐴 ∈ 𝒞

𝜂𝐹,𝐴 : 𝐹𝐴→
∫
𝐵∈𝒞

∏
Set(𝐴,𝐺𝐵) 𝐹(𝐺𝐵)

is the mediating morphism induced by the wedge

𝜂𝐹,𝐴,𝐵 := ⟨𝐹𝑘⟩𝑘∈Set(𝐴,𝐺𝐵) : 𝐹𝐴→∏
Set(𝐴,𝐺𝐵) 𝐹(𝐺𝐵)

for all 𝐵 ∈ 𝒞. The counit 𝜖 of the adjunction−◦𝐺 ⊣ −/𝐺 is given by the composite

((𝐹/𝐺) ◦ 𝐺)𝐴 =
∫
𝐵∈𝒞

∏
Set(𝐺𝐴,𝐺𝐵) 𝐹𝐵

𝜋𝐴−−→∏
Set(𝐺𝐴,𝐺𝐴) 𝐹𝐴

𝜋id:𝐺𝐴→𝐺𝐴−−−−−−−→ 𝐹𝐴

for all 𝐹 ∈ Endo(𝒞) and 𝐴 ∈ 𝒞.

Moreover, Endo(𝒞) is also a small-complete small category: it is small because

its domain and codomain categories𝒞 are both small; it is small-complete because

limits in functor categories are computed pointwise and 𝒞 is small-complete.

We will see later in Theorem 2.2.1*18 that it implies that all objects in Endo(𝒞)
have free monads (and many other free algebraic structures).

2.1.1*4. However, it is long known that in classical logic the only examples of

small-complete small categories 𝒞 are complete preorders [nLab 2024b]. Therefore

𝒞 being small and small-complete is classically too strong a requirement for the

purpose of modelling computational effects.

However, a stunning result in categorical logic is that if we carry out category

theory internally in the effective topos Eff, or more generally realizability toposes

[Hyland 1988; Oosten 2008], the category Mset of modest sets, also known as

partial equivalence relations (PERs), is a non-trivial small-complete small-categories,

internally. The effective topos and modest sets find many application in program-

ming language theory: for one, they provide semantics for type theories with

impredicative polymorphism, such as System F [Girard 1986] and the calculus of

inductive constructions [Coquand and Huet 1988; Luo 1994] with an impredica-

tive universe of sets, which is the type theory underlying the Rocq (previously

known as Coq) proof assistant with the -impredicative-set option. Later in

Chapter 5, we will also use realizability to model programming languages with

higher-order algebraic effects and impredicative polymorphism.

2.1.1*5 Remark. Mathematics carried out internally in a category can also be

17



externalised to the ambient meta-theory [Jacobs 1999; Phoa 1992; Streicher 2023],

telling us what an internal construction ‘really means’ from the external point of

view. In particular, if we externalise the internal category Endo(Mset), we obtain

a fibration [Mset] → Eff; taking its fiber over 1 ∈ Eff, we obtain an ordinary

category of realizable endofunctors Endo𝑟(Mset), which are roughly endofunctors

whose mapping on morphisms are realised by Turing machines; see Jaskelioff

and Moggi [2010, Example 2.20] or Bainbridge et al. [1990] for more information.

2.1.2 Finitary and Accessible Monads

2.1.2*1. We have seen the approach of rectifying the size issues in Endo(𝒞) by

assuming an ‘extremely nice’ 𝒞 that exists only in non-classical settings. Now let

us describe an alternative, classically valid, approach – restricting our attention

to ‘reasonably nice’ endofunctors.

First we observe that the reason the formula (2.1) does not work for arbitrary

endofunctors 𝐹, 𝐺 : Set → Set is that the bound of the end 𝐵 ∈ Set would be

large while Set is only small-complete. Therefore the idea is to consider functors

that allow us to cut 𝐵 ∈ Set to a small bound.

An endofunctor 𝐹 ∈ Endo(Set) is called finitary if it preserves filtered colimits.
An informal description of finitariness is that we lose no information if we restrict 𝐹
to finite sets. Precisely, 𝐹 is finitary if we first restrict 𝐹 to 𝐹 ◦𝑉 : Fin→ Set on

the full subcategory of finite sets, where 𝑉 : Fin→ Set is the inclusion functor,

and then take the left Kan extension of 𝐹 ◦𝑉 along 𝑉 , the resulting functor is

still isomorphic to 𝐹. In other words, we have the following equivalence, where

Endo 𝑓 (Set) ⊆ Endo(Set) denotes the full subcategory of finitary endofunctors:

Endo 𝑓 (Set) Set
Fin

−◦𝑉

Lan𝑉−
� (2.2)

2.1.2*2. The category Endo 𝑓 (Set) inherits the monoidal structure ⟨◦, Id⟩ of

Endo(Set), which under (2.2) is equivalent to ⟨•, 𝑉⟩ on Set
Fin

where

𝑉𝑛 = 𝑛 and (𝐹 • 𝐺)𝑛 =
∫ 𝑚∈Fin

𝐹𝑚 × (𝐺𝑛)𝑚 . (2.3)

For every 𝐺 ∈ Set
Fin

, the functor − • 𝐺 has a right adjoint

(𝐹/𝐺)𝑛 =
∫
𝑚∈Fin

∏
Set(𝑛,𝐺𝑚) 𝐹𝑚

with unit and counit similar to those in 2.1.1*3. The end

∫
𝑚∈Fin

exists because the

category Fin of finite sets is essentially small and Set is small complete.

Moreover, the functor ◦ : Endo 𝑓 (Set) × Endo 𝑓 (Set) → Endo 𝑓 (Set) is also

finitary, which means that it preserves filtered colimits in both of its arguments.

18



It preserves (filtered) colimits in the first argument

((colim𝑖𝐹𝑖) ◦ 𝐺)𝑛 = (colim𝑖𝐹𝑖)(𝐺𝑛) � colim𝑖(𝐹𝑖(𝐺𝑛))

because colimits of functors can be computed pointwise. It preserves filtered

colimits in the second argument by the finitariness of its first argument:

(𝐹 ◦ (colim𝑖𝐺𝑖))𝑛 = 𝐹((colim𝑖𝐺𝑖)𝑛) � 𝐹(colim𝑖𝐺𝑖𝑛) � colim𝑖𝐹(𝐺𝑖𝑛)

In particular, the diagram of an 𝜔-chain is filtered, so the functor ◦ preserves

colimits of 𝜔-chains, a property we will use to construct free monads over finitary

endofunctors in Section 2.2.1.

2.1.2*3. Monoids in Endo 𝑓 (Set) are called finitary monads on Set, and they are

equivalent to (finitary) Lawvere theories [Lawvere 1963a; Linton 1966] and abstract
clones [Cohn 1981]. Computational effects modelled by Lawvere theories are

usually called algebraic effects [Plotkin and Power 2002, 2004].

Apart from modelling computational effects, a related but slightly different

application of monoids in Endo 𝑓 (Set), or equivalently Set
Fin

, is modelling abstract
syntax with variable binding [Fiore and Szamozvancev 2022; Fiore et al. 1999]. In

this case, a monoid 𝑀 ∈ Set
Fin

is understood as a variable set of terms indexed

by the number of variables in the context. The monoid unit 𝑉 → 𝑀 is then

embedding variables as 𝑀-terms, and the monoid multiplication 𝑀 •𝑀 → 𝑀 is

simultaneous substitution of terms for variables.

Yet another interesting reading of monoids of ⟨•, 𝑉⟩ due to Fiore and Staton

[2014] is computations supporting (i) binding a piece of code to a code pointer

and (ii) jumping to a code pointer. Based on this reading, the monoidal category

⟨Set
Fin, •, 𝑉⟩ provides an adequate denotational semantics of a calculus of

substitution/jumps, on which algebraic effects can be encoded.

2.1.2*4. The adjunction Endo 𝑓 (Set) � Set
Fin

can be generalised to endofunctors

on categories other than Set: we can replace (1) Set with any locally 𝜅-presentable
(l𝜅p) category 𝒞 for a regular cardinal 𝜅, (2) Fin with the subcategory 𝒞𝜅

of 𝜅-presentable objects in 𝒞, and (3) finitary functors with 𝜅-accessible functors

Endo𝜅(𝒞) [Adámek and Rosicky 1994]. This results in a cocomplete closed monoi-

dal category ⟨Endo𝜅(𝒞), ◦, Id⟩, on which ◦ is 𝜅-accessible. The 𝜅-accessibility

of the functor ◦ implies that there is a large enough limit ordinal 𝛼 such that ◦
preserves colimits of all 𝛼-chains.

2.1.2*5. All l𝜅p categories are necessarily (small-) complete and cocomplete, and

they cover a wide range of categories that are used for modelling programming

languages. Examples of l𝜅p categories include:

* all presheaf categories Set
𝒟

for small categories 𝒟 and 𝜅 = ℵ0 (an l𝜅p

19



category is called locally finitely presentable when 𝜅 = ℵ0), and more

generally all Grothendieck toposes for some 𝜅 [Borceux 1994c, 3.4.16];

* categories of models for essentially algebraic theories [Adámek and Rosicky

1994, §3.D], which include the category Cat of small categories for 𝜅 = ℵ0,

the category ωCpo of 𝜔-complete partial orders for 𝜅 = ℵ1 (however, the

category of directed complete partial orders is not l𝜅p for any 𝜅);

* functor categories 𝒞
𝒟

for small categories 𝒟 and l𝜅p 𝒞;

* moreover, when 𝒞 is l𝜅p, it is automatically l𝜆p for any 𝜆 > 𝜅.

Therefore, l𝜅p categories provide a nice setting for algebraic theories in the

context of programming language semantics.

2.1.3 Strong Monads

2.1.3*1. The multiplication 𝜇 : 𝑀 ◦𝑀 → 𝑀 of a monad 𝑀 : 𝒞→ 𝒞 allows one

to compose two effectful computations 𝑓 : 𝐴→ 𝑀𝐵 and 𝑔 : 𝐵→ 𝑀𝐶 by

𝐴
𝑓
−−→ 𝑀𝐵

𝑀𝑔
−−→ 𝑀(𝑀𝐶)

𝜇𝐶−−→ 𝑀𝐶.

However, to give semantics to effectful programming languages with a structural
context of variables as done by Moggi [1989a, 1991], what we need is slightly

stronger: for all objects Γ ∈ 𝒞 (thought of as variable contexts) and morphisms

𝑓 : Γ × 𝐴→ 𝑀𝐵 and 𝑔 : Γ × 𝐵→ 𝑀𝐶 (two computations under a context Γ), we

would like to have a morphism Γ × 𝐴→ 𝑀𝐶 (the sequential composition of 𝑓

and 𝑔). The structure of monads ⟨𝑀, 𝜇, 𝜂⟩ is not sufficient for doing this, and we

need additionally a natural transformation

𝑠Γ,𝐵 : Γ ×𝑀𝐵→ 𝑀(Γ × 𝐵),

with which we have the composite

Γ × 𝐴
⟨𝜋1 , 𝑓 ⟩−−−−−→ Γ ×𝑀𝐵

𝑠Γ,𝐵−−→ 𝑀(Γ × 𝐵)
𝑀𝑔
−−→ 𝑀(𝑀𝐶)

𝜇𝐶−−→ 𝑀𝐶.

To make this way of composing effectful computations associative and the

pure computation (𝜂𝐴 ·𝜋2) : Γ×𝐴→ 𝑀𝐴 an identity, the natural transformation

𝑠 must satisfy certain coherence conditions (see [Moggi 1991, Definition 3.2]).

The natural transformation 𝑠 is called a strength for the monad 𝑀, and the tuple

⟨𝑀, 𝜇, 𝜂, 𝑠⟩ is called a strong monad.

2.1.3*2. Strong monads are monoids in the monoidal category of strong endofunc-
tors and composition. A strong endofunctor ⟨𝐹, 𝑠⟩ on a category𝒞with finite prod-

ucts is a functor 𝐹 : 𝒞→ 𝒞 with a natural transformation 𝑠Γ,𝐵 : Γ×𝐹𝐵→ 𝐹(Γ×𝐵)

20



making the following diagrams commute:

1 × 𝐹𝐵

𝐹(1 × 𝐵) 𝐹𝐵

𝑠1,𝐵
𝜆𝐹𝐵

𝐹𝜆𝐵

(2.4)

(Γ′ × Γ) × 𝐹𝐵 Γ′ × (Γ × 𝐹𝐵) Γ′ × 𝐹(Γ × 𝐵)

𝐹((Γ′ × Γ) × 𝐵) 𝐹(Γ′ × (Γ × 𝐵))

𝛼Γ′ ,Γ,𝐹𝐵

𝑠Γ′×Γ,𝐵

Γ′×𝑠Γ,𝐵

𝑠Γ′ ,Γ×𝐵

𝐹𝛼Γ′ ,Γ,𝐵

(2.5)

where 𝜆 and 𝛼 are the left unitor and associator for the cartesian monoidal

structure ⟨×, 1⟩. Moreover, strong natural transformations between ⟨𝐹, 𝑠𝐹⟩ and

⟨𝐺, 𝑠𝐺⟩ are natural transformations 𝜏 : 𝐹→ 𝐺 making the following commute:

Γ × 𝐹𝐵 Γ × 𝐺𝐵

𝐹(Γ × 𝐵) 𝐺(Γ × 𝐵)

Γ×𝜏𝐵

𝑠𝐺
Γ,𝐵

𝑠𝐹
Γ,𝐵

𝜏Γ×𝐵

2.1.3*3. Strong endofunctors on 𝒞 and strong natural transformations can be

collected into a category Endo𝑠(𝒞). The category Endo𝑠(𝒞) has a monoidal

structure ⟨◦𝑠 , Id𝑠⟩ where Id𝑠 is the identity functor equipped with the identity

strength, and ◦𝑠 is the composition of strong functors:

⟨𝐹, 𝑠𝐺⟩ ◦𝑠 ⟨𝐺, 𝑠𝐹⟩ = ⟨𝐹 ◦ 𝐺, (𝐹𝑠𝐺Γ,𝐵 · 𝑠
𝐹
Γ,𝐺𝐵)Γ,𝐵∈𝒞⟩.

Strong monads on 𝒞 are precisely monoids in this monoidal category. When

𝒞 is cartesian closed, strong functors are the same as 𝒞-enriched functors [Kock

1972; McDermott and Uustalu 2022b].

2.1.3*4. When 𝒞 is Set, or slightly more generally a full subcategory of Set

closed under finite products of Set, every 𝐹 : 𝒞→ 𝒞 has a strength:

𝑠Γ,𝐵 : Γ × 𝐹𝐵→ 𝐹(Γ × 𝐵)
𝑠Γ,𝐵 ⟨𝛾, 𝑓 ⟩ = 𝐹 (𝜆𝑏. ⟨𝛾, 𝑏⟩) 𝑓 (2.6)

which can be readily checked to satisfy the laws of strengths (2.4, 2.5). In fact,

this is the only strength for 𝐹: let 𝑡Γ,𝐵 : Γ × 𝐹𝐵→ 𝐹(Γ × 𝐵) be any strength for 𝐹,

for all 𝛾 ∈ Γ and 𝑓 ∈ 𝐹𝐵, the naturality of 𝑡 implies the commutativity of

1 × 𝐹𝐵 𝐹(1 × 𝐵)

Γ × 𝐹𝐵 𝐹(Γ × 𝐵)

𝑡1,𝐵

𝛾×𝐹𝐵 𝐹(𝛾×𝐵)

𝑡Γ,𝐵

21



Evaluating the two paths at ⟨∗, 𝑓 ⟩ ∈ 1 × 𝐹𝐵, we have

𝑡Γ,𝐵⟨𝛾, 𝑓 ⟩ = 𝐹 (𝛾 × 𝐵) (𝑡1,𝐵 ⟨∗, 𝑓 ⟩).

However, by the law (2.4), 𝑡1,𝐵 ⟨∗, 𝑓 ⟩ has to be 𝐹𝜆−1

𝐵
⟨∗, 𝑓 ⟩. Hence 𝑡Γ,𝐵⟨𝛾, 𝑓 ⟩ is

equal to the canonical strength 𝑠 (2.6) above.

However, functors on a general category 𝒞 may have no or non-unique

strengths; see McDermott and Uustalu [2022b] for some counter-examples.

2.1.3*5. Similar to the setting of ordinary monads, to have a ‘nice’ monoidal

category of strong monads, we need to either (1) consider small-complete small

categories 𝒞 or (2) 𝜅-accessible strong monads. More precisely, denote by

Endo𝑠𝜅(𝒞) the full subcategory of Endo𝑠(𝒞) that contains strong functors whose

underlying functors are 𝜅-accessible.

When 𝒞 is l𝜅p as a cartesian closed category, which means that 𝒞 is l𝜅p and

cartesian closed, and that the 𝜅-presentable objects of 𝒞 are closed under finite

products, the category Endo𝑠𝜅(𝒞) is also l𝜅p and has a closed monoidal structure

of functor composition and the identity functor. The primary example of such

setting is 𝒞 = ωCpo for modelling general recursion. We refer the reader to Kelly

and Power [1993, §4] and Kelly [1982] for details.

2.1.4 Graded Monads

2.1.4*1. Another generalisation of monads is to index the monad with some

grades that track quantitative information about the effects performed by a

computation [Katsumata 2014; Katsumata et al. 2022; McDermott and Uustalu

2022a]. Precisely, let ⟨𝒢, ·, 1⟩ be any small strict monoidal category, whose objects

we call grades. A 𝒢-graded monad on a category 𝒞 is a functor 𝑀 : 𝒢→ Endo(𝒞)
equipped with natural transformations

𝜂 : Id→ 𝑀1 𝜇𝑎,𝑏 : (𝑀𝑎) ◦ (𝑀𝑏) → 𝑀(𝑎 · 𝑏) (2.7)

natural in 𝑎, 𝑏 ∈ 𝒢, satisfying laws similar to those of monads [Katsumata 2014].

2.1.4*2. For example, for tracking operations performed by a computation, 𝒢

can be the poset of sets of operation names, ordered by inclusion, with the

monoidal structure 1 = ∅ and 𝑎 · 𝑏 = 𝑎 ∪ 𝑏. And for tracking the number of

nondeterministic choices made by a computation, 𝒢 can be the poset ⟨N,⩽⟩
with monoidal structure ⟨0,+⟩.

2.1.4*3. Again, to avoid the size issues when doing algebraic theories (2.1.1*2), we

can either require 𝒞 to be small and small-complete or consider only 𝜅-accessible
𝒢-graded monads 𝑀 : 𝒢→ Endo𝜅(𝒞) for l𝜅p 𝒞.

22



2.1.4*4. Accessible graded monads are equivalent to monoids in the functor

category Endo𝜅(𝒞)𝒢 equipped with the following version of Day tensor:

𝐼 =
∐

𝒢(1,−) Id 𝐹 ∗ 𝐺 =
∫ 𝑎,𝑏∈𝒢∐

𝒢(𝑎·𝑏,−)(𝐹𝑎 ◦ 𝐺𝑏). (2.8)

This monoidal product has right adjoints given by

(𝐺 ⊸ 𝐹)𝑎 =
∫
𝑏∈𝒢

∫
𝑚∈𝒞𝜅

∏
𝒞(−,(𝐺𝑏)𝑚) 𝐹(𝑎 · 𝑏)𝑚.

2.1.4*5. The equivalence between accessible graded monads (2.7) and monoids

for the monoidal structure (2.8) can be calculated using (co)end calculus [Loregian

2021]. The correspondence between the two versions of 𝜂 is

Hom(𝐼 , 𝑀)
� {We write [𝐴, 𝐵] for 𝒞(𝐴, 𝐵) below}∫

𝑐∈𝒢

∫
𝑥∈𝒞𝜅
[∐𝒢(1,𝑐) 𝑥, (𝑀𝑐)𝑥]

�
∫
𝑐∈𝒢

∫
𝑥∈𝒞𝜅
[𝒢(1, 𝑐) × 𝑥, (𝑀𝑐)𝑥]

�
∫
𝑐∈𝒢

∫
𝑥∈𝒞𝜅
[𝒢(1, 𝑐), [𝑥, (𝑀𝑐)𝑥]]

� {[𝒢(1, 𝑐),−] preserves limits}∫
𝑐∈𝒢[𝒢(1, 𝑐),

∫
𝑥∈𝒞𝜅
[𝑥, (𝑀𝑐)𝑥]]

� { Yoneda lemma }∫
𝑥∈𝒞𝜅
[𝑥, (𝑀1)𝑥]

� Hom(Id, 𝑀1)

And the correspondence between the two versions of 𝜇 is

Hom(𝑀 ∗𝑀,𝑀)
�

∫
𝑐∈𝒢 Hom((𝑀 ∗𝑀)𝑐, 𝑀𝑐)

�
∫
𝑐∈𝒢

∫
𝑥∈𝒞𝜅
[
∫ 𝑎,𝑏∈𝒢∐

𝒢(𝑎·𝑏,−)(𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]

�
∫
𝑐∈𝒢

∫
𝑥∈𝒞𝜅

∫
𝑎,𝑏∈𝒢[𝒢(𝑎 · 𝑏,−), [(𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]]

�
∫
𝑥∈𝒞𝜅

∫
𝑎,𝑏∈𝒢

∫
𝑐∈𝒢[𝒢(𝑎 · 𝑏,−), [(𝑀𝑎(𝑀𝑏𝑥)), (𝑀𝑐)𝑥]]

�
∫
𝑥∈𝒞𝜅

∫
𝑎,𝑏∈𝒢[𝑀𝑎(𝑀𝑏𝑥), (𝑀(𝑎 · 𝑏))𝑥]

�
∫
𝑎,𝑏∈𝒢 Hom(𝑀𝑎 ◦𝑀𝑏, 𝑀(𝑎 · 𝑏))

We will not torture the reader with checking the correspondence of the two

versions of the laws here.

2.1.4*6. We have seen monads and several variations – realizable, accessible,

strong, graded – all formulated as monoids in monoidal categories. Despite

their differences, they all model notions computations that support sequential

23



compositions in a sense. In the following, let us have a look at some other

monoids that are conceptually quite different from monads.

2.1.5 Cartesian Monoids

2.1.5*1. Every cartesian category 𝒞, i.e. a category with finite products, can be

equipped with the product × as the monoidal product and the terminal object

1 ∈ 𝒞 as the monoidal unit. When 𝒞 has all exponentials 𝐵𝐴, 𝒞 is then a cartesian

closed category. Particularly, the category Set is a closed monoidal category in

this way. Monoids in Set are precisely the usual notion of monoids, such as the

set of lists with concatenation and empty list.

2.1.5*2. For l𝜅p and cartesian closed 𝒞, the category Endo𝜅(𝒞) is cartesian

closed. The cartesian unit and product in Endo𝜅(𝒞) are defined pointwise:

1𝑛 = 1𝒞 (𝐹 × 𝐺)𝑛 = 𝐹𝑛 × 𝐺𝑛

The exponential is given by

(𝐹𝐺)𝑛 =
∫
𝑚∈𝒞𝜅

∏
𝒞(𝑛,𝑚)(𝐹𝑚)𝐺𝑚 .

A computational interpretation of cartesian monoids in Endo𝜅(𝒞) is that they

model notions of independent computations: the cartesian product 𝑀 ×𝑀 → 𝑀

composes two computations that have no dependency and return the same type

of values, whereas monad multiplication 𝑀 ◦𝑀 → 𝑀 composes a computation

with another that depends on the result of the former.

2.1.6 Applicative Functors

2.1.6*1. Between the two extremes of 𝑀 ◦𝑀 and 𝑀 ×𝑀, there are monoidal

structures on Endo𝜅(𝒞) that allow computations to have restricted dependency.

One of them is the Day convolution [Day 1970] induced by cartesian products:

the Day monoidal structure on Endo𝜅(Set) has as unit the identity functor, and

the monoidal product is given by the following coend formula:

(𝐹 ∗ 𝐺)𝑛 =
∫ 𝑚,𝑘∈Set𝜅×Set𝜅

𝐹𝑚 × 𝐺𝑘 × 𝑛𝑚×𝑘 . (2.9)

Informally, 𝐹 ∗𝐺 models two computations 𝐹𝑛 and 𝐺𝑚 that are almost independent
except that their return values are combined by a pure function 𝑛𝑚×𝑘 . This

structure is symmetric and closed, with the right adjoint to − ∗ 𝐺 given by

𝐺 ⊸ 𝐹 =
∫
𝑛∈Set𝜅

(𝐹(− × 𝑛))𝐺𝑛 .

More generally, we can replace Set with any l𝜅p as a cartesian closed category

𝒱 [Kelly 1982] and also the coend in (2.9) with a 𝒱-enriched coend, which allows

24



us to give a more accurate formulation of applicatives in functional languages

with general recursion by setting 𝒱 = ωCpo. Alternatively, we can consider

small-complete small 𝒞 to work around the size issues.

2.1.6*2. Monoids for ⟨∗, Id⟩ are called applicative functors or simply applicatives
[Mcbride and Paterson 2008; Paterson 2012]. A practical application of them is

in build systems [Mokhov et al. 2018], since usually the result of a building task

does not affect what the next building task is.

2.1.6*3. Applicatives are a weaker notion than (strong) monads, as intuitively

independence is a special case of dependence. Precisely, for any two functors

𝐹, 𝐺 ∈ Endo𝜅(Set), there are canonical strengths (2.6):

𝑠𝐹
𝑋𝑌

: 𝐹𝑋 × 𝑌 → 𝐹(𝑋 × 𝑌), 𝑠𝐺
𝑋𝑌

: 𝐺𝑋 × 𝑌 → 𝐺(𝑋 × 𝑌),

and then there is a natural transformation 𝑒 : 𝐹 ∗ 𝐺→ 𝐹 ◦ 𝐺 as follows:

(𝐹 ∗𝐺)𝑛 =
∫ 𝑚𝑘

𝐹𝑚×𝐺𝑘×𝑛𝑚×𝑘 →
∫ 𝑚𝑘

𝐹(𝐺(𝑚× 𝑘×𝑛𝑚×𝑘)) →
∫ 𝑚𝑘

𝐹(𝐺𝑛) � 𝐹(𝐺𝑛)

where the first arrow is repeated uses of the strengths of 𝐹 and 𝐺, and the second

arrow is function evaluation. Consequently, for any monad ⟨𝑀, 𝜇, 𝜂⟩, it induces

an applicative functor with unit 𝜂 and multiplication

𝑀 ∗𝑀 𝑒−→ 𝑀 ◦𝑀
𝜇
−→ 𝑀.

However, there are many applicative functors that are not obtained from monads

in this way [Mcbride and Paterson 2008; Paterson 2012].

2.1.7 Hughes Arrows

2.1.7*1. Between applicatives and monads, there is a middle ground of notions

of computations that allows data dependency but not control dependency, known as

Hughes arrows, or simply arrows [Hughes 2000; Jacobs et al. 2009; Lindley et al.

2011]. Unlike monads and applicatives, arrows are not monoids in Endo(𝒞), but

in the category of strong endoprofunctors.
An endoprofunctor 𝑃 on a small category 𝒞 is just a functor 𝑃 : 𝒞

op ×𝒞→ Set.

Informally, the set 𝑃(𝑎, 𝑏) is 𝑃-computations from type 𝑎 to type 𝑏. Assuming 𝒞

has finite products, a strong endoprofunctor on 𝒞 is additionally equipped with

a family 𝑠 of morphisms, called a strength,

𝑠𝑎𝑏𝑐 : 𝑃(𝑎, 𝑏) → 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐),

natural in 𝑎, 𝑏 and dinatural in 𝑐 satisfying certain coherence conditions [Rivas and

Jaskelioff 2017, Def. 7.1]. The strength 𝑠𝑎𝑏𝑐 informally means every computation

in 𝑃(𝑎, 𝑏) can also be run alongside some unused data 𝑐. A strong natural

25



transformation 𝜏 : ⟨𝑃, 𝑠𝑃⟩ → ⟨𝑄, 𝑠𝑄⟩ is a natural transformation 𝜏 : 𝑃 → 𝑄

making the following diagram commute:

𝑃(𝑎, 𝑏) 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐)

𝑄(𝑎, 𝑏) 𝑃(𝑎 × 𝑐, 𝑏 × 𝑐)

𝑠𝑃
𝑎𝑏𝑐

𝜏𝑎,𝑏 𝜏𝑎×𝑐,𝑏×𝑐

𝑠
𝑄

𝑎𝑏𝑐

2.1.7*2. Strong endoprofunctors and strong natural transformations between

them form a category EndoPro𝑠(𝒞) [Rivas and Jaskelioff 2017], which can be

equipped with a monoidal structure ⟨𝐼 , ⊗⟩:

𝐼(𝑎, 𝑏) = 𝒞(𝑎, 𝑏) (𝑃 ⊗ 𝑄)(𝑎, 𝑏) =
∫ 𝑥∈𝒞

𝑃(𝑎, 𝑥) ×𝑄(𝑥, 𝑏) (2.10)

where the associated strength of 𝐼 is

𝑠 𝐼
𝑎𝑏𝑐

:= (− × 𝑐) : 𝒞(𝑎, 𝑏) → 𝒞(𝑎 × 𝑐, 𝑏 × 𝑐),

and the strength of 𝑃 ⊗ 𝑄 is the composite∫ 𝑥
𝑃(𝑎, 𝑥) ×𝑄(𝑥, 𝑏) −→

∫ 𝑥
𝑃(𝑎 × 𝑐, 𝑥 × 𝑐) ×𝑄(𝑥 × 𝑐, 𝑏 × 𝑐)

−→
∫ 𝑦

𝑃(𝑎 × 𝑐, 𝑦) ×𝑄(𝑦, 𝑏 × 𝑐)

where the first arrow is

∫ 𝑥
𝑠𝑃
𝑎𝑥𝑏
× 𝑠𝑄

𝑥𝑏𝑐
and the second arrow is the coprojection

morphism for 𝑥 × 𝑐 of the coend.

Informally, the product 𝑃 ⊗ 𝑄 are two computations 𝑃 and 𝑄 with some type

of data 𝑥 flowing from 𝑃 to 𝑄, so it allows more dependency than applicatives,

but unlike𝑀◦𝑀, it does not allow the second computation to dynamically depend

on the return value of 𝑃 (see Pieters et al. [2020] and Lindley et al. [2011] for

more detailed comparisons).

2.1.7*3. While the category of endoprofunctors without strengths has a closed

monoidal structure ⟨𝐼 , ⊗⟩ with the same definition of 𝐼 and ⊗ as those in (2.10),

with the right adjoints 𝑃 ⊸ − to − ⊗ 𝑃 given by

(𝑃 ⊸ 𝑄)(𝑎, 𝑏) =
∫
𝑥∈𝒞[𝑃(𝑏, 𝑥), 𝑄(𝑎, 𝑥)],

I do not know whether endofunctors with strengths EndoPro𝑠(𝒞) is also closed.

2.2 Equational Systems and Translations

2.2*1. We have seen monoids in various monoidal categories, but if the only

thing that we know about a monoid is its unit and multiplication, then it is

barely interesting. Instead, monoids in practice usually come with operations:

26



for example, the state monad (− × 𝑆)𝑆 comes with operations for reading and

writing the mutable state; the exception monad −+𝐸 has operations for throwing

and catching exceptions; the ordinary monoid in Set of lists with concatenation

has the operation of appending an element to a list.

Therefore, we shall have a way to talk about algebraic theories in monoidal

categories systematically. In this thesis, we will use Fiore and Hur [2007, 2009]’s

equational systems, a simple but powerful framework subsuming (enriched)

algebraic theories. Importantly, the model theory of equational systems is well

developed: Fiore and Hur established conditions for the existence of free algebras,

cocompleteness of the category of models, and monadicity.

2.2*2. In the following, we first briefly introduce equational systems and Fiore

and Hur’s theorem for the existence of free algebras of equational systems,

and we also show a constructively valid proof of the theorem for small-complete

small categories (Section 2.2.1). We then introduce functorial translations between

equational systems, making them a category, and discuss some basic properties

of this category (Sections 2.2.2 and 2.2.3).

2.2.1 Equational Systems

2.2.1*1. Generally speaking, an algebraic theory consists of the signature and

equations of its operations. A concise way to specify a signature over a category

𝒞 is just a functor Σ : 𝒞→ 𝒞, and then a Σ-algebra is an object 𝐴 ∈ 𝒞, called the

carrier, together with a structure map 𝛼 : Σ𝐴 → 𝐴. For example, the signature

functor of the theory of monoids in a monoidal categoryℰ is ΣMon = (−□ −) + 𝐼.
A ΣMon-algebra ⟨𝐴, 𝛼⟩ is an object 𝐴 with a morphism 𝛼 : (𝐴 □ 𝐴) + 𝐼 → 𝐴, or

equivalently two morphisms 𝐴□ 𝐴→ 𝐴 and 𝐼 → 𝐴.

2.2.1*2. We denote the category of Σ-algebras by Σ-Alg, whose morphisms from

⟨𝐴, 𝛼⟩ to ⟨𝐵, 𝛽⟩ are algebra homomorphisms, i.e. morphisms ℎ : 𝐴→ 𝐵 in 𝒞 such

that ℎ · 𝛼 = 𝛽 · Σℎ : Σ𝐴→ 𝐵. The forgetful functor dropping the structure map

is denoted by UΣ : Σ-Alg→ 𝒞 or just U when it is not ambiguous.

2.2.1*3. Equations on a signature Σ : 𝒞 → 𝒞 are usually presented as com-

mutative diagrams, such as the diagrams in 2.1*2 for monoids. Pictorially, a

commutative diagram looks like the following:

Γ𝐴

𝐴

𝑅𝛼

𝐿𝛼

which contains a pair of paths 𝐿𝛼 and 𝑅𝛼 from some formal object Γ𝐴 to some

formal object 𝐴, parameterised by a formal morphism 𝛼 : Σ𝐴 → 𝐴 of the

27



operation. The starting node Γ𝐴 can be called the context of the diagram.

A categorical way to make precise such as a diagram is a functor Γ : 𝒞→ 𝒞

and a pair of functors 𝐿, 𝑅 : Σ-Alg → Γ-Alg. For example, the functor Γ for

the associativity diagram in 2.1*2 is Γ = (− □ −) □ −, and the two paths are

represented by two functors 𝐿, 𝑅 : (−□ −)-Alg→ ((−□ −)□ −)-Alg:

𝐿⟨𝐴, 𝜇 : 𝐴□ 𝐴→ 𝐴⟩ = ⟨𝐴, 𝜇 · (𝜇□ 𝐴)⟩
𝑅⟨𝐴, 𝜇 : 𝐴□ 𝐴→ 𝐴⟩ = ⟨𝐴, 𝜇 · (𝐴□ 𝜇) · 𝛼𝐴,𝐴,𝐴⟩

The functors 𝐿, 𝑅 : Σ-Alg→ Γ-Alg must satisfy UΓ ◦ 𝐿 = UΣ and UΓ ◦ 𝑅 = UΣ.

2.2.1*4 Definition (Fiore and Hur [2009]). An equational system on a category 𝒞

¤Σ := (Σ ⊲ Γ ⊢ 𝐿 = 𝑅)

consists of four functors: a (functorial) signature Σ : 𝒞→ 𝒞, a (functorial) context
Γ : 𝒞→ 𝒞, and a pair of two (functorial) terms 𝐿, 𝑅 : Σ-Alg→ Γ-Alg making the

following diagrams commute:

Σ-Alg Γ-Alg Σ-Alg Γ-Alg

𝒞 𝒞

𝐿

UΣ UΓ

𝑅

UΣ UΓ

(2.11)

An algebra, or a model, of ¤Σ is a Σ-algebra ⟨𝐴 ∈ 𝒞, 𝛼 : Σ𝐴→ 𝐴⟩ such that

𝐿⟨𝐴, 𝛼⟩ = 𝑅⟨𝐴, 𝛼⟩ ∈ Γ-Alg.

We denote by ¤Σ-Alg the full subcategory of Σ-Alg containing ¤Σ-algebras.

2.2.1*5 Notation. In the definition above, the functors 𝐿, 𝑅 : Σ-Alg → Γ-Alg

always send objects ⟨𝐴, 𝛼 : Σ𝐴 → 𝐴⟩ to ⟨𝐴, 𝛽 : Γ𝐴 → 𝐴⟩, keeping carriers 𝐴

unchanged, so we will simply write 𝐿𝛼 : Γ𝐴→ 𝐴 to mean 𝜋2(𝐿⟨𝐴, 𝛼⟩).

2.2.1*6 Example. Let ℰ be a monoidal category with binary coproducts. The

concept of monoids inℰ (2.1*2) can be defined as an equational system onℰ

Mon := (ΣMon ⊲ ΓMon ⊢ 𝐿Mon = 𝑅Mon) (2.12)

with functorial signature and contexts

ΣMon 𝑀 = (𝑀 □𝑀) + 𝐼
ΓMon 𝑀 = ((𝑀 □𝑀)□𝑀) + (𝐼 □𝑀) + (𝑀 □ 𝐼),

and 𝐿Mon, 𝑅Mon : ΣMon-Alg→ ΓMon-Alg given by

𝐿Mon 𝛽 = [𝐿1, 𝐿2, 𝐿3] 𝑅Mon 𝛽 = [𝑅1, 𝑅2, 𝑅3],

28



where we define 𝜇 := (𝛽 · 𝜄1) : 𝑀 □𝑀 → 𝑀, 𝜂 := (𝛽 · 𝜄2) : 𝐼 → 𝑀 and

𝐿1 := 𝜇 · (𝜇□𝑀) 𝑅1 := 𝜇 · (𝑀 □ 𝜇) · 𝛼𝑀,𝑀,𝑀

𝐿2 := 𝜇 · (𝜂 □𝑀) 𝑅2 := 𝜆𝑀

𝐿3 := 𝜇 · (𝑀 □ 𝜂) 𝑅3 := 𝜌𝑀

Each pair 𝐿𝑖 and 𝑅𝑖 encodes a commutative diagram for monoids in 2.1*2. An

algebra of this equational system is precisely a monoid inℰ.

2.2.1*7 Notation. From the example above we see that although the definition

of equational systems allows exactly one operation and one equation, multiple

operations/equations can be encoded via coproducts. When the category 𝒞 has

set-indexed coproducts, we will just say an equational system with a set of operations
{Σ𝑜 : 𝒞→ 𝒞}𝑜∈𝑂 and a set of equations {Γ𝑒 ⊢ 𝐿𝑒 = 𝑅𝑒}𝑒∈𝐸, where Γ𝑒 : 𝒞→ 𝒞 and

𝐿𝑒 , 𝑅𝑒 : (∐𝑜∈𝑂 Σ𝑜)-Alg→ Γ𝑒-Alg.

Moreover, given an equational system ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) on a category

𝒞 with binary coproducts, we denote by ¤Σ ↰ Σ′ the extension of ¤Σ with a new

operations of signature Σ′ : 𝒞→ 𝒞:

¤Σ ↰ Σ′ B (Σ + Σ′ ⊲ Γ ⊢ 𝐿 ◦U = 𝑅 ◦U)

where U : (Σ +Σ′)-Alg→ Σ-Alg is the forgetful functor dropping Σ′ operations.

Similarly, we denote by ¤Σ ↰ (Γ′ ⊢ 𝐿′ = 𝑅′) the extension of ¤Σ with a new equation:

¤Σ ↰ (Γ′ ⊢ 𝐿′ = 𝑅′) B (Σ ⊲ Γ + Γ′ ⊢ [𝐿, 𝐿′] = [𝑅, 𝑅′]),

where [𝐿, 𝐿′] : Σ-Alg → (Γ + Γ′)-Alg is the functor mapping 𝛼 : Σ𝑋 → 𝑋 to

[𝐿𝛼, 𝐿′𝛼] : (Γ + Γ′)𝑋 → 𝑋, and [𝑅, 𝑅′] is similar.

2.2.1*8 Example. The concept of Eilenberg-Moore algebras can be defined as an

equational system. Let𝑀 be a monad on some𝒞 with coproducts. The equational

system 𝑀-Alg has as signature 𝑀 itself and two equations: Id𝒞 ⊢ 𝐿1 = 𝑅1 and

𝑀 ◦𝑀 ⊢ 𝐿2 = 𝑅2 where for all ⟨𝑋 ∈ 𝒞, 𝛼 : 𝑀𝑋 → 𝑋⟩,

𝐿1𝛼 = (𝑋
𝜂𝑋−−→ 𝑀𝑋

𝛼−→ 𝑋) 𝑅1𝛼 = id𝑋

𝐿2𝛼 = (𝑀(𝑀𝑋)
𝜇𝑋−−→ 𝑀𝑋

𝛼−→ 𝑋) 𝑅2𝛼 = (𝑀(𝑀𝑋) 𝑀𝛼−−→ 𝑀𝑋
𝛼−→ 𝑋)

The category of algebras for this equational system is precisely the Eilenberg-

Moore category of the monad 𝑀.

2.2.1*9. Equational systems can also express inequations using a standard trick

in enriched algebraic theories [Robinson 2002]. Let 𝒞 be a category with an

enrichment over Poset, which means that every hom-set𝒞(𝐴, 𝐵) is equipped with

a partial order and composition of 𝒞-morphisms 𝒞(𝐴, 𝐵) ×𝒞(𝐵, 𝐶) → 𝒞(𝐴, 𝐶)

29



is monotone, such that 𝒞 is copowered (also called tensored) over Poset, which

means that for every 𝐴 ∈ 𝒞 and 𝑃 ∈ Poset, there is an object 𝑃 · 𝐴 ∈ 𝒞 and a

natural isomorphism between posets:

𝒞(𝑃 · 𝐴, 𝐵) � Poset(𝑃,𝒞(𝐴, 𝐵)).

Let 𝔖 be the two-element poset {⊥ ⊑ ⊤}. For every endofunctor Σ : 𝒞 → 𝒞

(not necessarily a Poset-enriched functor), an operation 𝛼 : 𝔖 · Σ𝐴 → 𝐴 is

then two operations 𝛼⊥, 𝛼⊤ : Σ𝐴→ 𝐴 such that 𝛼⊥ ⊑ 𝛼⊤ in the poset 𝒞(Σ𝐴, 𝐴).
Therefore in this case we can impose orders on operations of an equational system.

Moreover, we can encode an inequational axiom 𝑙(𝑥) ⊑ 𝑟(𝑥) by introducing two

operations 𝑙 ⊑ 𝑟 and equations stating that 𝑙(𝑥) = 𝑙(𝑥) and 𝑟(𝑥) = 𝑟(𝑥). This trick

can also be generalised to Cat-enriched categories, i.e. 2-categories, to express

lax-equations or pseudo-equations.

2.2.1*10 Example. The category Poset is enriched over itself with the pointwise

order on Poset(𝐴, 𝐵), and it is tensored with 𝑃 · 𝐴 given by cartesian product

𝑃 × 𝐴. The equational system Bot over the category Poset expresses posets with

a bottom element: it has the signature functor ΣBot := 1+𝔖 · − and two equation

{Id ⊢ 𝐿𝑖 = 𝑅𝑖}𝑖=1,2 where for every 𝛼 : 1 +𝔖 · 𝐴→ 𝐴

𝐿1𝛼 = (𝐴 𝜄⊥−→ 𝔖 · 𝐴 𝛼·𝜄2−−→ 𝐴) 𝑅1𝛼 = (𝐴→ 1

𝛼·𝜄1−−→ 𝐴)

𝐿2𝛼 = (𝐴 𝜄⊤−→ 𝔖 · 𝐴 𝛼·𝜄2−−→ 𝐴) 𝑅2𝛼 = (𝐴 id𝐴−−→ 𝐴)

An algebra of Bot is therefore a preorder 𝐴 with an element 𝑏 ∈ 𝐴 and two

monotone functions 𝑙 : 𝐴→ 𝐴, and 𝑟 : 𝐴→ 𝐴 such that 𝑙 ⊑ 𝑟. The two equations

of Bot state that 𝑙(𝑥) = 𝑏 and 𝑟(𝑥) = 𝑥 for all 𝑥 ∈ 𝐴, so an algebra of Bot is

equivalently a preorder with a bottom element 𝑏.

2.2.1*11. Among the algebras of an equational system ¤Σ over 𝒞, the free algebras
are particularly useful since they represent abstract syntax of terms built from

variables and operations of the theory. The abstract syntax can be interpreted with

another model using the free-forgetful adjunction:

𝜙 : 𝒞(𝑋, 𝐴) � ¤Σ-Alg(F 𝑋, ⟨𝐴, 𝛼⟩)

Given any model ⟨𝐴, 𝛼⟩ of ¤Σ and 𝑔 : 𝑋 → 𝐴, the morphism 𝜙(𝑔) : F 𝑋 → ⟨𝐴, 𝛼⟩
interprets the free algebra with the semantic model ⟨𝐴, 𝛼⟩, with generators 𝑋

interpreted by 𝑔 : 𝑋 → 𝐴. Fiore and Hur [2009] showed several sufficient

conditions for the existence of free algebras, which we record below.

2.2.1*12 Theorem (Fiore and Hur [2009]). Let ¤Σ = (Σ ⊲Γ ⊢ 𝐿 = 𝑅) be an equational
system over 𝒞. If 𝒞 is (small-) cocomplete and one of the following holds:

∗ Σ and Γ preserve colimits of 𝛼-chains for a limit ordinal 𝛼;

30



∗ Σ preserves colimits of 𝛼-chains for a limit ordinal 𝛼, and both Σ and Γ preserve
epimorphisms in 𝒞;

∗ Σ preserves colimits of 𝛼-chains for a limit ordinal 𝛼, and Σ preserves epimor-
phisms, and 𝒞 has no transfinite chains of proper epimorphisms,

then there are left adjoints to the inclusion functor ¤Σ-Alg ↩→ Σ-Alg and the forgetful
functor Σ-Alg→ 𝒞:

¤Σ-Alg Σ-Alg 𝒞

⊣ ⊣

(2.13)

Moreover, ¤Σ-Alg is cocomplete and the composite of the adjunction is monadic.

2.2.1*13 Notation. We denote the composite adjunction of (2.13) by F ¤Σ ⊣ U ¤Σ, or

simply F ⊣ U when ¤Σ is clear from context. Moreover, the initial ¤Σ-algebra is

denoted by ⟨𝜇 ¤Σ, 𝛼 ¤Σ : Σ𝜇 ¤Σ→ 𝜇 ¤Σ⟩.

2.2.1*14. Fiore and Hur’s proof of this result is quite technical, but we will not

rely on the specifics of their construction. For concreteness, we provide some

basic intuition here: the free Σ-algebra on some 𝐴 ∈ 𝒞 is first constructed by a

transfinite iteration of 𝐴 + Σ− on 0 [Adámek 1974]

0 𝐴 + Σ0 𝐴 + Σ(𝐴 + Σ0) · · ·! 𝐴+Σ!

and taking colimits for limit ordinals. The iteration will stop at some 𝑋 � 𝐴+Σ𝑋
in 𝛼 steps, giving the carrier of the free Σ-algebra. Then it is quotiented by

the equation 𝐿 = 𝑅 and the congruence rule, using Fiore and Hur’s algebraic
coequalisers. The quotienting may also need to be repeated 𝛼 times when Σ or Γ

does not preserve epimorphisms. The result of quotienting is the free ¤Σ-algebra.

2.2.1*15 Example. Let ℰ be a small-cocomplete monoidal category such that

□ : ℰ ×ℰ→ℰ preserves 𝛼-chains for some limit ordinal 𝛼. For example,ℰ can

be ⟨Endo𝜅(𝒞), ◦, Id⟩ for an l𝜅p 𝒞 from Section 2.1.2 or ⟨Endo𝜅(Set), ∗, Id⟩ from

Section 2.1.6. Then the first condition of Theorem 2.2.1*12 is applicable to the

equational system Mon from Example 2.2.1*6, so every 𝐴 ∈ ℰ has a free monoid.

Moreover, Fiore and Hur [2009] showed that whenℰ is right closed, there is

a simple formula for free monoids: for every 𝐴 ∈ ℰ, the free monoid over 𝐴 is

the initial algebra 𝜇𝑋. 𝐼 + 𝐴□ 𝑋 equipped with appropriate monoid operations.

This formula is useful in practice: when ℰ is ⟨Set,×, 1⟩, it is exactly the usual

definition 𝜇𝑋. 1 + 𝐴 × 𝑋 of lists of 𝐴-elements; and whenℰ is ⟨Endo𝜅(𝒞), ◦, Id⟩
or ⟨Endo𝜅(Set), ∗, Id⟩, this gives formulas for free monads and free applicatives

that are suitable for implementation [Rivas and Jaskelioff 2017].

2.2.1*16. An appealing aspect of Theorem 2.2.1*12 is that the base category 𝒞

is only required to be cocomplete rather than locally 𝜅-presentable. Therefore

31



the theorem applies to the category dCpo of directed complete partial orders,
generalising the construction of free dcpo-algebras for operations of finite arities

and (in)equations [Abramsky and Jung 1995, Theorem 6.1.2]. Allowing an

endofunctor Σ : dCpo→ dCpo as the signature comes in handy: in particular, it

allows us to express operations that takes an ascending chain 𝑥0 ⊑ 𝑥1 ⊑ 𝑥2 · · ·
as arguments by choosing Σ := (−)𝜔 where 𝜔 := {0 ⊑ 1 ⊑ 2 ⊑ · · ·}. This functor

preserves colimits of all Ω-chains, where Ω is the first uncountable ordinal.

2.2.1*17. I do not know whether Theorem 2.2.1*12 is constructively true, and

in particular, whether it is applicable to small-complete small categories in

realizability toposes (2.1.1*4). Anyway, we have an alternative constructive proof

for small-complete small categories using impredicative encodings [Awodey et al.

2018], a refinement of the well known Church encoding of inductive datatypes.

Remarkably, the theorem below imposes no constraints on the functorial

signature Σ and context Γ, generalising the result that every endofunctor on a

small-complete small category has an initial algebra [Hyland 1988, §3.1].

2.2.1*18 Theorem. Let 𝒞 be a small-complete small category. For every equational
system ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) over 𝒞, there is a monadic adjunction F ¤Σ ⊣ U ¤Σ. Moreover,
the category ¤Σ-Alg is a small-complete-and-cocomplete small category.

2.2.1*19. An easy proof of the theorem goes by first showing that ¤Σ-Alg is also

a small-complete small category for all equational systems ¤Σ-Alg over 𝒞, and

then the free algebra of ¤Σ over an object 𝑋 ∈ 𝒞 can be constructed from the

initial algebra of ¤Σ ↰ K𝑋 , where K𝑋 : 𝒞 → 𝒞 is the constant functor mapping

to 𝑋. The initial algebra of ¤Σ ↰ K𝑋 can be then constructed as the limit of the

identity functor Id : ( ¤Σ ↰ K𝑋)-Alg→ ( ¤Σ ↰ K𝑋)-Alg [Mac Lane 1998, §X.1 Lemma

1], which exists since ( ¤Σ ↰ K𝑋)-Alg is a small-complete small category.

The proof below is essentially the same idea but with some levels of abstraction

expanded out. It was written before I noticed the simple argument above, but

it is kept here since its explicit character may be useful to readers interested in

formalising the construction in type theories with impredicative universes.

Proof. First we notice that ¤Σ-Alg is a small category: if Obj𝒞 and Mor𝒞 are

small sets, then Obj ¤Σ-Alg = {⟨𝐴, 𝑓 ⟩ | 𝐴 ∈ Obj𝒞, 𝑓 ∈ 𝒞(Σ𝐴, 𝐴)} is also a small

set, and ¤Σ-Alg(⟨𝐴, 𝑓 ⟩, ⟨𝐵, 𝑔⟩) ⊆ 𝒞(𝐴, 𝐵) is clearly a small set as well.

For every 𝑋 ∈ 𝒞, we define 𝑌 ∈ 𝒞 to be the following end in 𝒞:

𝑌 :=
∫
⟨𝐴, 𝑓 ⟩∈Obj ¤Σ-Alg

∏
𝑔:𝒞(𝑋,𝐴) 𝐴

which exists since 𝒞 is small-complete. We define a Σ-algebra 𝛼 : Σ𝑌 → 𝑌 as

32



follows: for every ⟨𝐴, 𝑓 ⟩ ∈ Obj ¤Σ-Alg and 𝑘 : 𝑋 → 𝐴, there is a 𝒞-morphism:

Σ𝑌
Σ𝜋⟨𝐴, 𝑓 ⟩
−−−−−→ Σ(∏𝑔:𝒞(𝑋,𝐴) 𝐴)

Σ𝜋𝑔
−−−→ Σ𝐴

𝑓
−→ 𝐴

and it can be checked that this defines a wedge 𝑤Σ, 𝑓 : Σ𝑌 → Π𝑔:𝒞(𝑋,𝐴) 𝐴, so by

the universal property of the end 𝑌, we have a morphism 𝛼 : Σ𝑌 → 𝑌 such that

Σ𝑌 Σ
∏

𝑔 𝐴 Σ𝐴

𝑌
∏

𝑔 𝐴 𝐴

Σ𝜋⟨𝐴, 𝑓 ⟩

𝛼

Σ𝜋𝑘

𝑓

𝜋⟨𝐴, 𝑓 ⟩ 𝜋𝑘

(2.14)

commutes. Notice that this square means𝜋𝑘 ·𝜋⟨𝐴, 𝑓 ⟩ is aΣ-algebra homomorphism.

Next we show that ⟨𝑌, 𝛼⟩ is in the subcategory ¤Σ-Alg ⊆ Σ-Alg, i.e. 𝐿𝛼 = 𝑅𝛼 :

Γ𝑌 → 𝑌. Again, we consider every ⟨𝐴, 𝑓 ⟩ ∈ Obj ¤Σ-Alg and 𝑘 : 𝑋 → 𝐴. The

functors 𝐿, 𝑅 : Σ-Alg→ Γ-Alg maps the homomorphism square (2.14) to

Γ𝑌 Γ𝐴

𝑌 𝐴

Γ(𝜋𝑘 ·𝜋⟨𝐴, 𝑓 ⟩)

𝐿𝛼 𝑅𝛼 𝐿 𝑓=𝑅 𝑓

𝜋𝑘 ·𝜋⟨𝐴, 𝑓 ⟩

Hence 𝜋𝑘 ·𝜋⟨𝐴, 𝑓 ⟩ ·𝐿𝛼 = 𝜋𝑘 ·𝜋⟨𝐴, 𝑓 ⟩ ·𝑅𝛼. By the uniqueness part of the universal

property of the end 𝑌, we have 𝐿𝛼 = 𝑅𝛼.

We have a ¤Σ-algebra ⟨𝑌, 𝛼⟩ now, and we have a morphism 𝜂 : 𝑋 → 𝑌

defined by the wedge ⟨⟨𝑔⟩𝑔:𝒞(𝑋,𝐴) : 𝑋 → ∏
𝑔:𝒞(𝑋,𝐴) 𝐴⟩⟨𝐴, 𝑓 ⟩. We need to show

that 𝜂 : 𝑋 → U ¤Σ⟨𝑌, 𝛼⟩ is a universal morphism. That is to say, for every

⟨𝐴, 𝑓 ⟩ ∈ Obj ¤Σ-Alg and 𝑘 : 𝑋 → 𝐴, there is a unique ¤Σ-algebra homomorphism

𝑢𝐴, 𝑓 ,𝑘 : ⟨𝑌, 𝛼⟩ → ⟨𝐴, 𝑓 ⟩ such that the triangle on the left below commutes:

𝑋 𝑌 ⟨𝑌, 𝛼⟩

𝐴 ⟨𝐴, 𝑓 ⟩

𝜂

𝑘
𝑢𝐴, 𝑓 ,𝑘 ∃!𝑢𝐴, 𝑓 ,𝑘

We let the required homomorphism 𝑢𝐴, 𝑓 ,𝑘 := 𝜋𝑘 · 𝜋𝐴, 𝑓 : 𝑌 → 𝐴 be the one in

(2.14). We have 𝑢𝐴, 𝑓 ,𝑘 · 𝜂 = 𝑘 essentially by construction:

𝑢𝐴, 𝑓 ,𝑘 · 𝜂 = (𝜋𝑘 · 𝜋⟨𝐴, 𝑓 ⟩) · ⟨⟨𝑔⟩𝑔:𝒞(𝑋,𝐴)⟩⟨𝐴, 𝑓 ⟩ = 𝑘.

The uniqueness of 𝑢𝐴, 𝑓 ,𝑘 is slightly more involved. Given any 𝑣 : ⟨𝑌, 𝛼⟩ → ⟨𝐴, 𝑓 ⟩

33



such that 𝑣 · 𝜂 = 𝑘, by the property of 𝑌 as an end, the following commutes:

𝑌

∏
𝒞(𝑋,𝐴) 𝐴

∏
𝒞(𝑋,𝑌)𝑌 𝑌

∏
𝒞(𝑋,𝑌) 𝐴 𝐴

𝜋𝐴, 𝑓 𝜋𝑌,𝛼

∏
𝒞(𝑋,𝑣) 𝐴

𝜋𝜂

∏
𝒞(𝑋,𝑌) 𝑣 𝑣

𝜋𝜂

So 𝜋𝜂 · (
∏

𝒞(𝑋,𝑣) 𝐴) · 𝜋𝐴, 𝑓 = 𝜋𝜂 · (
∏

𝒞(𝑋,𝑌) 𝑣) · 𝜋𝑌,𝛼, or equivalently

𝜋𝑣·𝜂 · 𝜋𝐴, 𝑓 = 𝑣 · 𝜋𝜂 · 𝜋𝑌,𝛼

and therefore 𝑢𝐴, 𝑓 ,𝑘 = 𝜋𝑘 · 𝜋𝐴, 𝑓 = 𝜋𝑣·𝜂 · 𝜋𝐴, 𝑓 = 𝑣 · 𝜋𝜂 · 𝜋𝑌,𝛼 = 𝑣 · 𝑢𝑌,𝛼,𝜂. Now that

𝑢𝐴, 𝑓 ,𝑘 = 𝑣 · 𝑢𝑌,𝛼,𝜂, we have 𝑣 = 𝑢𝐴, 𝑓 ,𝑘 as long as 𝑢𝑌,𝛼,𝜂 = id𝑌 .

It remains to show that 𝑢𝑌,𝛼,𝜂 : 𝑌 → 𝑌 is the identity morphism: by the

universal property of 𝑌, it is sufficient to show that for all ⟨𝐵, 𝑔⟩ ∈ Obj ¤Σ-Alg

and 𝑠 : 𝑋 → 𝐵, (𝜋𝑠 · 𝜋𝐵,𝑔) · 𝑢𝑌,𝛼,𝜂 = (𝜋𝑠 · 𝜋𝐵,𝑔) · id𝑌 , or equivalently

𝑢𝐵,𝑔,𝑠 · (𝜋𝜂 · 𝜋𝑌,𝛼) = 𝜋𝑠 · 𝜋𝐵,𝑔 . (2.15)

Again, by the property of 𝑌 as an end and the property of products

∏
𝒞(𝑋,𝑌), the

following diagram commutes:

𝑌

∏
𝒞(𝑋,𝐵) 𝐵

∏
𝒞(𝑋,𝑌)𝑌 𝑌

∏
𝒞(𝑋,𝑌) 𝐵 𝐵

𝜋𝐵,𝑔 𝜋𝑌,𝛼

∏
𝒞(𝑋,𝑢𝐵,𝑔,𝑠 ) 𝐵

𝜋𝜂

∏
𝒞(𝑋,𝑌) 𝑢𝐵,𝑔,𝑠 𝑢𝐵,𝑔,𝑠

𝜋𝜂

Therefore we have 𝑢𝐵,𝑔,𝑠 · 𝜋𝜂 · 𝜋𝑌,𝛼 = 𝜋𝜂 · (
∏

𝒞(𝑋,𝑢𝐵,𝑔,𝑠) 𝐵) · 𝜋𝐵,𝑔 = 𝜋𝑠 · 𝜋𝐵,𝑔 . Hence

we have shown (2.15) and thus 𝑢𝑌,𝛼,𝜂 = id𝑌 : 𝑌 → 𝑌.

We have shown that there is a free algebra over every 𝑋 ∈ 𝒞, and this uniquely

determines an adjunction F ¤Σ ⊣ U ¤Σ as usual [Mac Lane 1998, p. 83, Theorem 2].

Using Beck’s monadicity theorem, it is not difficult to show that this adjunction

is monadic; see Fiore and Hur [2009, Proposition 6.4]. Similarly to how the

forgetful functor of a finitary algebraic theory creates limits [Mac Lane 1998,

Theorem V.1.2], it is not difficult to show that U ¤Σ creates limits too. Since 𝒞 is

small-complete, ¤Σ-Alg is also complete. Finally, a known result is that every

complete small-complete is small-cocomplete [Hyland 1988, §3.1], which can be

proven using an impredicative encoding similar to what we have done above. □

2.2.1*20. Theorem 2.2.1*12 and Theorem 2.2.1*18 give different sufficient con-

34



ditions for the existences of free algebras of equational systems, and there are

some other constructive techniques such as the one by Fiore et al. [2022]. In

the future, we typically only rely on the existence of free algebras but not those

specific conditions guaranteeing the existence of free algebras. The following

definition will be used for abstracting over those different conditions.

2.2.1*21 Definition. Let 𝒞 be a category. A relation 𝒜 ⊆ Endo(𝒞) ×Endo(𝒞) of

endofunctors is called a freeness condition if every equational system Σ ⊲ Γ ⊢ 𝐿 = 𝑅

with ⟨Σ, Γ⟩ ∈ 𝒜 has the free-forgetful adjunction.

We denote by Eqs𝒜(𝒞) the full subcategory of Eqs(𝒞) containing equational

systems whose functorial signature and context are in 𝒜.

2.2.1*22 Example. If 𝒞 is l𝜅p then the relation Endo𝜅(𝒞)×Endo𝜅(𝒞) containing

all pairs of 𝜅-accessible endofunctors (Section 2.1.2) is a freeness condition by the

first item of Theorem 2.2.1*12.

If 𝒞 is small-complete and small, the entire relation Endo(𝒞) × Endo(𝒞) is a

freeness condition (2.1.1*3) by Theorem 2.2.1*18.

For every 𝒞, there is always the largest freeness condition ℱ containing all

pairs ⟨Σ, Γ⟩ such that all equational systems with signature Σ and context Γ have

the free-forgetful adjunction. However, ℱ is less useful than it may appear: in

general we do not know whether ℱ has good closure properties, for example,

whether ⟨Σ + Σ′, Γ + Γ′⟩ is in ℱ when ⟨Σ, Γ⟩ and ⟨Σ′, Γ′⟩ are in ℱ.

2.2.2 Functorial Translations

2.2.2*1. Morphisms between equational systems are not studied by Fiore and

Hur [2007, 2009], but we need them later for talking about combinations of

equational systems. A natural idea for morphisms from an equational system ¤Σ
to another ¤Ψ is translations, which map operations in ¤Σ to terms of ¤Ψ, preserving

equations in a suitable sense. However, a technical difficulty is that equational

systems ¤Ψ may not have terms, i.e. initial algebras.

In the following, we avoid this by introducing a more indirect definition

which we call functorial translations between equational systems. Intuitively, if

operations of ¤Σ can be translated to (terms of) operations of ¤Σ′, then a model

of ¤Σ′ also gives a model of ¤Σ. Therefore translations ¤Σ→ ¤Σ′ can be defined as

functors ¤Σ′-Alg→ ¤Σ-Alg from the opposite direction.

2.2.2*2. In the rest of this section, we fix a category 𝒞 and a freeness condition

𝒜 ⊆ Endo(𝒞) × Endo(𝒞) of endofunctors (Definition 2.2.1*21).

2.2.2*3 Definition. A functorial translation of equational systems on 𝒞 from

¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅) to ¤Σ′ = (Σ′ ⊲ Γ′ ⊢ 𝐿′ = 𝑅′) is a functor 𝑇 : ¤Σ′-Alg → ¤Σ-Alg

35



such that U ¤Σ ◦ 𝑇 = U ¤Σ′, where U ¤Σ : ¤Σ-Alg→ 𝒞 and U ¤Σ′ : ¤Σ′-Alg→ 𝒞 are the

forgetful functors. Equational systems on 𝒞 and translations form a category

Eqs(𝒞)whose identity morphisms are the identity functors ¤Σ-Alg→ ¤Σ-Alg and

composition of translations 𝑇 ◦ 𝑇′ is functor composition.

2.2.2*4 Example. Let 𝒞 be a category with finite coproducts and products. The

theory Grp of groups over 𝒞 is the theory Mon of monoids in ⟨𝒞,×, 1⟩ from

Example 2.2.1*6 extended with a new operation 𝑖 with functorial signature

Id : 𝒞→ 𝒞 and a new functorial equation Id ⊢ 𝐿 = 𝑅 where

𝐿⟨𝑀, 𝜂, 𝜇, 𝑖⟩ = ⟨𝑀,𝑀
⟨id𝑋 ,𝑖⟩−−−−→ 𝑀 ×𝑀

𝜇
−→ 𝑀⟩

𝑅⟨𝑀, 𝜂, 𝜇, 𝑖⟩ = ⟨𝑀,𝑀
!−→ 1

𝜂
−→ 𝑀⟩

Then there is a translation 𝑇 : Mon → Grp that maps every ⟨𝑀, 𝜂, 𝜇, 𝑖⟩ in

Grp-Alg to an object ⟨𝑀, 𝜂, 𝜇⟩ in Mon-Alg by forgetting the newly added

operation. We call translations like 𝑇 : Mon → Grp that simply forget some

operations and equations inclusion translations.

2.2.2*5. For equational systems with free-algebras, the following lemma shows

that functorial translations between them coincide with the expected notion of

translations: maps from operations to terms.

2.2.2*6 Lemma. Let ¤Σ, ¤Ψ ∈ Eqs𝒜(𝒞). There is a bĳection between functorial

translations 𝑇 : ¤Σ→ ¤Ψ and monad morphisms 𝑚 : U ¤ΣF ¤Σ→ U ¤ΨF ¤Ψ.

Proof. By Fiore and Hur [2009, Proposition 6.4], the free-forgetful adjunction for

an equational system is always monadic, so functorial translations, i.e. functors

𝑇 : ¤Ψ-Alg → ¤Σ-Alg such that U ¤Σ ◦ 𝑇 = U ¤Ψ, are in bĳection with functors

𝑆 : 𝒞
U ¤ΨF ¤Ψ → 𝒞

U ¤ΣF ¤Σ between the corresponding Eilenberg-Moore categories that

commute with the forgetful functors. By Borceux [1994b, Proposition 4.5.9],

those functors 𝑆 are in bĳection with monad morphisms 𝑚 : U ¤ΣF ¤Σ→ U ¤ΨF ¤Ψ. □

2.2.2*7 Corollary. The two functorial terms 𝐿, 𝑅 : Σ-Alg→ Γ-Alg of an equa-

tional system can also be viewed as translations between the equational systems

of signatures Γ and Σ without equations. Therefore when Σ and Γ have free alge-

bras, 𝐿 and 𝑅 are in bĳection with two monad morphisms UΓFΓ→ UΣFΣ. When

𝒞 is locally small and small-complete, the monad UΓFΓ for free Γ-algebras is also

the free monad over the endofunctor Γ [nLab 2024a, Theorem 3.2]. In this case,

monad morphisms UΓFΓ→ UΣFΣ are in bĳection with natural transformations

Γ→ UΣFΣ. Moreover, it can be checked that a Σ-algebra 𝛼 : Σ𝐴→ 𝐴 satisfies a

36



functorial equation Γ ⊢ 𝐿 = 𝑅 if and only if the following commutes:

Γ𝐴 UΣFΣ𝐴 𝐴
�̃�𝐴

�̃�𝐴

UΣ𝜖⟨𝐴,𝛼⟩

where �̃� and �̃� are the natural transformations corresponding to 𝐿 and 𝑅.

2.2.2*8 Theorem. Let𝒞 be a category with binary coproducts and Eqs 𝑓 (𝒞) ⊆ Eqs(𝒞)
be the full subcategory containing all equational systems admitting the free-forgetful
adjunction. Then we have an equivalence of categories

Eqs 𝑓 (𝒞) � Mon(𝒞),

where Mon(𝒞) is the category of monads over 𝒞 and monad morphisms.

Proof. Example 2.2.1*8 shows that every monad 𝑀 induces an equational system

𝑀-Alg whose category of algebras is precisely the Eilenberg-Moore category

of 𝑀. Thus the equational system 𝑀-Alg is in Eqs 𝑓 (𝒞) since free Eilenberg-

Moore algebras always exist (which are simply ⟨𝑋, 𝜇𝑋 : 𝑀(𝑀𝑋) → 𝑀𝑋⟩ for

all 𝑋 ∈ 𝒞). By Lemma 2.2.2*6 above, this construction extends to a fully

faithful functor Mon(𝒞) → Eqs 𝑓 (𝒞). Moreover, the forgetful functor for every

equational system ¤Σ ∈ Eqs 𝑓 (𝒞) is monadic [Fiore and Hur 2009, Proposition

6.4], so ¤Σ is isomorphic to the equational system (F ¤ΣU ¤Σ)-Alg. Therefore we have

an essentially surjective fully faithful functor Mon(𝒞) → Eqs 𝑓 (𝒞), and thus an

equivalence Mon(𝒞) � Eqs 𝑓 (𝒞). □

2.2.2*9. The theorem above shows that equational systems subsume not just

monads with ranks but all monads. Two natural questions are then

* Is the category Eqs(𝒞) some kind of completion of Mon(𝒞)?

* Given a functor U : 𝒜 → 𝒞, under what conditions U is the forgetful

functor for an equational system?

We leave answering these questions as future work.

2.2.2*10. Below, we turn our attention to the property of translations 𝑇 : ¤Σ→ ¤Ψ
as functors 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg, and show a condition for 𝑇 to have left adjoints.

We start with an interesting lemma saying that (when ¤Ψ has free algebras)

translations 𝑇 : ¤Σ → ¤Ψ can be extended in a canonical way to translations

�̃� : Σ→ Ψ between the respective equational systems without equations. Note,

however, such an extension may not be unique: when the equation of ¤Ψ is

inconsistent in the sense that ¤Ψ only has the trivial model 1, there is a unique

trivial 𝑇, but there can still be different translations Σ→ Ψ.

37



2.2.2*11 Lemma. For every category 𝒞 and ¤Σ, ¤Ψ ∈ Eqs(𝒞) such that ¤Ψ has the

free-forgetful adjunction. Every functorial translation ¤Σ → ¤Ψ, i.e. a functor

𝑇 : ¤Ψ-Alg → ¤Σ-Alg such that U ¤Σ ◦ 𝑇 = U ¤Ψ can be extended to a functor

�̃� : Ψ-Alg→ Σ-Alg such that UΣ ◦ 𝑇 = UΨ and �̃� coincides with 𝑇 on ¤Ψ-Alg.

Proof. Given any Ψ-algebra ⟨𝐴, 𝛼 : Ψ𝐴 → 𝐴⟩, there is a free ¤Ψ-algebra over

𝐴 with structure map 𝑜 : Ψ(F ¤Ψ𝐴) → F ¤Ψ𝐴. It is mapped by 𝑇 to a ¤Σ-algebra

𝑇𝑜 : Σ(F ¤Ψ𝐴) → F ¤Ψ𝐴. We now define the functor �̃� : Ψ-Alg→ Σ-Alg by

�̃�⟨𝐴, 𝛼⟩ = ⟨𝐴, Σ𝐴
Σ𝜂𝐴−−−→ Σ(F ¤Ψ𝐴)

𝑇𝑜−−→ F ¤Ψ𝐴
𝜖𝐴,𝛼−−−→ 𝐴⟩.

To see that �̃� restricts to 𝑇 on ¤Ψ-Alg, supposing ⟨𝐴, 𝛼⟩ ∈ ¤Ψ, 𝑇 maps the counit

𝜖𝐴,𝛼 : ⟨F ¤Ψ𝐴, 𝑜⟩ → ⟨𝐴, 𝛼⟩ to the following commutative diagram:

Σ(F ¤Ψ𝐴) F ¤Ψ𝐴

Σ𝐴 𝐴

𝑇𝑜

𝜖𝐴,𝛼

𝑇𝛼

Σ𝜖𝐴,𝛼

Therefore �̃�𝛼 = 𝜖𝐴,𝛼 · 𝑇𝑜 · Σ𝜂𝐴 = 𝑇𝛼 · Σ𝜖 · Σ𝜂𝐴 = 𝑇𝛼 since 𝜖𝐴,𝛼 · 𝜂𝐴 = id. □

2.2.2*12. In the adjunction F ¤Σ ⊣ U ¤Σ : ¤Σ-Alg→ 𝒞 for free algebras, the category

𝒞 can be viewed as the category ∅-Alg for the empty theory ∅with no operations

or equations, and U ¤Σ : ¤Σ-Alg → ∅-Alg is the unique translation from ∅ to ¤Σ.

The fact that U ¤Σ always has a left adjoint can be generalised to any functorial

translations, giving us relative free algebras.

2.2.2*13 Definition. Letting 𝐽 be a set, we say that the freeness condition 𝒜 is

closed under 𝐽-indexed coproducts if whenever ⟨Σ𝑗 , Γ𝑗⟩ ∈ 𝒜 for all 𝑗 ∈ 𝐽 then

∐
𝑗 Σ𝑗

and

∐
𝑗 Γ𝑗 exist and are related by 𝒜. Similarly, 𝒜 is said to be closed under

constant functors if ⟨K𝐴 ,K𝐵⟩ ∈ 𝒜 for all 𝐴, 𝐵 ∈ 𝒞.

2.2.2*14 Theorem. Assuming that 𝒜 is closed under binary coproducts and con-
stant functors, every functorial translation 𝑇 : ¤Σ → ¤Ψ in Eqs𝒜(𝒞) as a functor
𝑇 : ¤Ψ-Alg→ ¤Σ-Alg has a left adjoint 𝐹 and the adjunction is monadic:

¤Σ-Alg ¤Ψ-Alg

𝒞 𝒞

𝐹

U ¤Σ

𝑇
U ¤ΨF ¤Σ F ¤Ψ

⊣

⊣ ⊣

Proof. The idea of the proof is to construct the left adjoint 𝐹 via the initial algebra

some other equational system, similarly to how the free algebra for a functor

38



Σ : 𝒞→ 𝒞 over an object 𝐴 ∈ 𝒞 can be constructed via the initial algebra of the

functor 𝐴 + Σ−, except that we need to take equations into account.

Let ¤Σ = (Σ ⊲ Γ ⊢ 𝐿 = 𝑅). To construct the free ¤Ψ-algebra over a ¤Σ-algebra

⟨𝐴, 𝛼 : Σ𝐴→ 𝐴⟩, we consider the equational system

¤Ψ𝐴 B ¤Ψ ↰K𝐴 ↰ (KΣ𝐴 ⊢ 𝐿′ = 𝑅′) (2.16)

where K𝑋 is the constant endofunctor mapping to 𝑋 ∈ 𝒞, and the two functorial

terms 𝐿′, 𝑅′ : (Ψ + K𝐴)-Alg→ KΣ𝐴-Alg are

𝐿′⟨𝐵, 𝛽 : Ψ𝐵→ 𝐵, 𝑖 : 𝐴→ 𝐵⟩ = ⟨𝐵,Σ𝐴 Σ𝑖−→ Σ𝐵
�̃�𝛽
−−→ 𝐵⟩,

𝑅′⟨𝐵, 𝛽 : Ψ𝐵→ 𝐵, 𝑖 : 𝐴→ 𝐵⟩ = ⟨𝐵,Σ𝐴 𝛼−→ 𝐴
𝑖−→ 𝐵⟩.

where �̃� : Ψ-Alg→ Σ-Alg is obtained from 𝑇 by Lemma 2.2.2*11. Since 𝒜 is

assumed to closed under binary coproducts and constant functors, the equational

system ¤Ψ𝐴 is in Eqs𝒜(𝒞) and thus has an initial algebra

⟨𝐵0, 𝛽 : Ψ𝐵0→ 𝐵0, 𝑖 : 𝐴→ 𝐵0⟩.

We note that the functorial equation 𝐿′ = 𝑅′ encodes a Σ-algebra homomorphism:

Σ𝐴 Σ𝐵

𝐴 𝐵

𝛼

𝑖

Σ𝑖

�̃�𝛽 (2.17)

Since �̃� and𝑇 coincides on ¤Ψ algebras, �̃�𝛽 is the same as𝑇𝛽. Therefore 𝑖 : 𝐴→ 𝐵0

is a ¤Σ-algebra homomorphism from ⟨𝐴, 𝛼⟩ to ⟨𝐵0, 𝑇𝛽⟩.
Next we show that the arrow 𝑖 : ⟨𝐴, 𝛼⟩ → 𝑇⟨𝐵0, 𝛽⟩ is a universal arrow

from ⟨𝐴, 𝛼⟩ to the functor 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg. For every ⟨𝐶, 𝛿⟩ ∈ ¤Ψ-Alg and

an arrow 𝑓 : ⟨𝐴, 𝛼⟩ → ⟨𝐶, 𝑇𝛿⟩, we need to find a unique ¤Ψ-homomorphism

ℎ : ⟨𝐵0, 𝛽⟩ → ⟨𝐶, 𝛿⟩ such that 𝑇ℎ · 𝑖 = 𝑓 :

⟨𝐴, 𝛼⟩ 𝑇⟨𝐵0, 𝛽⟩ ⟨𝐵0, 𝛽⟩

𝑇⟨𝐶, 𝛿⟩ ⟨𝐶, 𝛿⟩

𝑖

𝑇ℎ
𝑓

∃!ℎ

We observe that ⟨𝐶, 𝛿, 𝑓 ⟩ is a model of ¤Ψ𝐴 (2.16), so by the initiality of ⟨𝐵0, 𝛽, 𝑖⟩,
there is an ℎ : ⟨𝐵0, 𝛽, 𝑖⟩ → ⟨𝐶, 𝛿, 𝑓 ⟩. Since ℎ is a ¤Ψ𝐴-homomorphism, we have

ℎ · 𝑖 = 𝑓 . Hence 𝑇ℎ · 𝑖 = 𝑓 as the translation 𝑇 preserves homomorphisms.

It remains to show the uniqueness of such ℎ : ⟨𝐵0, 𝛽⟩ → ⟨𝐶, 𝛿⟩ ∈ ¤Ψ-Alg with

ℎ · 𝑖 = 𝑓 . Assuming there is such an ℎ′, then ℎ′ is also a ¤Ψ𝐴-homomorphism

from ⟨𝐵0, 𝛽, 𝑖⟩ to ⟨𝐶, 𝛿, 𝑖⟩. Therefore ℎ′ = ℎ by the initiality of ⟨𝐵0, 𝛽, 𝑖⟩.
We have shown that for every ¤Σ-algebra ⟨𝐴, 𝛼⟩, there is a universal arrow

39



from ⟨𝐴, 𝛼⟩ to 𝑇 : ¤Ψ-Alg→ ¤Σ-Alg. This extends to an adjunction 𝐹 ⊣ 𝑇 by [Mac

Lane 1998, §IV.1 Theorem 2].

For the monadicity of the adjunction 𝐹 ⊣ 𝑇, by Beck’s monadicity theorem

[Borceux 1994b, Theorem 4.4.4], we need to show that (1) the functor 𝑇 reflects

isomorphisms and (2) for a pair of morphisms ℎ, 𝑔 : ⟨𝐴, 𝛼⟩ → ⟨𝐵, 𝛽⟩ ∈ ¤Ψ-Alg

such that 𝑇ℎ and 𝑇𝑔 have a split coequaliser in ¤Σ-Alg, ℎ and 𝑔 have a coequaliser

in ¤Ψ-Alg and that is preserved by 𝑇.

For (1), the image of a morphism ℎ : ⟨𝐴, 𝛼⟩ → ⟨𝐵, 𝛽⟩ ∈ ¤Ψ-Alg under the

translation functor 𝑇 is still ℎ (as a ¤Σ-homomorphism). If ℎ has an inverse ℎ−1
in

¤Σ-Alg, then ℎ−1
is a ¤Ψ-homomorphism as well:

ℎ · 𝛼 = 𝛽 ·Ψℎ ⇐⇒ ℎ · 𝛼 ·Ψℎ−1 = 𝛽 ⇐⇒ 𝛼 ·Ψℎ−1 = ℎ−1 · 𝛽

So ℎ is also an isomorphism in ¤Ψ-Alg.

For (2), let 𝑒 : ⟨𝐵, 𝑇𝛽⟩ → ⟨𝐶, 𝛾⟩ be the split coequaliser of 𝑇ℎ and 𝑇𝑔. By the

definition of split coequalisers, U ¤Σ𝑒 is a split coequaliser of ℎ, 𝑔 : 𝐴→ 𝐵 in 𝒞. By

the monadicity of F ¤Ψ ⊣ U ¤Ψ, there is a coequaliser 𝑒′ : ⟨𝐵, 𝛽⟩ → ⟨𝐶′, 𝛾′⟩ of ℎ and 𝑔

in ¤Ψ-Alg that is preserved by U ¤Ψ. Since 𝑇ℎ · 𝑇𝑒′ = 𝑇𝑔 · 𝑇𝑒′, there is a morphism

𝑖 : ⟨𝐶, 𝛾⟩ → ⟨𝐶′, 𝑇𝛾′⟩ such that 𝑖 · 𝑒 = 𝑇𝑒′ in ¤Σ-Alg. But in the category 𝒞, both

UΣ𝑒 : 𝐵 → 𝐶 and UΓ𝑒
′ = UΣ𝑇𝑒 : 𝐵 → 𝐶′ are coequalisers of ℎ, 𝑔 : 𝐴 → 𝐵, so

UΣ𝑖 is the unique isomorphism between 𝐶 and 𝐶′. As a monadic functor, UΣ

reflects isomorphisms, so 𝑖 is also an isomorphism in ¤Σ-Alg too, and 𝑇𝑒′ is also

a coequaliser of 𝑇ℎ and 𝑇𝑔. □

2.2.2*15. The two examples of freeness conditions 𝒜 in Example 2.2.1*22 both

satisfy the assumption in the theorem. In particular, the theorem applied to the

translation Mon→ Grp in Example 2.2.2*4 constructs free groups over monoids.

This theorem will later be used for constructing free modular models.

2.2.2*16. The construction of relative free algebras is a special case of the adjoint
lifting problem [Borceux 1994b, §4.5], which asks given functors 𝑄 ◦ 𝑇 = 𝑅 ◦ 𝐺
such that 𝑅 has a left adjoint, whether 𝑇 has a left adjoint as well?

𝒜 ℬ

𝒞 𝒟

𝑄

𝑇

𝐺

𝐿

𝑅

⊣
⊣

The situation of Theorem 2.2.2*14 is then the case where 𝐿 ⊣ 𝑅 is the identity

adjunction Id ⊣ Id : 𝒞→ 𝒞. An answer given by Borceux [1994b, Theorem 4.5.6]

is that if 𝐺 and 𝑃 are monadic and ℬ has coequalisers, then 𝑇 has a left adjoint.

Therefore Theorem 2.2.2*14 can be generalised as follows.

40



2.2.2*17 Theorem. Let 𝐿 ⊣ 𝑅 : 𝒟→ 𝒞 be an adjunction, 𝒜 be a freeness condition
on 𝒟, ¤Σ ∈ Eqs 𝑓 (𝒞), and ¤Ψ ∈ Eqs𝒜(𝒟). A functor 𝑇 : ¤Ψ-Alg → ¤Σ-Alg such that
U ¤Ψ ◦ 𝑇 = 𝑅 ◦ U ¤Ψ has a left adjoint 𝐹 : ¤Σ-Alg → ¤Ψ-Alg if either (1) ¤Ψ-Alg has
coequalisers or (2) 𝒜 is closed under binary coproducts and constant functors.

¤Σ-Alg ¤Ψ-Alg

𝒞 𝒟

𝐹
U ¤Σ

𝑇

U ¤ΨF ¤Σ

𝐿

𝑅

F ¤Ψ

⊣
⊣

⊣ ⊣

Proof sketch. Free-forgetful adjunctions of equational systems are always monadic

[Fiore and Hur 2009, Proposition 6.4], so if ¤Ψ has coequalisers we have the left

adjoint 𝐹 by Borceux [1994b, Theorem 4.5.6]. Alternatively, if 𝒜 satisfies the

required property, we can construct the left adjoint in the same way as in the

proof of Theorem 2.2.2*14, inserting 𝐿 and 𝑅 in suitable places to go back and

forth between 𝒞 and 𝒟. For example, the crucial diagram (2.17) in the proof of

Theorem 2.2.2*14 should be modified to

Σ𝐴 Σ𝑅𝐵

𝐴 𝑅𝐵

𝛼

𝑖

Σ𝑖

�̃�𝛽

where ⟨𝐴 ∈ 𝒞, 𝛼 : Σ𝐴 → 𝐴⟩ and ⟨𝐵 ∈ 𝒟, 𝛽 : Ψ𝐵 → 𝐵⟩, and the functor

�̃� : Ψ-Alg→ Σ-Alg from Lemma 2.2.2*11 is modified to

�̃�⟨𝐵, 𝛽⟩ = ⟨𝑅𝐵, Σ𝑅𝐵
Σ𝑅𝜂𝐵−−−−→ Σ𝑅(F ¤Ψ𝐵)

𝑇𝑜−−→ 𝑅F ¤Ψ𝐵
𝑅𝜖𝐵,𝛽
−−−−→ 𝑅𝐵⟩.

where 𝑜 : ¤ΨF ¤Ψ𝐵→ F ¤Ψ𝐵 is the algebra structure on the free ¤Ψ-algebra. □

2.2.2*18 Example. Instantiate the adjunction 𝐿 ⊣ 𝑅 in Theorem 2.2.2*17 to be

+ ⊣ Δ : Set→ Set× Set. We have an equational system Ring ∈ Eqs(Set) of rings,

and we can define an equational system AbMon ∈ Eqs(Set × Set) such that an

algebra of AbMon is a pair ⟨𝐴, 𝑀⟩ of sets with an abelian group on 𝐴 and a

monoid on 𝑀, so we have the following commutative triangle:

Ab ×Mon AbMon-Alg

Set × Set

�

UAb×UMon UAbMon

Let 𝑇 : Ring→ Ab ×Mon be the functor that projecting out the additive group

and multiplicative monoid structure of rings. It satisfies UAb×UMon◦𝑇 = Δ◦URing

41



by construction. By Theorem 2.2.2*17, 𝑇 has a left adjoint 𝐹:

Ab ×Mon Ring

Set × Set Set

𝐹

UAb×UMon

𝑇

URingFAb×FMon

+

Δ

FRing

⊣
⊣

⊣ ⊣

The functor 𝐹 generates a free ring simultaneously over an abelian group 𝐴 and a

monoid 𝑀. More generally, whenever we have a cospan of equational systems

¤Σ→ ¤Ψ← ¤Φ, we can construct an algebra of ¤Ψ out of a ¤Σ-algebra and a ¤Φ-algebra

in a similar fashion. In the next chapter, we will use this technique to turn an

ordinary model of an equational system to a modular model.

2.2.3 Colimits of Equational Systems

2.2.3*1. Colimits in Eqs(𝒞) allow us to construct bigger equational systems

by ‘gluing’ smaller ones. For example, the equational system for rings can be

obtained by first taking the coproduct of Grp and Mon and then taking a suitable

coequaliser 𝐿⇒ Grp +Mon encoding the interaction of operations.

2.2.3*2 Theorem. The category Eqs𝒜(𝒞) is small-cocomplete when the freeness con-
dition 𝒜 is closed under small-coproducts and if ⟨Ψ,Θ⟩ ∈ 𝒜 then ⟨0,Ψ⟩ ∈ 𝒜.

Proof sketch. Arbitrary colimits can be constructed from coproducts and coequalis-

ers, so it is sufficient to show that Eqs𝒜(𝒞) has small-set-indexed coproducts and

coequalisers. We sketch the constructions here without proof.

(i) The coproduct of a (small) set of equational systems is obtained by taking

the coproduct of signatures and equations. Precisely, if ⟨Σ𝑖 ⊲ Γ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖⟩𝑖∈𝐼 is a

set of equational systems with each of them in Eqs𝒜(𝒞), their coproduct is∐
𝑖 Σ𝑖 ⊲

∐
𝑖 Γ𝑖 ⊢ 𝐿 = 𝑅

where 𝐿, 𝑅 : (∐𝑖∈𝐼 Σ𝑖)-Alg→ (∐𝑖∈𝐼 Γ𝑖)-Alg are

𝐿𝛼 = [𝐿𝑖(𝛼 · 𝜄𝑖)]𝑖∈𝐼 𝑅𝛼 = [𝑅𝑖(𝛼 · 𝜄𝑖)]𝑖∈𝐼 .

(ii) Let 𝑇1, 𝑇2 : ¤Ψ→ ¤Σ be a pair of translations. Let ¤Σ′ be

¤Σ ↰ (Ψ ⊢ �̃�1 = �̃�2),

where �̃�1, �̃�2 : Σ-Alg→ Ψ-Alg are obtained from 𝑇1 and 𝑇2 by Lemma 2.2.2*11.

By the assumption on 𝒜, ¤Σ′ is still in Eqs𝒜(𝒞). The inclusion translation ¤Σ→ ¤Σ′
is the coequaliser of 𝑇1, 𝑇2 : ¤Ψ→ ¤Σ. □

42



2.2.3*3 Corollary. For every l𝜅p category 𝒞, the freeness condition 𝒜 =

Endo𝜅(𝒞) × Endo𝜅(𝒞) satisfies the assumption of the theorem, so Eqs𝒜(𝒞)
is cocomplete. For a small-complete small category 𝒞, the freeness condition𝒜 =

Endo(𝒞) × Endo(𝒞) is a freeness condition so Eqs(𝒞) is cocomplete.

2.2.3*4. Lastly, the following more description of a special case of pushouts of

equational system will be convenient in the future.

2.2.3*5 Lemma. Let ¤Σ ∈ Eqs(𝒞) for a category 𝒞 with finite coproducts, and

let Θ𝑖 : 𝒞 → 𝒞 be an endofunctor and 𝐸𝑖 = (Θ𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖) be an equation for

𝑖 ∈ {1, 2}. Let 𝑇1 and 𝑇2 in the diagram below be the inclusion translations, then

the following is a pushout diagram of 𝑇1 and 𝑇2:

¤Σ ¤Σ ↰Φ2 ↰ 𝐸2

¤Σ ↰Φ1 ↰ 𝐸1
¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸

𝑇2

𝑇1

where 𝐸 = (Θ1 + Θ2 ⊢ [𝐿1 ◦ 𝛼1, 𝐿2 ◦ 𝛼2] = [𝑅1 ◦ 𝛼1, 𝑅2 ◦ 𝛼2]) and

𝛼𝑖 : (Σ + (Φ1 +Φ2))-Alg→ (Σ +Φ𝑖)-Alg

are the evident forgetful functors.

Proof. First of all, there are evident inclusion translations 𝑃𝑖 (which are the

unlabelled arrows in the pushout diagram):

𝑃𝑖 : ( ¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸)-Alg → ( ¤Σ ↰Φ𝑖 ↰ 𝐸𝑖)-Alg

such that 𝑇1 ◦ 𝑃1 = 𝑇2 ◦ 𝑃2. Now for every equational system ¤Ψ ∈ Eqs(𝒞) with

translations functors 𝑄𝑖 : ¤Ψ-Alg→ ( ¤Σ ↰Φ𝑖 ↰ 𝐸𝑖)-Alg such that 𝑇1 ◦𝑄1 = 𝑇2 ◦𝑄2,

we can define a translation functor

𝑈 : ¤Ψ-Alg→ ( ¤Σ ↰ (Φ1 +Φ2) ↰ 𝐸′)-Alg

by sending every ¤Ψ-algebra ⟨𝐴, 𝛼⟩ to the algebra on 𝐴 with structure map:

[𝑇1(𝑄1
¤𝐴), 𝑄1𝛼 · 𝜄2, 𝑄2𝛼 · 𝜄2] : (Σ +Φ1 +Φ2) 𝐴→ 𝐴

It can be checked that such𝑈 is the unique one making 𝑃𝑖 ◦𝑈 = 𝑄𝑖 . □

2.3 A Type Theory for Monoidal Categories

2.3*1. When categorical constructions get complex, it is beneficial to use type

theoretic internal languages to describe those constructions in a more intuitive

manner [Crole 1994; Jacobs 1999; Lambek and Scott 1986]. This technique will be

43



prevalent in this thesis. In this section, we introduce monoidal algebraic theories,
which allows us to present equational systems over monoidal categories and

their algebras in a convenient syntactic manner.

2.3*2. Monoidal algebraic theories are the linear counterpart of multi-sorted

universal algebra, and the syntactic counterpart of coloured PROs (strict monoidal

categories whose objects are products of a set of base objects) [MacLane 1965].

The presentation of monoidal algebraic theories below is based on the calculus of

Jaskelioff and Moggi [2010], but the rules of judgemental equality is strengthened

here to make terms form a monoidal category.

2.3.1 Monoidal Algebraic Theories

2.3.1*1. A monoidal algebraic theoryℒ is specified by three pieces of data ⟨ℬ,𝒫,𝒜⟩
as follows. Firstly, ℬ is a set, and every element 𝛼 ∈ ℬ is called a base type. The

types of ℒ are inductively generated by the rules

𝛼 ∈ ℬ
⊢ 𝛼 type ⊢ 𝐼 type

⊢ 𝐴 type ⊢ 𝐵 type

⊢ 𝐴□ 𝐵 type

Then 𝒫 is a family of sets indexed by pairs of types 𝐴 and 𝐵. Every element

𝑓 ∈ 𝒫𝐴,𝐵 is called a primitive operation, and we will write 𝑓 : 𝐴→ 𝐵 for 𝑓 ∈ 𝒫𝐴,𝐵.

A context Γ is a finite list of variables and types (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛). As

usual, variable names are considered up to 𝛼-equivalence. The concatenation of

two contexts is written as Γ𝑙 , Γ𝑟 .

The (well typed) terms under contexts Γ are generated by the following rules:

𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

𝑓 : 𝐴→ 𝐵 ∈ 𝒫 Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑓 𝑡 : 𝐵

·
⊢ ∗ : I

Γ1 ⊢ 𝑡1 : 𝐴 Γ2 ⊢ 𝑡2 : 𝐵

Γ1, Γ2 ⊢ (𝑡1, 𝑡2) : 𝐴□ 𝐵

Γ ⊢ 𝑡1 : I Γ𝑙 , Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ let ∗ = 𝑡1 in 𝑡2 : 𝐴

Γ ⊢ 𝑡1 : 𝐴1 □ 𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2 : 𝐵

Note that the type system is substructural, since the language is to be interpreted

in monoidal categories rather than cartesian categories.

Lastly, 𝒜 is a set of pairs ⟨Γ ⊢ 𝑡𝑙 : 𝐴, Γ ⊢ 𝑡𝑟 : 𝐴⟩ of terms of the same type and

under the same context. Every element of 𝒜 is called an axiom of ℒ. We will

write (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐴) ∈ 𝐴 when a pair ⟨Γ ⊢ 𝑡𝑙 : 𝐴, Γ ⊢ 𝑡𝑟 : 𝐴⟩ is in 𝒜.

44



2.3.1*2 Example. The monoidal algebraic theory of monoids has one base type

𝑀, two primitive operations 𝜇 : 𝑀 □𝑀 → 𝑀 and 𝜂 : 𝐼 → 𝑀 and the following

axioms, which correspond to the laws of monoids (2.1*2):

𝑥 : 𝑀 ⊢ 𝜇(𝜂(∗), 𝑥) = 𝑥 : 𝑀 𝑥 : 𝑀 ⊢ 𝜇(𝑥, 𝜂(∗)) = 𝑥 : 𝑀

𝑥 : 𝑀, 𝑦 : 𝑀, 𝑧 : 𝑀 ⊢ 𝜇(𝜇(𝑥, 𝑦), 𝑧) = 𝜇(𝑥, 𝜇(𝑦, 𝑧)) : 𝑀 (2.18)

Although these axioms above look the same as the usual laws of monoids in Set,

we will see below they can actually be interpreted in all monoidal categories, and

a model of this theory will be exactly a monoid in a monoidal category.

2.3.1*3 Lemma. The following substitution rule (or the ‘cut rule’) is admissible:

Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡 : 𝐵 Δ ⊢ 𝑢 : 𝐴

Γ𝑙 ,Δ, Γ𝑟 ⊢ 𝑡[𝑢/𝑥] : 𝐵
Cut

where 𝑡[𝑢/𝑥] is substituting 𝑢 for 𝑥 in 𝑡.

Proof sketch. The typing rules of terms above all have substitution ‘built-in’ by

having contexts Γ, Γ𝑙 and Γ𝑟 as general as possible. Thus the substitution rule

can be shown by a straightforward induction on 𝑡. □

2.3.1*4 Notation. In this thesis, when we simultaneously substitute terms

𝑢1, . . . , 𝑢𝑛 for all the variables in the context of a term 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑡 : 𝐵,

we usually just write 𝑡[𝑢1, . . . , 𝑢𝑛] instead of 𝑡[𝑢1/𝑥1, . . . , 𝑢𝑛/𝑥𝑛].

2.3.1*5. The judgemental equality Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴 of terms of a theoryℒ is generated

by the following rules plus the usual rules for reflexivity, symmetry, transitivity,

and congruence under all term formers and substitution:

(Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐴) ∈ 𝒜
Γ ⊢ 𝑡𝑙 ≡ 𝑡𝑟 : 𝐴

Ax

Γ ⊢ 𝑡 : 𝐴

Γ ⊢ (let ∗ = ∗ in 𝑡 : 𝐴) ≡ 𝑡 : 𝐴
𝐼-𝛽

Γ ⊢ 𝑡1 : I Γ𝑙 , 𝑥 : 𝐼 , Γ𝑟 ⊢ 𝑡2 : 𝐴

Γ𝑙 , Γ, Γ𝑟 ⊢ (let ∗ = 𝑡1 in 𝑡2[∗/𝑥]) ≡ 𝑡2[𝑡1/𝑥] : 𝐴
𝐼-𝜂

Γ1 ⊢ 𝑡1 : 𝐴1 Γ2 ⊢ 𝑡2 : 𝐴2 Γ𝑙 , 𝑥1 : 𝐴1, 𝑥2 : 𝐴2, Γ𝑟 ⊢ 𝑡3 : 𝐵

Γ𝑙 , Γ1, Γ2, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = (𝑡1, 𝑡2) in 𝑡3) ≡ 𝑡3[𝑡1/𝑥1, 𝑡2/𝑥2] : 𝐵
□-𝛽

Γ ⊢ 𝑡1 : 𝐴1 □ 𝐴2 Γ𝑙 , 𝑥 : 𝐴1 □ 𝐴2, Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ (let (𝑥1, 𝑥2) = 𝑡1 in 𝑡2[(𝑥1, 𝑥2)/𝑥]) ≡ 𝑡2[𝑡1/𝑥] : 𝐵
□-𝜂

45



The congruence rule under substitution is

Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡1 ≡ 𝑡2 : 𝐵 Δ ⊢ 𝑢 : 𝐴

Γ𝑙 ,Δ, Γ𝑟 ⊢ 𝑡1[𝑢/𝑥] ≡ 𝑡2[𝑢/𝑥] : 𝐵

2.3.1*6. A model of a monoidal algebraic theory ℒ = ⟨ℬ,𝒫,𝒜⟩ in a monoidal

category ℰ consists of (1) an assignment of ℰ-objects J𝛼K ∈ Ob(ℰ) to each base

type 𝛼 ∈ ℬ, which induces the interpretation of all types and contexts:

JIK = 𝐼ℰ J𝐴□ 𝐵K = J𝐴K □ℰ J𝐵K

J·K = 𝐼ℰ JΓ, 𝑥 : 𝐴K = JΓK □ℰ J𝐴K

and (2) an assignment of ℰ-morphisms J 𝑓 K : J𝐴K → J𝐵K to each primitive

operation 𝑓 : 𝐴→ 𝐵 ∈ 𝒫, which determines the interpretation of all terms:

J𝑥K = id J 𝑓 𝑡K = J 𝑓 K · J𝑡K J∗K = id J(𝑡1, 𝑡2)K = J𝑡1K □ℰ J𝑡2K

Jlet ∗ = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ1K □ℰ J𝑡1K □ℰ JΓ2K)
Jlet (𝑥1, 𝑥2) = 𝑡1 in 𝑡2K = J𝑡2K · _ · (JΓ𝑙K □ℰ J𝑡1K □ℰ JΓ𝑟K)

where the underscores stand for the unique isomorphisms built from associators

𝛼 and unitors 𝜆, 𝜌 to make the domain and codomain match. Moreover, the

assignments J−K of a model must make J𝑡𝑙K = J𝑡𝑟K for all axioms ⟨𝑡𝑙 , 𝑡𝑟⟩ ∈ 𝒜.

2.3.1*7. Let 𝑀 and 𝑁 be two models of a theory ℒ = ⟨ℬ,𝒫,𝒜⟩ in a monoidal

categoryℰ. A family ofℰ-morphisms ℎ𝛼 : J𝛼K𝑀 → J𝛼K𝑁 for all base types 𝛼 ∈ ℬ
extends to a family of morphisms ℎ̃𝐴 : J𝐴K𝑀 → J𝐴K𝑁 for all ℒ-types 𝐴:

ℎ̃𝐼 = id𝐼 ℎ̃𝐴□𝐵 = ℎ̃𝐴 □ℰ ℎ̃𝐵 ℎ̃𝛼 = ℎ𝛼 .

Such a family of morphisms ℎ is called a homomorphism from 𝑀 to 𝑁 if for every

primitive operation 𝑓 : 𝐴→ 𝐵 ∈ 𝒫, the following commutes:

J𝐴K𝑀 J𝐵K𝑀

J𝐴K𝑁 J𝐵K𝑁

J 𝑓 K𝑀

ℎ̃𝐴 ℎ̃𝐵

J 𝑓 K𝑁

Models of ℒ inℰ and their homomorphisms assemble to a category ℒ-Mod(ℰ).

2.3.1*8 Theorem (Soundness). Let J−K be a model of a monoidal algebraic theory ℒ.
If two ℒ-terms are judgementally equal, Γ ⊢ 𝑡1 ≡ 𝑡2 : 𝐴, then J𝑡1K = J𝑡2K.

Proof sketch. It is straightforward verification that the rules of judgemental equal-

ities in 2.3.1*5 is validated by the axioms of a monoidal category after we show

46



the substitution lemma: for all Γ𝑙 , 𝑥 : 𝐴, Γ𝑟 ⊢ 𝑡 : 𝐵 and Δ ⊢ 𝑢 : 𝐴, we have

J𝑡[𝑢/𝑥]K = J𝑡K · (Γ𝑙 □ J𝑢K □ Γ𝑟) : JΓ𝑙 ,Δ, Γ𝑟K→ J𝐵K

which itself can be proven by induction on 𝑡. □

2.3.1*9. Given a monoidal categoryℰ, its internal language ℒ(ℰ) is the monoidal

algebraic theory whose set of baisc types Objℰ and set of primitive operations

between 𝐴, 𝐵 ∈ Objℰ isℰ(𝐴, 𝐵). These basic types and primitive operations have

a canonical interpretation J−K inℰ by interpreting everything as itself. The set of

axioms of ℒ(ℰ) is the maximal one containing all pairs of terms ⟨𝑡1, 𝑡2⟩ such that

J𝑡1K = J𝑡2K inℰ. The canonical interpretation is a model of ℒ(ℰ) by construction.

The internal language ℒ(ℰ) of a monoidal categoryℰ is sound and complete for

reasoning aboutℰ: two terms in ℒ(ℰ) satisfy 𝑡1 ≡ 𝑡2 if and only if they are equal

under the canonical interpretation inℰ. Soundness follows from Theorem 2.3.1*8

and completeness is by the construction of ℒ(ℰ).

2.3.1*10. What we have above is enough for our purpose of using a convenient

syntax to describe and reason about constructions in monoidal categories, but

there are certainly more things can be said about monoidal algebraic theories.

Following the standard agenda of categorical logic, we expect the following to be

true but leave fleshing them out as future work:

* Types and terms of ℒ underlie a classifying monoidal category ℳ(ℒ) there is

a model of ℒ in ℳ(ℒ), and there is an equivalence of categories

ℒ-Mod(ℰ) � MonCat𝑠(ℳ(ℒ),ℰ),

where the right-hand side is the category of strict monoidal functors

ℳ(ℒ) →ℰ and monoidal natural transformations.

* There is a 2-category Mat of monoidal algebraic theories and a 2-equivalence

Mat MonCat𝑠
ℳ

ℒ

�

between Mat and the 2-category of monoidal categories, strong monoidal

functor and monoidal natural transformations.

2.3.1*11 Remark. We have defined the syntax and semantics of monoidal alge-

braic theories manually. A more modern approach would be directly define

monoidal algebraic theories using the framework of generalised algebraic theory
[Cartmell 1978, 1986; Sterling 2021] (or the closely related framework of quotient
inductive-inductive types [Altenkirch and Kaposi 2016; Altenkirch et al. 2018;

Kovács 2023]). Using these frameworks would then directly give us a notion of

models of monoidal algebraic theories and syntactic models.

47



2.3.2 More Type Formers for Monoidal Algebraic Theories

2.3.2*1. Sometimes we work in monoidal categories with additional structure,

and in this case we extend monoidal algebraic theories with new syntax for

the additional structure. For example, when we work in right closed monoidal

categories, we extend the calculus with a new type former 𝐵/𝐴 and term formers:

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴
Γ1 ⊢ 𝑡1 : 𝐵/𝐴 Γ2 ⊢ 𝑡2 : 𝐴

Γ1, Γ2 ⊢ 𝑡1 𝑡2 : 𝐵

whose interpretation in a model is given by the corresponding structure of the

closed monoidal category:

J𝜆𝑥 : 𝐴. 𝑡 : 𝐵/𝐴K = abst(J𝑡K) J𝑡1 𝑡2K = ev · (J𝑡1K □ℰ J𝑡2K)

where abst : ℰ(𝐶 □ℰ 𝐴, 𝐵) →ℰ(𝐶, 𝐵/ℰ𝐴) is the natural isomorphism associated

to the adjunction (−□ℰ 𝐴) ⊣ (−/ℰ𝐴) and ev : (𝐵/ℰ𝐴)□ℰ 𝐴→ 𝐵 is its counit. The

usual 𝛽 and 𝜂 rules characterising the universal property of 𝐵/𝐴 are added to

the equational theory routinely.

2.3.2*2. Note that the type former 𝐵/𝐴 is contravariant in the position of 𝐴,

so in the presence of /-types, the way in 2.3.1*7 of extending a family of

morphisms ℎ𝛼 : J𝛼K𝑀 → J𝛼K𝑁 between interpretations of base types to a family

of morphisms ℎ̃𝐴 between interpretations of all types will not work, and we will

not have a category of models and model homomorphisms for a theory ℒ with

/-types. However, we can still have a category ℒ-Mod� (ℰ) of models and model
isomorphisms by demanding that every ℎ𝛼 must be anℰ-isomorphism.

2.3.2*3. As a comment on the notation, Jaskelioff and Moggi [2010] used 𝐵𝐴 for

the closed structure, while we use Lambek [1958]’s notation 𝐵/𝐴 to avoid the

confusion with exponentials (which are right adjoints to cartesian products).

2.3.2*4 Example. Consider the theory of monoids from Example 2.3.1*2 and

the extension of the closed structure 𝐵/𝐴 as in 2.3.2*1. Cayley’s theorem from

elementary algebra adapted to this setting says that the monoid ⟨𝑀, 𝜇, 𝜂⟩ embeds

into the monoid 𝑀/𝑀 with unit ⊢ 𝜆𝑥. 𝑥 : 𝑀/𝑀 and multiplication

𝑓 : 𝑀/𝑀, 𝑔 : 𝑀/𝑀 ⊢ 𝜆𝑥. 𝑓 (𝑔 𝑥) : 𝑀/𝑀. (2.19)

The embedding is given by 𝑒 = (𝑥 : 𝑀 ⊢ 𝜆𝑦. 𝜇(𝑥, 𝑦) : 𝑀/𝑀), which is a monoid

homomorphism in the following sense:

𝑒[𝜂 ∗] ≡ 𝜆𝑦. 𝜇(𝜂 ∗, 𝑦) ≡ 𝜆𝑦. 𝑦

𝑒[𝜇(𝑥, 𝑦)] ≡ 𝜆𝑧. 𝜇(𝜇(𝑥, 𝑦), 𝑧) ≡ 𝜆𝑧. 𝜇(𝑥, 𝜇(𝑦, 𝑧)) ≡ 𝜆𝑧. 𝑒[𝑥] (𝑒[𝑦] 𝑧)

48



where we write 𝑡[−] for substitution when there is a unique variable in the context

of 𝑡. The embedding 𝑒 has a left inverse 𝑟 = ( 𝑓 : 𝑀/𝑀 ⊢ 𝑓 (𝜂 ∗) : 𝑀) such that

𝑥 : 𝑀 ⊢ 𝑟[𝑒] ≡ (𝜆𝑦. 𝜇(𝑥, 𝑦)) (𝜂 ∗) ≡ 𝑥 : 𝑀

However, the inverse 𝑟 is in general not a monoid homomorphism: in the context

( 𝑓 : 𝑀/𝑀, 𝑔 : 𝑀/𝑀), we have

𝑟[𝜆𝑥. 𝑓 (𝑔 𝑥)] ≡ 𝑓 (𝑔 (𝜂 ∗)) . 𝜇( 𝑓 (𝜂 ∗), 𝑔 (𝜂 ∗)) ≡ 𝜇(𝑟[ 𝑓 ], 𝑟[𝑔])

This elementary result has surprisingly many applications in functional

programming because the multiplication (2.19) is usually a kind of function

composition with 𝑂(1) time complexity, regardless of the possibly expensive

multiplication 𝜇. When 𝑀 is a free monoid in ⟨Set,×, 1⟩, i.e. a list, this optimisa-

tion is known as difference lists [Hughes 1986]. Whenℰ = ⟨Endo𝜅(𝒞), ◦, Id⟩, this

optimisation is known as codensity transformation [Hinze 2012].

2.3.2*5. Cartesian products and coproducts in monoidal categories can be

internalised similarly: we add type formers 𝐴 × 𝐵 and 𝐴 + 𝐵 with term formers:

Γ ⊢ 𝑡1 : 𝐴1 Γ ⊢ 𝑡2 : 𝐴2

Γ ⊢ ⟨𝑡1, 𝑡2⟩ : 𝐴1 × 𝐴2

Γ ⊢ 𝑡1 : 𝐴1 × 𝐴2 Γ𝑙 , 𝑥 : 𝐴𝑖 , Γ𝑟 ⊢ 𝑡2 : 𝐵

Γ𝑙 , Γ, Γ𝑟 ⊢ 𝑡2[𝜋𝑖 𝑡1/𝑥] : 𝐵
𝑖 ∈ {1, 2}

Γ ⊢ 𝑡 : 𝐴𝑖

Γ ⊢ 𝜄𝑖 𝑡 : 𝐴1 + 𝐴2

𝑖 ∈ {1, 2}

Γ ⊢ 𝑡 : 𝐴1 + 𝐴2 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝐶, 𝑖 ∈ {1, 2}
Γ ⊢ case 𝑡 of {𝜄1 𝑥𝑖 ↦→ 𝑡1; 𝜄2 𝑥2 ↦→ 𝑡2} : 𝐶

as well as their 𝛽 and 𝜂 rules. Sometimes we also write [𝑡1, 𝑡2] 𝑡 instead of

case 𝑡 of {𝜄1 𝑥𝑖 ↦→ 𝑡1; 𝜄2 𝑥2 ↦→ 𝑡2} for brevity.

These rules straightforwardly generalise to the non-binary cases. Note that

the first rule introduces non-linearity to the syntax as the variables in Γ may

appear in both subterms 𝑡1 and 𝑡2.

2.3.2*6 Remark. In the presence of cartesian products, we can borrow the idea

of bunched logic [O’Hearn and Pym 1999] to introduce a new context former Γ;Γ′

with semantics JΓ;Γ′K = JΓK × JΓ′K. This would simplify talking about linear

functions −/𝐴 (right adjoint to −□ 𝐴) and non-linear functions −𝐴 (right adjoint

to − × 𝐴) at the same time, but we will not need this extension in this thesis.

49



2.3.3 Syntactic Presentations of Equational Systems

2.3.3*1. In this subsection, we carve out a class of monoidal algebraic theories

that can be defined as equational systems, therefore allowing us to apply the

theorems of equational systems to those monoidal algebraic theories, or from the

opposite perspective, allowing us to define equational systems syntactically use

those monoidal algebraic theories.

2.3.3*2 Definition. Let ℒ = ⟨ℬ,𝒫,𝒜⟩ be a monoidal algebraic theory. When

all primitive operations 𝑓 : 𝐴→ 𝐵 and equations Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐵 of a monoidal

algebraic theory ℒ satisfy that 𝐵 ∈ ℬ, we say that ℒ has basic outputs.

2.3.3*3. For example, the theory of monoids in Example 2.3.1*2 has basic outputs,

but the internal language ℒ(ℰ) of a monoidal category ℰ does not have basic

outputs because not all axioms of ℒ(ℰ) have a basic type 𝐵.

2.3.3*4 Theorem. For every monoidal algebraic theory ℒ = ⟨ℬ,𝒫,𝒜⟩ with basic
outputs and every monoidal category ℰ with small-coproducts, there is an equational
system Σℒ over the product categoryℰℬ such that ℒ-Mod(ℰ) � Σℒ-Alg.

Proof. Recall that types 𝐴 of ℒ are generated by 𝐼, □, and 𝛼 ∈ ℬ. Therefore the

interpretation of every type 𝐴 inℰ determines a functor J𝐴K : ℰ
ℬ→ℰ:

J𝐼K𝑋 = 𝐼ℰ J𝐴1 □ 𝐴2K𝑋 = J𝐴1K𝑋 □ J𝐴2K𝑋 J𝛼K𝑋 = 𝑋𝛼

Similarly, every context Γ of ℒ determines a functor JΓK : ℰ
ℬ→ℰ.

We define an endofunctor J𝒫K : ℰ
ℬ→ℰ

ℬ
by

J𝒫K𝑋 = ⟨∐𝐴
∐

𝑓 :𝐴→𝛼∈𝒫J𝐴K𝑋⟩𝛼∈ℬ.

It can be seen that an algebra of the endofunctor J𝒫K is precisely an interpretation

of base types ℬ and primitive operations 𝒫 inℰ.

Let ↑𝛼 : ℰ → ℰ
ℬ

be the functor mapping every 𝑋 ∈ ℰ and 𝛽 ∈ ℬ to 𝑋 if

𝛼 = 𝛽, or to 0ℰ if 𝛼 ≠ 𝛽. We write JΓ ⊢ 𝛼K : ℰ
ℬ→ℰ

ℬ
for ↑𝛼 ◦ JΓK. An algebra of

the endofunctor JΓ ⊢ 𝛼K is then an object 𝑋 ∈ ℰℬ
with a morphism inℰ

ℬ

⟨↑𝛼 (JΓK𝑋) 𝛽⟩𝛽∈ℬ −→ ⟨𝑋𝛽⟩𝛽∈ℬ,

which amounts to just anℰ-morphism JΓK𝑋 → 𝑋𝛼, i.e. JΓK𝑋 → J𝛼K𝑋, since all

other components are the unique 0ℰ → 𝑋𝛽. Therefore the interpretation of every

term Γ ⊢ 𝑡 : 𝛼 of ℒ with 𝛼 ∈ ℬ then determines a mapping from a J𝒫K-algebra to

a JΓ ⊢ 𝛼K-algebra. By structural induction on the term 𝑡 in the style of Reynolds

[1983]’s abstraction theorem, it can be shown that this mapping extends to a functor

J𝑡K : J𝒫K-Alg→ JΓ ⊢ 𝛼K-Alg satisfying UJΓ⊢𝛼K ◦ J𝑡K = UJ𝒫K.

50



Let Σℒ be the equational system over ℰ
ℬ

with signature J𝒫K and a set of

functorial equations JΓK ⊢ J𝑡𝑙K = J𝑡𝑟K for every axiom (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝛼) ∈ 𝒜 (c.f.

Notation 2.2.1*7). By construction, the category ℒ-Mod(ℰ) of ℒ-models in ℰ

and the category Σℒ-Alg of Σℒ-algebras (inℰ
ℬ

) are isomorphic. □

2.3.3*5 Corollary. Letℰ be a cocomplete monoidal category with □ preserving

colimits of 𝛼-chains for a limit ordinal 𝛼. By the theorem above and Theo-

rem 2.2.1*12, the category of models ℒ-Mod(ℰ) of a monoidal algebraic theory

ℒ with basic outputs is cocomplete and monadic over the categoryℰ
ℬ

.

2.3.3*6 Example. The monoidal algebra theory of monoids in Example 2.3.1*2

has basic outputs, and the corresponding equational system obtained using the

theorem above is precisely the equational system in Example 2.2.1*6.

2.3.3*7 Remark. The restriction of basic outputs is reminiscent of the relationship

between operads and PROPs [Markl 2006], which are two frameworks for doing

algebraic theories in symmetric monoidal categories. It is also the case that the

former allows multiple inputs but one output, whereas the latter allows multiple

inputs and multiple outputs. However, an advantage of the restricted frameworks

is that the category of algebras of operads/monoidal algebraic theories with

basic outputs is monadic (under the conditions of Corollary 2.3.3*5).

2.3.3*8. When considering monoidal algebraic theories with extra type formers

that are not covariant, such as the linear function type 𝐵/𝐴 in 2.3.2*1, The-

orem 2.3.3*4 must additionally require a theory ℒ = ⟨ℬ,𝒫,𝒜⟩ with basic

outputs to have positive inputs: every primitive operation 𝑓 : 𝐴→ 𝛼 and equation

Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝛼 of ℒ must satisfy that every base type 𝛽 ∈ ℬ occurs positively in 𝐴

and Γ, so that 𝐴 and Γ can be interpreted as covariant functorsℰ
ℬ→ℰ.

The rule for types in which 𝛽 ∈ ℬ occurs positively 𝑃 and negatively 𝑁 is

defined inductively by the following grammar as usual:

𝑃 := 𝛽 | 𝛼 | 𝑃 □ 𝑃 | 𝑃/𝑁
𝑁 := 𝛼 | 𝑁 □ 𝑁 | 𝑁/𝑃

where 𝛼 ranges over ℬ \ {𝛽}. A base type 𝛽 occurs positively in a context Γ if it

occurs positively in every item of the context Γ. Other covariant type formers

such as × and + in 2.3.2*5 should be treated similarly to □.

2.3.3*9. As explained above, type expressions 𝑃 in which base types occur

positively denote functors J𝑃K. It will be convenient if we also have access in

the internal language to the corresponding mappings on morphisms of those

functors J𝑃K. Let 𝜏 ∈ ℬ and 𝑥 : 𝐴 ⊢ 𝑓 : 𝐵. For all types 𝑃 and 𝑁 in which 𝜏 ∈ ℬ

51



occurs positively and negatively respectively, we define terms

𝑥 : 𝑃[𝐴/𝜏] ⊢ 𝑃𝜏 𝑓 : 𝑃[𝐵/𝜏] 𝑥 : 𝑁[𝐵/𝜏] ⊢ 𝑁𝜏 𝑓 : 𝑁[𝐴/𝜏]

by induction on the structure of 𝑃 and 𝑁 :

𝜏𝜏 𝑓 := 𝑓 𝛼𝜏 𝑓 := 𝑥 (𝑃/𝑁)𝜏 𝑓 := 𝜆𝑦. 𝑃𝜏 𝑓 [𝑥 (𝑁𝜏 𝑓 [𝑦])]
(𝑃 □ 𝑃′)𝜏 𝑓 := let (𝑥𝑙 , 𝑥𝑟) = 𝑥 in (𝑃𝜏 𝑓 [𝑥𝑙], 𝑃′𝜏 𝑓 [𝑥𝑟])

and symmetrically for 𝑁 . When the type expression 𝑃 contains (at most) one

base type 𝜏, we will just write 𝑃 𝑓 for 𝑃𝜏 𝑓 .

As a slight abuse of notation, we will write 𝑃𝜏 𝑓 𝑡 for 𝑃𝜏 𝑓 [𝑡/𝑥], so we have the

following admissible rule:

𝑥 : 𝐴 ⊢ 𝑓 : 𝐵 Γ ⊢ 𝑡 : 𝑃[𝐴/𝜏]
Γ ⊢ 𝑃𝜏 𝑓 𝑡 : 𝑃[𝐵/𝜏]

As an example, if ℬ = {𝜏}, then 𝜏 occurs positively in the type expression

𝑇 = 𝜏 □ 𝜏, which denotes the functor □ : ℰ × ℰ → ℰ. Moreover we have

Γ ⊢ 𝑇 𝑓 𝑡 : 𝐵 □ 𝐵 for all terms 𝐴 ⊢ 𝑓 : 𝐵 and Γ ⊢ 𝑡 : 𝐴□ 𝐴.

2.3.3*10. A notable difference between a monoidal algebraic theory ℒ and an

equational system ¤Σ over a monoidal category ℰ is that the definition of the

former (2.3.1*1) makes no reference to any specific monoidal category, while

the definition of the latter (2.2.1*4) is parameterised by the underlying category

ℰ. Therefore the operations of ℒ must make sense for all monoidal categories.

Such a generality can also be a limitation: sometimes we may be interested in

operations that only make sense for a specific monoidal categoryℰ. In this case,

we need a slight generalisation of Theorem 2.3.3*4 to use monoidal algebraic

theories to denote equational systems overℰ syntactically.

2.3.3*11. Let ℒ = ⟨ℬ,𝒫,𝒜⟩ be a monoidal algebraic theory and 𝑀 be a model

of it in some monoidal categoryℰ. We say that another theory ℒ
′ = ⟨ℬ′,𝒫′,𝒜′⟩

is an extension of ℒ if ℬ ⊆ ℬ
′
, 𝒫 ⊆ 𝒫

′
, and 𝒜 ⊆ 𝒜

′
, where we implicitly treat

types/terms generated by ℬ and 𝒫 as types/terms generated generated by the

superset ℬ
′
and 𝒫

′
. Moreover, a model 𝑀′ of ℒ

′
inℰ is said to be over the model

𝑀 if J𝐴K𝑀′ = J𝐴K𝑀 and J𝑡K𝑀′ = J𝑡K𝑀 for all types 𝐴 and terms 𝑡 of ℒ.

For example, letℰ be a monoidal category and 𝐴 ∈ ℰ be an object ofℰ. Let

ℒ
′
be the extension of the internal language ℒ(ℰ) with a new base type 𝜏 and a

new operation 𝑓 : 𝐴→ 𝜏. A model of ℒ
′
over the canonical model of ℒ(ℰ) inℰ

is precisely an object 𝑋 ∈ ℰ with a morphism 𝑓 : 𝐴→ 𝑋.

2.3.3*12. We say that an extension ℒ
′

of ℒ has basic outputs if every new

operation ( 𝑓 : 𝐴→ 𝐵) ∈ (𝒫′ \𝒫) and every equation (Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝐵) ∈ (𝒜′ \𝒜)

52



satisfies that 𝐵 ∈ ℬ
′ \ℬ. Similarly, we say that the extension ℒ

′
has positive

inputs if every 𝛼 ∈ ℬ′ \ℬ occurs positively in 𝐴 and Γ.

2.3.3*13 Theorem. Let ℒ be a monoidal algebraic theory (with possibly extra type
formers such as /, +, ×-types in Section 2.3.2), and let 𝑀 be a model of ℒ in a monoidal
categoryℰ with small-coproducts. Every extension ℒ

′ of ℒ that has basic outputs (and
positive inputs) determines an equational system Σℒ′,𝑀 overℰℬ\ℬ′ such that algebras
of Σℒ′,𝑀 are in bĳection with models of ℒ′ inℰ over 𝑀.

Proof. The proof goes almost the same as Theorem 2.3.3*4, except that the base

types and primitive operations of ℒ are fixed by the model 𝑀. □

2.3.3*14. Our main use case of Theorem 2.3.3*13 is when ℒ is the internal

language ℒ(ℰ) of a monoidal category with coproductsℰ (2.3.1*9), and 𝑀 is the

canonical model, and there is exactly one new base type: ℬ
′ \ℬ = {𝜏} of ℒ(ℰ)

inℰ. This allows us to present an equational system overℰ syntactically by a set

of operations 𝑓 : 𝐴→ 𝜏 and axioms Γ ⊢ 𝑡𝑙 = 𝑡𝑟 : 𝜏 where 𝐴, Γ, 𝑡𝑙 and 𝑡𝑟 can refer

to the existing objects and morphisms inℰ.

2.4 Equational Systems for Monoids with Operations

2.4*1. After the detour to monoidal algebraic theories, now we come back

to monoids with operations, by which we mean the equational system Mon

extended with a new operation op : Σ𝑀 → 𝑀 for some endofunctor Σ : ℰ→ℰ

and possibly some equations. In this section, we will discuss a general notion

known as Σ-monoids in the literature [Fiore et al. 1999], which demands that the

operation op is compatible with the monoid multiplication in a sense. After this,

we will see some concrete examples.

2.4*2. Letℰ be a monoidal category and Σ : ℰ→ℰ be an endofunctor. A pointed
strength 𝜃 for Σ is a natural transformation

𝜃𝑋,⟨𝑌, 𝑓 ⟩ : (Σ𝑋)□ 𝑌 → Σ(𝑋 □ 𝑌)

for all 𝑋 in ℰ and ⟨𝑌 ∈ ℰ, 𝑓 : 𝐼 → 𝑌⟩ in the coslice category 𝐼/ℰ, satisfying

coherence conditions analogous to those of strengths (2.4, 2.5):

(Σ𝑋)□ 𝐼 Σ(𝑋 □ 𝐼)

Σ𝑋

𝜃𝑋,⟨𝐼 ,id⟩

𝜌𝑋
Σ𝜌𝑋

(Σ𝑋 □ 𝑌)□ 𝑍 Σ(𝑋 □ 𝑌)□ 𝑍

Σ((𝑋 □ 𝑌)□ 𝑍)

Σ𝑋 □ (𝑌 □ 𝑍) Σ(𝑋 □ (𝑌 □ 𝑍))
𝜃𝑋,⟨𝑌□𝑍,ℎ⟩

𝜃𝑋,⟨𝑌, 𝑓 ⟩□𝑍

𝛼Σ𝑋,𝑌,𝑍

𝜃𝑋□𝑌,⟨𝑍,𝑔⟩

Σ𝛼𝑋,𝑌,𝑍

53



for all 𝑋,𝑌, 𝑍 ∈ ℰ, 𝑓 : 𝐼 → 𝑌, 𝑔 : 𝐼 → 𝑍, and ℎ := ( 𝑓 □ 𝑔) · 𝜌−1

𝐼
: 𝐼 → 𝑌 □ 𝑍.

2.4*3. To denote Σ and 𝜃 syntactically, we extend the internal language ℒ(ℰ)
(2.3.1*9) with a new type constructor Σ and the following typing rules

𝑥 : 𝐴 ⊢ 𝑓 : 𝐵 Γ ⊢ 𝑡 : Σ𝐴

Γ ⊢ Σ 𝑓 𝑡 : Σ𝐵

· ⊢ 𝑓 : 𝑌 Γ ⊢ 𝑡 : (Σ𝑋)□ 𝑌

Γ ⊢ 𝜃𝑋,⟨𝑌, 𝑓 ⟩ 𝑡 : Σ(𝑋 □ 𝑌)

which of course are interpreted inℰ by the functor Σ and the strength 𝜃.

2.4*4. The equational system Σ-Mon of Σ-monoids [Fiore and Hur 2009; Fiore

et al. 1999] extends the theory Mon of monoids (2.2.1*6 and 2.3.1*2) with a new

operation op : Σ𝜏→ 𝜏 and a new equation 𝐿Σ-Mon = 𝑅Σ-Mon:

Σ-Mon = Mon ↰ Σ ↰
(
Σ−□ − ⊢ 𝐿Σ-Mon = 𝑅Σ-Mon

)
(2.20)

where the new equation 𝐿Σ-Mon = 𝑅Σ-Mon is given in terms of an extension of the

internal language ofℰ by the following pair of terms:

𝑥 : Σ𝜏, 𝑦 : 𝜏 ⊢ 𝜇 (op 𝑥, 𝑦) = op (Σ𝜇 (𝜃𝜏,⟨𝜏,𝜂⟩ (𝑥, 𝑦))) : 𝜏 (2.21)

which encodes the following commutative diagram:

(Σ𝜏)□ 𝜏 Σ(𝜏□ 𝜏) Σ𝜏

𝜏□ 𝜏 𝜏

𝜃𝜏,⟨𝜏,𝜂⟩ Σ𝜇

opop□𝜏

𝜇

Note that (2.21) refers to 𝜃, so technically the equational system should be denoted

by ⟨Σ, 𝜃⟩-Mon, but writing Σ-Mon is unlikely to cause confusion.

2.4*5. The equation (2.21) expresses that the operation op commutes with monoid

multiplication. When using the monoidal category ⟨Endo 𝑓 (Set), •, 𝑉⟩ for mod-

elling higher-order abstract syntax, which was the original context where Fiore

et al. [1999] introduced Σ-monoids, this equation expresses the sensible condition

that syntactic operations must commute with substitution.

However, this equation might not be desirable in other contexts. For example,

in the study of modal type theories, there are plenty of operations that do not

commute with substitution [Gratzer 2023]. Also, when using ⟨Endo𝜅(𝒞), ◦, Id⟩
to model computational effects, this equation expresses that effectful operations

must commute with sequential composition, which is not true in general. Those

effectful operations that do satisfy this condition and have signature Σ = 𝐴□ −
for some 𝐴 ∈ ℰ are called algebraic operations [Jaskelioff and Moggi 2010; Plotkin

and Power 2001a]. We will say more about the equation (2.21) shortly in 2.4*11

and see that imposing it on Σ-monoids actually does not lose generality.

54



2.4*6. When the monoidal category ℰ is cocomplete and functors Σ, □ both

preserve colimits of 𝛼-chains for some limit ordinal 𝛼, Theorem 2.2.1*12 en-

sures the existence of free Σ-monoids. When ℰ is additionally closed, such as

⟨Endo𝜅(𝒞), ◦, Id⟩ in Section 2.1, there is a simple description of the freeΣ-monoid

[Fiore and Hur 2007; Fiore and Saville 2017]: it is carried by the initial algebra

𝜇𝑋. 𝐼 + 𝐴□ 𝑋 + Σ𝑋. This formula has many applications in modelling abstract

syntax: variable binding [Fiore and Szamozvancev 2022], explicit substitution

[Ghani et al. 2006], and scoped operations [Piróg et al. 2018].

2.4*7. Now let us look at some concrete examples. In all the following examples,

the monoidal category ⟨ℰ,□, 𝐼⟩ is assumed to have small-coproducts

∐
𝑖∈𝑆 𝐴𝑖

and finite products

∏
𝑖∈𝐹 𝐴𝑖 . Additionally, we assume the monoidal product

distributes over coproducts from the right:

(∐𝑖∈𝑆 𝐴𝑖)□ 𝐵 �
∐

𝑖∈𝑆(𝐴𝑖 □ 𝐵).

2.4*8 Example (Exception Throwing). Letting 𝐸 be a set, the theory Et𝐸 of

exception throwing is the theory ΣEt𝐸-Mon where ΣEt𝐸 = (∐𝐸 1) □ − : ℰ → ℰ

equipped the associator 𝛼 : ((∐𝐸 1)□ 𝑋)□ 𝑌 →∐
𝐸 1 □ (𝑋 □ 𝑌) as the strength,

where

∐
𝐸 1 is the 𝐸-fold coproduct of the terminal object in ℰ (which may be

different from the monoidal unit 𝐼).

For the case ℰ = ⟨Endo𝜅(𝒞), ◦, Id⟩, the equational system Et𝐸 describes

(𝜅-accessible) monads 𝑀 : 𝒞→ 𝒞 equipped with a natural transformation

throw : (∐𝐸 1) ◦𝑀 =
∐

𝐸(1 ◦𝑀) =
∐

𝐸 1 −→ 𝑀 (2.22)

whose component 1 → 𝑀 for each 𝑒 ∈ 𝐸 represents a computation throwing

an exception 𝑒. Working in the generality of monoids allows us to generalise

exceptions to more settings: takingℰ = ⟨Endo𝜅(Set), ∗, Id⟩, the theory describes

applicative functors 𝐹 with exception throwing:

(∐𝐸 1) ∗ 𝐹 � ∐
𝐸(1 ∗ 𝐹) =

∐
𝐸(
∫ 𝑎,𝑏

1𝑎 × 𝐹𝑏 ×−𝑎×𝑏) � ∐
𝐸(
∫ 𝑏

𝐹𝑏) → 𝐹 (2.23)

Note that exception throwing for monads (2.22) and for applicatives (2.23)

differ by the domain: 1 vs

∫ 𝑏
𝐹𝑏. This reflects the nature of applicative functors

that computations are independent, so the computation after exception throwing

is not necessarily discarded.

2.4*9. Although exception throwing is an algebraic operation, exception catching
is not: if we were to model it as an operation catch : 𝑀 ×𝑀 → 𝑀 on a monad

𝑀 such that catch ⟨𝑝, ℎ⟩ means catching exceptions possibly thrown by 𝑝 and

handling exceptions using ℎ, then the equation (2.21) for Σ𝑀 = 𝑀 ×𝑀 with the

55



isomorphism (𝑀 ×𝑀) ◦ 𝑌 � (𝑀 ◦ 𝑌) × (𝑀 ◦ 𝑌) as the strength implies that

ph : 𝑀 ×𝑀, 𝑘 : 𝑀 ⊢ 𝜇(catch ph, 𝑘) = catch ⟨𝜇(𝜋1 ph, 𝑘), 𝜇(𝜋2 ph, 𝑘)⟩ : 𝑀 (2.24)

But this is undesirable because the scopes of catching on the two sides of the

equation are different: the left-hand side does not catch exceptions in 𝑘 while the

right-hand side catches exceptions in 𝑘.

2.4*10. Plotkin and Pretnar [2009, 2013]’s take on this problem is that catching is

inherently different from throwing: throwing is the only operation of the theory

of exceptions, but catching is a model of the theory. This view leads to the fruitful

line of research on handlers of algebraic effects.
However, Wu et al. [2014] observes that the treatment of non-algebraic opera-

tions as handlers causes certain non-composability problems in programming: if

a non-algebraic operation 𝑠 is implemented as applying a handler to programs,

then the result loses the information of the scope of 𝑠. Wu et al. [2014] demon-

strated this problem using a concrete example of non-deterministic parsing with

effect handlers, and Yang et al. [2022] clarified this problem using exception

catching. Here, we explain this problem again using an even older and more

standard example – the distinction between interleaving concurrency and true
concurrency in concurrency theory [Castellano et al. 1987].

Interleaving concurrency corresponds to treating parallel composition as

handlers: the parallel composition 𝑃 | | 𝑖 𝑄 of two processes 𝑃 and 𝑄 is han-

dled/reduced to the nondeterministic choice of all the ways of interleaving the

actions of 𝑃 and𝑄. For example, if 𝑃 := 𝑎.0 is the process that performs an action

𝑎 and stops, and 𝑄 := 𝑏.0 is the process that performs an action 𝑏 and stops, then

𝑃 | | 𝑖 𝑄 = (𝑎.𝑏.0) + (𝑏.𝑎.0).

A problem arises if we want to lower the level of abstraction by refining the action

𝑎 into two actions 𝑎1 and 𝑎2. Refining 𝑃 | | 𝑖 𝑄 above gives us then

𝑟(𝑃 | | 𝑖 𝑄) = 𝑟((𝑎.𝑏.0) + (𝑏.𝑎.0)) = (𝑎1.𝑎2.𝑏.0) + (𝑏.𝑎1.𝑎2.0),

but the parallel composition of the refinement of 𝑃 and 𝑄 respectively gives us

𝑟(𝑃) | | 𝑖 𝑟(𝑄) = (𝑎1.𝑎2.0) | | 𝑖 (𝑏.0) = (𝑎1.𝑎2.𝑏.0) + (𝑎1.𝑏.𝑎2.0) + (𝑏.𝑎1.𝑎2.0),

which should be the correct one. The problem here is precisely that if we treat

parallel composition as a handler, then the scope of parallel composition is lost

after handling. On the other hand, true concurrency treats parallel composition as

an operation on its own: parallel composition of 𝑃 and 𝑄 is just 𝑃 | | 𝑄, and

𝑟(𝑃 | | 𝑄) = (𝑎1.𝑎2.0) | | 𝑏.0 = 𝑟(𝑃) | | 𝑟(𝑄).

This view is advocated by Wu et al. [2014] and Piróg et al. [2018]: opera-

56



tions such as 𝑃 | | 𝑄 and exception catching catch ⟨𝑝, 𝑞⟩ are also operations of

some algebraic theories, and they are called scoped operation. This view allows

one to construct free algebras of scoped operations and then define different

models/handlers of scoped operations [Yang et al. 2022].

2.4*11 (Exception catching). Piróg et al. [2018]’s modelling of catching as a

scoped operation can be described as ΣEc-monoids in the monoidal category

⟨Endo(𝒞), ◦, Id⟩, where the signature functor ΣEc : ℰ→ℰ is

ΣEc = (1 ◦ −) + (Id × Id) ◦ − ◦ −

equipped with the following pointed strength for all 𝑋 ∈ ℰ and ⟨𝑌, 𝑓 ⟩ : 𝐼/ℰ:

(ΣEc𝑋) ◦ 𝑌 =
(
(1 ◦ 𝑋) + (Id × Id) ◦ 𝑋 ◦ 𝑋

)
◦ 𝑌

� (1 ◦ 𝑋 ◦ 𝑌) + (Id × Id) ◦ 𝑋 ◦ 𝑋 ◦ 𝑌
−→ (1 ◦ 𝑋 ◦ 𝑌) + (Id × Id) ◦ 𝑋 ◦ 𝑌 ◦ 𝑋 ◦ 𝑌 � ΣEc(𝑋 ◦ 𝑌)

where the boxed 𝑌 is inserted using 𝑓 : 𝐼 → 𝑌.

The intuition for the signature ΣEc is that the first operation 1 ◦𝑀 → 𝑀 is

throwing an exception as in Example 2.4*8, and the second operation

catch : (Id × Id) ◦𝑀 ◦𝑀 � (𝑀 ×𝑀) ◦𝑀 −→ 𝑀 (2.25)

is catching. The trick here to avoid the undesirable equation (2.24) is that catch
has after 𝑀 ×𝑀 an additional − ◦𝑀 that represents an explicit continuation after

the scoped operation catch [Piróg et al. 2018]: catch (⟨𝑝, ℎ⟩, 𝑘) is understood as

handling the exception in 𝑝 with ℎ and then continuing as 𝑘. Then the equation

(2.21) of Σ-monoids instantiates to

ph : 𝑀 ×𝑀, 𝑘 : 𝑀, 𝑘′ : 𝑀 ⊢ 𝜇(catch (ph, 𝑘), 𝑘′) = catch (ph, 𝜇(𝑘, 𝑘′)) : 𝑀. (2.26)

Unlike (2.24), this equation is semantically correct: catching ph and then doing 𝑘

and then 𝑘′ should be the same as catching ph and then continuing as 𝜇(𝑘, 𝑘′).
The scope of catch is not confused.

2.4*12. This trick applies more generally: for all functorsΦ : ℰ→ℰ and monoids

𝑀 in a monoidal categoryℰ, define Σ = (Φ−)□ − and a pointed strength:

(Σ𝑋)□ 𝑌
�−→ Φ(𝑋 □ 𝐼)□ (𝑋 □ 𝑌)

Φ(𝑋□𝜂𝑌)□id
−−−−−−−−−→ Φ(𝑋 □ 𝑌)□ (𝑋 □ 𝑌) = Σ(𝑋 □ 𝑌).

Then morphisms 𝑓 : Φ𝑀 → 𝑀 without any condition are in bĳection with

morphisms 𝑔 : (Φ𝑀)□𝑀 → 𝑀 that satisfy the compatibility equation (2.21) of

Σ-monoids instantiated with the Σ:

𝑓 ↦→ (Φ𝑀 □𝑀
𝑓□𝑀
−−−−→ 𝑀 □𝑀

𝜇
−→ 𝑀) 𝑔 ↦→ (Φ𝑀

Φ𝑀□𝜂
−−−−−→Φ𝑀 □𝑀

𝑔
−→ 𝑀)

57



Therefore, imposing (2.21) on Σ-monoids does not lose generality.

2.4*13. Moreover, we can add equations to the theory ΣEc-Mon to characterise

the interaction of throw and catch. The theory Ec is ΣEc-Mon extended with the

following equations:

𝑘 : 𝜏 ⊢ catch(⟨throw, 𝜂⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨throw, throw⟩, 𝑘) = throw : 𝜏

𝑘 : 𝜏 ⊢ catch(⟨𝜂, throw⟩, 𝑘) = 𝑘 : 𝜏 𝑘 : 𝜏 ⊢ catch(⟨𝜂, 𝜂⟩, 𝑘) = 𝑘 : 𝜏

where 𝜂 : I→ 𝜏, throw : 1→ 𝜏, and catch : (𝜏 × 𝜏)□ 𝜏→ 𝜏. These equations can

be alternatively presented with an empty context by replacing all the 𝑘’s with

𝜂 as in · ⊢ catch(⟨throw, 𝜂⟩, 𝜂) = 𝜂 : 𝜏, which is equivalent to the first equation

above, since by (2.26), catch(⟨𝑥, 𝑦⟩, 𝜂); 𝑘 = catch(⟨𝑥, 𝑦⟩, 𝑘).

2.4*14 Example. Let 𝑆 be a set. The theory St𝑆 of monads with global 𝑆-state
[Plotkin and Power 2002] can be generally defined for monoids as follows. The

theory St𝑆 is ΣSt𝑆
-Mon with signature ΣSt𝑆

denoted by the type expression:

((∏𝑆 I)□ 𝜏) + ((∐𝑆 I)□ 𝜏),

whose first component represents an operation 𝑔 : (∏𝑆 I)□ 𝜏→ 𝜏 reading the

state, and the second component represents an operation 𝑝 : (∐𝑆 I) □ 𝜏 → 𝜏

writing an 𝑆-value into the state.

Plotkin and Power [2002]’s equations of these two operations can also be

specified at this level of generality. For example, the law saying that writing 𝑠 ∈ 𝑆
to the state and reading it immediately gives back 𝑠 is

𝑘 :

∏
𝑆 I ⊢ 𝑝𝑠(𝑔(𝑘, 𝜂𝜏)) = 𝑝𝑠(let ∗ = 𝜋𝑠 𝑘 in 𝜂𝜏) : 𝜏

where 𝑝𝑠(𝑥) abbreviates 𝑝(𝜄𝑠 ∗, 𝑥).

2.4*15. There are many more examples of Σ-monoids that we cannot expand

on here. Some interesting ones are lambda abstraction [Fiore et al. 1999], the

algebraic operations of 𝜋-calculus [Stark 2008], and the non-algebraic operation

of parallel composition [Piróg et al. 2018].

2.5 Families of Operations

2.5*1. Given a monoidal categoryℰ, the coslice category Mon/Eqs(ℰ) contains

all equational systems that extend the theory of monoids with new opera-

tions/equations. However, this category is sometimes too general – we will

see later that there are many constructions that only work for a certain kind of

operations, such as algebraic operations or scoped operations. Therefore, we will

need to consider subcategories of Mon/Eqs(ℰ) that contain equational systems

58



that extend Mon with a certain family of operations. In this section, let us have a

look at some important operation families, and it turns out that there are quite

some interesting things to be said about them.

2.5*2 Definition. An operation family on monoids in a monoidal category ℰ is

a subcategory F ⊆ Mon/Eqs(ℰ) of the coslice category of equational systems

under the theory Mon of monoids.

2.5*3. An object ¥Σ in an operation family F is a pair ⟨ ¤Σ, 𝑇Σ : Mon→ ¤Σ⟩, but we

will colloquially say something of ¥Σ to mean that thing of ¤Σ. For example, when

we say ¥Σ has the free-forgetful adjunction, we mean that ¤Σ has it.

2.5*4 (Algebraic operations). The simplest example is the family Alg(ℰ) of

algebraic operations on a monoidal category ⟨ℰ,□, 𝐼⟩ with binary coproducts. The

full subcategory Alg(ℰ) ⊆ Mon/Eqs(ℰ) contains objects of the following form

⟨ (𝐴□ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅), 𝑇 ⟩ (2.27)

where 𝐴, 𝐵 ∈ ℰ; the functor 𝐴□ − is equipped with the pointed strength

𝛼𝐴,𝑋,𝑌 : (𝐴□ 𝑋)□ 𝑌 � 𝐴□ (𝑋 □ 𝑌);

𝑇 is the inclusion translation from Mon; K𝐵 : ℰ → ℰ is the constant functor

mapping to 𝐵. In other words, Alg(ℰ) contains all equational systems Σ-Mon in

2.4*4 extended with an equation for some Σ = 𝐴□ −.

2.5*5. In particular, the theory of exceptions (Example 2.4*8) and state (Exam-

ple 2.4*14) are in Alg(ℰ). When ℰ = ⟨Endo𝜅(𝒞), ◦, Id⟩ for an l𝜅p category 𝒞,

Alg(ℰ) consists of theories of algebraic operations 𝐴◦𝑀 → 𝑀 for 𝐴 ∈ Endo𝜅(𝒞)
on 𝜅-accessible monads 𝑀. When ℰ is ⟨Endo𝜅(Set), ∗, Id⟩, it then contains

theories of applicatives 𝐹 with ‘applicative-algebraic’ operations 𝐴 ∗ 𝐹→ 𝐹.

2.5*6. When the monoidal categoryℰ is right distributive for binary coproducts,

which means that the canonical morphism

[𝜄1 □ 𝐶, 𝜄2 □ 𝐶] : (𝐴□ 𝐶 + 𝐵 □ 𝐶) → (𝐴 + 𝐵)□ 𝐶

is an isomorphism, the category Alg(ℰ) has binary coproducts as well: binary

coproducts in Alg(ℰ) are equivalently pushouts in Eqs(ℰ), and by Lemma 2.2.3*5,

such a pushout still has a constant context K𝐵 + K𝐵′ = K𝐵+𝐵′ and a signature

(𝐴□ −) + (𝐴′ □ −) � (𝐴 + 𝐴′)□ −, so it is still in Alg(ℰ).

2.5*7. Many of the monoidal categories in Section 2.1 are right distributive:

* ⟨Endo(𝒞), ◦, Id⟩ for an small-complete small 𝒞;

* ⟨Endo𝜅(𝒞), ◦, Id⟩ for an l𝜅p 𝒞;

59



* ⟨𝒞,×, 1⟩ for a cocomplete cartesian closed 𝒞;

* ⟨Endo𝜅(Set), ∗, Id⟩ underlying applicative functors;

* ⟨Endo𝑠𝜅(𝒞), ◦𝑠 , Id𝑠⟩ for an l𝜅p as a cartesian closed category 𝒞;

* ⟨Endo 𝑓 (Set)𝒢 , ∗, 𝐼⟩ for a small strict monoidal category 𝒢.

Moreover, for these choices of ℰ, every object of Alg(ℰ) has the free-forgetful

adjunction using the freeness conditions in Section 2.2.1.

2.5*8. The restriction in (2.27) that the context of the equation must be a constant

functor K𝐵 deserves some explanation. Let Σ : 𝒞→ 𝒞 be an endofunctor on a

category 𝒞. We call a functorial equation K𝐵 ⊢ 𝐿 = 𝑅 over the signature Σ with a

constant functor as its context a constant equation.

Assume that 𝒞 is locally small and small-complete, and that the functor Σ

has the free-forgetful adjunction FΣ ⊣ UΣ. By Corollary 2.2.2*7, the equation

K𝐵 ⊢ 𝐿 = 𝑅 is equivalently a pair of natural transformations K𝐵 ⇒ FΣUΣ.

Moreover, when 𝒞 has an initial object 0, such a natural transformation is

uniquely determined by its component at 0:

K𝐵0 = 𝐵 K𝐵𝑋 = 𝐵

UΣFΣ0 UΣFΣ𝑋

id𝐵

𝐿0 𝐿𝑋

UΣFΣ 𝑓

Therefore constant equations over the signature Σ : 𝒞→ 𝒞 are in bĳection with

pairs of 𝒞-morphisms 𝐿, 𝑅 : 𝐵 → UΣFΣ0, whose codomain is precisely (the

carrier of) the initial algebra 𝜇Σ of Σ.

2.5*9. More specially, assume that a monoidal categoryℰ satisfies the conditions

on 𝒞 in the last paragraph, and that □ : ℰ×ℰ→ℰ preserves limits of 𝛼-chain for

some limit ordinal 𝛼. In this case, let Σ be the signature functor of the equational

system (𝐴□−)-Mon, i.e. Σ = 𝐼 +−□−+ 𝐴□−. Then both Σ and the equational

system (𝐴 □ −)-Mon have initial algebras, whose carriers we denote by 𝑋 and

𝑌 respectively. For every algebra ⟨𝑍, 𝛼⟩ of (𝐴 □ −)-Mon, it satisfies a constant

equation K𝐵 ⊢ 𝐿 = 𝑅 if and only if the following diagram commutes:

𝐵 𝑋 𝑍
𝑙

𝑟

!Σ

where the morphism !Σ : 𝑋 → 𝑍 is the unique Σ-homomorphism from 𝑋 to 𝑍.

Since the algebras of (𝐴□ −)-Mon is a full subcategory of the algebras of Σ, the

morphism !Σ factors via !(𝐴□−)-Mon
: 𝑌 → 𝑍, the unique homomorphism from

60



the initial algebra of (𝐴□ −)-Mon:

𝐵 𝑋 𝑌 𝑍
𝑙

𝑟

!Σ
!(𝐴□−)-Mon

Therefore, equations K𝐵 ⊢ 𝐿 = 𝑅 can be given as a pair of morphisms 𝐵 ⇒ 𝑌

without loss of expressivity. In particular, ifℰ is ⟨Endo 𝑓 (Set), ◦, Id⟩,𝑌 is precisely

the free monad 𝐴∗ over 𝐴, a pair of morphisms 𝐵 ⇒ 𝐴∗ for 𝐴, 𝐵 ∈ Endo 𝑓 (Set) is
indeed the traditional way of presenting a finitary algebraic theory. In fact, we

can show that the category Alg(ℰ) is equivalent to the category (as defined by

e.g. Fiore and Mahmoud [2014]) of presentations finitary algebraic theories and

translations. Therefore, although constant equations seem very restrictive, they

are still useful enough when the monoidal categoriesℰ itself is informative.

2.5*10 Theorem. Letℰ be a monoidal category with binary coproducts such that every
object in Alg(ℰ) has the free-forgetful adjunction. There is an equivalence Alg(ℰ) �
Mon(ℰ) between Alg(ℰ) and the category Mon(ℰ) of monoids inℰ.

Proof. In sketch, every ¥Σ ∈ Alg(ℰ) is mapped to its initial algebra treated as a

monoid, forgetting the operation. On the other hand, every monoid 𝑀 is mapped

to the theory of 𝑀-actions on monoids.
In more detail, the direction Alg(ℰ) → Mon(ℰ) of the equivalence sends

every object ¥Σ = ⟨ ¤Σ, 𝑇Σ⟩ in Alg(ℰ) to the initial algebra ⟨𝜇 ¤Σ, 𝛼Σ⟩ regarded as

a monoid 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩. On morphisms, every translation 𝑇 : ¥Σ → ¥Ψ ∈ Alg(ℰ)
induces a unique ¥Σ-homomorphism out of the initial algebra:

ℎ : ⟨𝜇 ¤Σ, 𝛼Σ⟩ → 𝑇⟨𝜇 ¤Ψ, 𝛼Ψ⟩.

Then the arrow mapping is 𝑇 ↦→ 𝑇Σℎ where

𝑇Σℎ : 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩ → 𝑇Σ(𝑇⟨𝜇 ¤Ψ, 𝛼Ψ⟩) = 𝑇Ψ⟨𝜇 ¤Ψ, 𝛼Ψ⟩.

The equality 𝑇Σ ◦ 𝑇 = 𝑇Ψ is by the definition of morphisms in Alg(ℰ).
For the other direction, every monoid ¤𝑀 = ⟨𝑀, 𝜇𝑀 , 𝜂𝑀⟩ in ℰ is sent to the

theory ¤𝑀-Act of ¤𝑀-actions on monoids, which is the theory of (𝑀 □ −)-Mon

extended with the following two equations (expressed as an extension of the

internal language ofℰ as in 2.3.3*14):

⊢ op(𝜂𝑀 , 𝜂𝜏) = 𝜂𝜏 : 𝜏

𝑥 : 𝑀, 𝑦 : 𝑀 ⊢ op(𝜇𝑀(𝑥, 𝑦), 𝜂𝜏) = op(𝑥, op(𝑦, 𝜂𝜏)) : 𝜏

saying that op : 𝑀 □ 𝜏→ 𝜏 is a monoid action on 𝜏. Every monoid morphism

𝑓 : ¤𝑀 → ¤𝑁 is mapped to the translation ¤𝑀-Act→ ¤𝑁-Act sending ¤𝑁-actions

⟨𝐴 ∈ ℰ, 𝛼 : (𝑁 □ 𝐴) + ΣMon𝐴→ 𝐴⟩

61



to ¤𝑀-actions ⟨𝐴, [𝛼 · 𝜄1 · ( 𝑓 □ 𝐴), 𝛼 · 𝜄2] : (𝑀 □ 𝐴) + ΣMon𝐴→ 𝐴⟩.
It remains to show that the mappings above are a pair of equivalence. Starting

from a monoid ¤𝑀, it can be shown that the category ( ¤𝑀-Act)-Alg is equivalent

to the coslice category ¤𝑀/Mon(ℰ) (see e.g. Fiore and Saville [2017, Proposition

5.5]). Thus the initial algebra of ¤𝑀-Act is ¤𝑀 as required.

Starting from a theory ⟨ ¤Σ, 𝑇Σ⟩ ∈ Alg(ℰ)where

¤Σ = (𝑆 □ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅),

it is mapped to the monoid 𝑇Σ⟨𝜇 ¤Σ, 𝛼Σ⟩, which is then mapped back to the theory

𝜇 ¤Σ-Act with the inclusion translation. We need to construct an isomorphism

translation 𝑇 : ¤Σ→ 𝜇 ¤Σ-Act that preserves monoid operations. Given a monoid

𝐴 with 𝛼 : 𝜇 ¤Σ□𝐴→ 𝐴 satisfying the laws of 𝜇 ¤Σ-Act, 𝑇 maps it to the ¤Σ-algebra

on 𝐴 with the following operation:

𝑆 □ 𝐴
𝑆□𝜂𝜇 ¤Σ□𝐴
−−−−−−−→ 𝑆 □ 𝜇 ¤Σ□ 𝐴

𝛼𝜇 ¤Σ□𝐴−−−−−→ 𝜇 ¤Σ□ 𝐴
𝛼−→ 𝐴

where 𝛼𝜇 ¤Σ
: 𝑆 □ 𝜇 ¤Σ→ 𝜇 ¤Σ is the structure map of the initial algebra.

For the inverse of 𝑇, every tuple ⟨𝐴, 𝛽 : 𝑆 □ 𝐴→ 𝐴⟩ ∈ ¤Σ-Alg is mapped to

the following 𝜇 ¤Σ-Act-algebra on 𝐴:

𝜇 ¤Σ□ 𝐴
L𝛽M□𝐴
−−−−→ 𝐴□ 𝐴

𝜇𝐴

−−→ 𝐴

where L𝛽M is the unique homomorphism from the initial ¤Σ-algebra 𝜇 ¤Σ to the

¤Σ-algebra ⟨𝐴, 𝛽⟩. This completes the proof. □

2.5*11. Instantiatingℰ with ⟨Endo 𝑓 (𝒞), ◦, Id⟩ for an lfp 𝒞, we obtain an equiv-

alence between finitary monads over 𝒞 and theories of algebraic operations

on finitary monads. This is reminiscent of the classical theory-monad corre-
spondence between finitary monads and (presentations of) first-order algebraic

theories. What is new is that Theorem 2.5*14 is applicable to other monoidal

categories, such as those in Section 2.1, giving us equivalences of cartesian

monoids/applicative functors/graded monads and the corresponding categories

of theories of algebraic operations.

2.5*12. Another interesting property of Alg(ℰ) is the following saying that

(almost) all equational systems of operations on monoids can be turned into one

in Alg(ℰ) by a coreflection, and the coreflection preserves initial algebras, i.e. the

abstract syntax of terms of operations. Hence in principle, theories of algebraic

operations alone are sufficient for the purpose of modelling syntax.

2.5*13 Lemma. Letℰ be a monoidal category with binary coproducts. For every

¥Ψ ∈ Alg(ℰ) and ¥Σ ∈ Mon/Eqs(ℰ) such that both of them have initial algebras,

62



Mon/Eqs( ¥Ψ, ¥Σ) is in natural bĳection to monoid morphisms 𝜇 ¥Ψ→ 𝜇 ¥Σ between

the initial algebras of ¥Ψ and ¥Σ viewed as monoids.

Proof sketch. For one direction of the bĳection 𝜙, every translation 𝑇 : ¥Ψ → ¥Σ
sends the initial algebra 𝜇 ¥Σ of ¥Σ to a ¥Ψ-algebra carried by 𝜇 ¥Σ. Then by the

initiality of 𝜇 ¥Ψ, there is a ¥Ψ-homomorphism, which is also a monoid morphism,

𝑢 : 𝜇 ¥Ψ→ 𝜇 ¥Σ. We set 𝜙(𝑇) = 𝑢. For the backward direction of the bĳection 𝜙,

given a monoid morphism ℎ : 𝜇 ¥Ψ→ 𝜇 ¥Σ, we define a translation 𝑇 : ¥Ψ→ ¥Σ, i.e.

a functor 𝑇 : ¥Σ-Alg→ ¥Ψ-Alg as follows. Recall that ¥Ψ ∈ Alg(ℰ)must be of the

form ¤Ψ = (𝐺 □ −)-Mon ↰ (K𝐵 ⊢ 𝐿 = 𝑅), for some 𝐺 ∈ ℰ. The functor 𝑇 maps

every ¥Σ-algebra ⟨𝐴, 𝛼 : Σ𝐴→ 𝐴⟩ to the ¤Ψ-algebra carried by 𝐴 with

𝐺 □ 𝐴
𝐺□𝜂𝜇 ¥Ψ

−−−−−→ 𝐺 □ 𝜇 ¥Ψ□ 𝐴
𝛼𝜇 ¥Ψ
−−−→ 𝜇 ¥Ψ□ 𝐴

ℎ−→ 𝜇 ¥Σ□ 𝐴
L𝛼M
−−→ 𝐴□ 𝐴

𝜇𝐴

−−→ 𝐴

where 𝛼𝜇 ¥Ψ
: 𝐺 □ 𝜇 ¥Ψ → 𝜇 ¥Ψ is the structure map of the initial ¥Ψ-algebra,

L𝛼M : 𝜇 ¥Σ → 𝐴 is the unique ¥Σ-homomorphism from the initial algebra 𝜇 ¥Σ to

⟨𝐴, 𝛼⟩. It can be checked that 𝜙 is a natural bĳection. □

2.5*14 Theorem. Let ℰ be a monoidal category with binary coproducts such that
every object of Alg(ℰ) has the free-forgetful adjunction. The category Alg(ℰ) is
a coreflective subcategory of Mon/Eqs 𝑓 (ℰ), where Eqs 𝑓 (𝒞) ⊆ Eqs(𝒞) is the full
subcategory containing equational systems with the free-forgetful adjunction:

Alg(ℰ) Mon/Eqs 𝑓 (ℰ).⊢

Moreover, the coreflector ⌊−⌋ preserves initial algebras: for every ⟨ ¤Σ, 𝑇⟩ in the category
Mon/Eqs 𝑓 (ℰ), the initial ¤Σ-algebra (viewed as a monoid via 𝑇) is isomorphic to the
initial algebra of

⌊
⟨ ¤Σ, 𝑇⟩

⌋
also viewed as a monoid.

Proof sketch. Every theory ⟨ ¤Σ, 𝑇Σ⟩ ∈ Mon/Eqs 𝑓 (ℰ) has an initial algebra 𝜇 ¤Σ ∈ ℰ
by assumption, and 𝜇 ¤Σ carries a monoid structure by 𝑇Σ : Mon → ¤Σ. We

define the coreflector ⌊−⌋ to map every ⟨ ¤Σ, 𝑇Σ⟩ to 𝜇 ¤Σ-Act ∈ Alg(ℰ) as in the

proof of Theorem 2.5*10. For every theory ⟨ ¤Ψ, 𝑇Ψ⟩ ∈ Alg(ℰ), by Lemma 2.5*13,

each translation in the hom-set Mon/Eqs 𝑓 (⟨ ¤Ψ, 𝑇Ψ⟩, ⟨ ¤Σ, 𝑇Σ⟩) is equivalently a

monoid morphism 𝜇 ¤Ψ → 𝜇 ¤Σ, which is also equivalently a translation in

Alg(⟨ ¤Ψ, 𝑇Ψ⟩,
⌊
⟨ ¤Σ, 𝑇Σ⟩

⌋
) by Theorem 2.5*10.

The coreflector maps each ⟨ ¤Σ, 𝑇⟩ ∈ Mon/Eqs 𝑓 (ℰ) to the theory 𝜇 ¤Σ-Act. It

can be shown that the category algebras of 𝜇 ¤Σ-Act is equivalent to the coslice

category 𝜇 ¤Σ/Mon(ℰ) of monoids under 𝑇⟨𝜇 ¤Σ, 𝛼Σ⟩, so the initial algebra of

𝜇 ¤Σ-Act is still the same monoid 𝜇 ¤Σ. □

2.5*15. Although Alg(ℰ) is sufficient for modelling syntax, it is not enough when

we also consider models. The counit of the coreflection gives us a translation

63



⌊
⟨ ¤Σ, 𝑇⟩

⌋
→ ⟨ ¤Σ, 𝑇⟩, i.e. a functor ¤Σ-Alg→

⌊
⟨ ¤Σ, 𝑇⟩

⌋
-Alg, but these two categories

of models are in general not equivalent.

2.5*16 (Scoped operations). Our next example of operation families is the family

Scp(ℰ) of scoped (and algebraic) operations, such as exception catching (2.4*11). Let

ℰ be a monoidal category with right distributive binary coproducts (2.5*6). The

family Scp(ℰ) is the full subcategory of Mon/Eqs(ℰ) containing objects

⟨ ((𝐴□ −□ −) + (𝐵 □ −))-Mon ↰ (K𝐶 ⊢ 𝐿 = 𝑅), 𝑇 ⟩ (2.28)

where 𝐴, 𝐵, 𝐶 ∈ ℰ and 𝑇 is the inclusion translation. Letting Σ := (𝐴□ −□ −) +
(𝐵 □ −), the pointed strength 𝜃𝑋,⟨𝑌, 𝑓 ⟩ for Σ is the following composite:

(Σ𝑋)□ 𝑌 = (𝐴□ 𝑋 □ 𝑋 + 𝐵 □ 𝑋)□ 𝑌

� (𝐴□ 𝑋 □ 𝑋 □ 𝑌) + (𝐵 □ 𝑋 □ 𝑌)
→ (𝐴□ 𝑋 □ 𝑌 □ 𝑋 □ 𝑌) + (𝐵 □ 𝑋 □ 𝑌)
� Σ(𝑋 □ 𝑌)

where the boxed 𝑌 is inserted using 𝑓 : 𝐼 → 𝑌.

Piróg et al. [2018] introduced scoped operations to model non-algebraic

operations that delimit scopes. As explained in 2.4*11, the trick is to let the

operation take an explicit continuation.

2.5*17. When every object of Scp(ℰ)has the free-forgetful adjunction, for example

when ℰ is cocomplete and □ : ℰ ×ℰ → ℰ preserves colimits of 𝛼-chains for

some limit ordinal 𝛼, a corollary of Theorem 2.5*14 is that the initial-algebra

preserving coreflection there restricts to

Alg(ℰ) Scp(ℰ).⊢

Thus the abstract syntax of programs with scoped operations can be alternatively

expressed with only algebraic ones, but as argued by Piróg et al. [2018] and Yang

et al. [2022], the models of scoped operations are different from those of the

coreflected algebraic operations.

2.5*18. The operation family Scp(ℰ) should be more accurately called the family

of scoped and algebraic operations with constant equations. We can certainly relax the

restriction of constant equations to obtain bigger operation families. For example,

we may have a family Scp1(ℰ) that is similar to (2.28) but permits first-order
equations, meaning that the functorial context can be either a constant functor K𝐶

or a functor 𝐶 □ − for some 𝐶 ∈ ℰ.

For computational effects in practice, it seems constant equations in Endo𝜅(𝒞)
are enough for algebraic operations, evidenced by the examples in [Plotkin and

Power 2002], whereas scoped operations sometimes need first-order equations.

64



For example, a reasonable equation for exception catching catch : 𝑀 ×𝑀 → 𝑀 is

that it is associative with respect to ×:

𝑀 ×𝑀 ×𝑀 𝑀 ×𝑀

𝑀 𝑀

catch×𝑀

𝑀×catch catch

catch

As an equation in the monoidal category ⟨Endo𝜅(𝒞), ◦, Id⟩, this equation is

first-order, sicne the context is (Id𝒞 × Id𝒞 × Id𝒞) ◦ − : Endo(𝒞) → Endo(𝒞).

2.5*19. We did not require operation families F ⊆ Mon/Eqs(ℰ) to be full, so we

may also restrict the translations. For example, we can consider only translations

that map operations to operations (rather than terms in general). Such translations

are sometimes called transliterations [Arkor 2022]. In particular, we define

Scp𝑙(ℰ) ⊆ Scp(ℰ) to be the subcategory containing translations

𝑇 : ((𝐴□ −□ −) + (𝐵 □ −))-Mon→ ((𝐴′ □ −□ −) + (𝐵′ □ −))-Mon

that sends ⟨𝑀, 𝑠 : 𝐴′□𝑀□𝑀, 𝑎 : 𝐵′□𝑀 → 𝑀⟩ to ⟨𝑀, 𝑠 ·( 𝑓 □𝑀□𝑀), 𝑎 ·(𝑔□𝑀)⟩
for some morphisms 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 𝐵→ 𝐵′ inℰ.

For example, let 𝐴 = Id× Id× Id and 𝐴′ = Id× Id, corresponding to a ternary

operation 𝑡 and a binary operation 𝑏 respectively. Then the transliteration given by

𝑓 ⟨𝑥, 𝑦, 𝑧⟩ = ⟨𝑥, 𝑦⟩ translates the operation 𝑡(𝑥, 𝑦, 𝑧) to 𝑏(𝑥, 𝑦), but a transliteration

cannot translate 𝑡(𝑥, 𝑦, 𝑧) to 𝑏(𝑏(𝑥, 𝑦), 𝑧) that uses the target operation more than

once, nor can it use the monoid structure 𝜇 and 𝜂 in the translation.

2.5*20 (Variable-binding operations). Algebraic theories of operations with

variable-bindings are called second-order algebraic theories [Fiore and Hur 2010; Fiore

and Mahmoud 2010, 2014; Fiore and Szamozvancev 2022; Fiore et al. 1999], and

they can be formulated as an operation family as follows. For simplicity, we work

specially in the monoidal category ⟨Set
Fin, •, 𝑉⟩ in 2.1.2*2, but it is possible to

replace Set
Fin

with Endo𝜅(Set) for infinitary syntax or with Set
Ctx

for simply

typed syntax given a category Ctx of contexts and renamings.

2.5*21. A binding signature ⟨𝑂, 𝑎⟩ consists of a set 𝑂 of operations and an arity

assignment 𝑎 : 𝑂 → N∗ of a sequence of natural numbers to each operation.

Each 𝑜 ∈ 𝑂 with 𝑎(𝑜) = ⟨𝑛𝑖⟩1⩽𝑖⩽𝑘 stands for an operation taking 𝑘 arguments,

each binding 𝑛𝑖 variables in their arguments:

𝑜((𝑥1,1𝑥1,2 · · · 𝑥1,𝑛1
). 𝑒1, · · · , (𝑥𝑘,1𝑥𝑘,2 · · · , 𝑥𝑘,𝑛𝑘 ). 𝑒𝑘)

For example, the binding signature for 𝜆-calculus has two operations {app, abs}:
function application 𝑎(app) = ⟨0, 0⟩ has two arguments binding no variables;

𝜆-abstraction 𝑎(abs) = ⟨1⟩ has one argument that binds one variable.

65



A binding signature ⟨𝑂, 𝑎⟩ determines an endofunctor J𝑂, 𝑎K on Set
Fin

:

J𝑂, 𝑎K =
∐

𝑜∈𝑂, 𝑎(𝑜)=⟨𝑛𝑖⟩1⩽𝑖⩽𝑘
∏

1⩽𝑖⩽𝑘(−)𝑉
𝑛𝑖

where (−)𝑉𝑛𝑖
is the exponential by 𝑛𝑖-fold product of the monoidal unit 𝑉 . This

functor has a pointed strength 𝜃𝑋,⟨𝑌,𝜂𝑌⟩:

(∐𝑜
∏

𝑖 𝑋
𝑉𝑛𝑖 ) • 𝑌 � ∐

𝑜
∏

𝑖(𝑋𝑉𝑛𝑖 • 𝑌)
∐

𝑜
∏

𝑖 𝑡𝑜,𝑖−−−−−−−→∐
𝑜
∏

𝑖(𝑋 • 𝑌)𝑉
𝑛𝑖

where 𝑡𝑜,𝑖 is the adjoint transpose of

(𝑋𝑉𝑛𝑖 • 𝑌) ×𝑉𝑛𝑖 id × 𝜂𝑌−−−→ (𝑋𝑉𝑛𝑖 • 𝑌) × (𝑉𝑛𝑖 • 𝑌) � (𝑋𝑉𝑛𝑖 ×𝑉𝑛𝑖 ) • 𝑌 → 𝑋 • 𝑌.

2.5*22. The operation family Var(Set
Fin) ⊆ Mon/Eqs(Set

Fin) then contains all

objects of the following form:

⟨J𝑂, 𝑎K-Mon ↰ (J𝑃, 𝑏K ⊢ 𝐿 = 𝑅), 𝑇⟩

where ⟨𝑂, 𝑎⟩ and ⟨𝑃, 𝑏⟩ are two binding signatures and𝑇 is still the inclusion trans-

lation. The category Var(Set
Fin) is closed under coproducts by Lemma 2.2.3*5

and every object of it has the free-forgetful adjunction because J𝑂, 𝑎K and J𝑃, 𝑏K
are finitary, which is a consequence of (−)𝑉 being a left adjoint to the right Kan

extension Ran𝑉+1, so (−)𝑉 preserves all colimits.

2.5*23. Again, the coreflector in Theorem 2.5*14 allows us to turn every theory

in Var into one with only algebraic operations but has isomorphic initial algebras.

For example, under the coreflection, the theory Λ of untyped 𝜆-calculus is turned

into a theory ⌊Λ⌋ which has an ordinary 𝑛-ary operation 𝑡 for every 𝜆-term 𝑡 with

𝑛 free variables, together with suitable equations. The equational systems Λ and

⌊Λ⌋ have isomorphic initial algebras (as monoids).

∗ ∗ ∗

2.5*24. It is a good time to reflect what we have achieved in this chapter.

* We have seen how to present theories of monoids with operations using

equational systems and monoidal algebraic theories (Section 2.3);

* We can construct (relative) free algebras on cocomplete categories: Theo-

rem 2.2.1*12, Theorem 2.2.1*18, Theorem 2.2.2*14;

* We can combine such theories modularly using colimits (Section 2.2.3);

* Theories of monoids with operations can be classified into operation families

(Section 2.5), with the family of algebraic operations playing a special role:

Theorem 2.5*10 and 2.5*14.

66



These results achieve syntactic modularity for computational effects. In the

next chapter, we will develop a framework of modular models, which will allow us

to combine models of existing theories into a model of a combined theory, thus

achieving modularity for both syntax and semantics.

67



Chapter 3

Modular Constructions of Algebraic Structures

3*1. In many frameworks of algebraic theories, we can combine smaller theories

into bigger ones by taking colimits. This gives us a modular way to design

programming languages: language features are defined individually as algebraic

theories, which are then combined to form algebraic theories of full-fledged

languages. Programming language theory is not only about syntax/theories

of languages though. What is usually more interesting is the implementa-

tions/models, and it turns out that modularly combining models is significantly

harder than modularly combining theories. In this chapter, we propose a general

framework for modular models of algebraic theories and show some concrete

examples. The framework in this chapter is a generalisation of those appeared in

the author’s earlier papers [Yang and Wu 2021, 2023].

3*2. The structure of this chapter is as follows:

* In Section 3.1, we motivate and define modular models of monoids with

operations, and establish the correspondence between two formulations

based on indexed categories and fibrations respectively.

* In Section 3.2, motivated by more scenarios of algebraic structures, we

generalise modular models to model transformers, which are just a ‘name

with an attitude’ [nLab 2024] for liftings of functors along fibrations.

* In Section 3.3, we show a handful of general constructions and concrete

examples of modular models and model transformers.

3.1 Modular Models of Monoids

3.1*1 Notation. In this section, when we say ‘a category 𝒞’, by default we mean

a large category unless otherwise specified, so we would have 𝒞 ∈ CAT, where

CAT is the category of large categories. We fix a monoidal category ℰ and an

operation family F ⊆ Mon/Eqs(ℰ) such that F is closed under finite coproducts

in Mon/Eqs(ℰ). Every object ¥Σ ∈ F is a pair ⟨ ¤Σ ∈ Eqs(ℰ), 𝑇 : Mon→ ¤Σ⟩. We

will write ¥Σ-Alg to mean the category ¤Σ-Alg of algebras for ¤Σ.

68



3.1*2. The idea of modular models is simple: given a theory ¥Ψ ∈ F , a modular

model 𝑀 of ¥Ψ anticipates that it may be mixed with any other theories in F in

the future, in the sense that 𝑀 can transform every model of every theory ¥Σ ∈ F
to a model of ¥Σ + ¥Ψ. Naturally, we would expect 𝑀 to be ‘natural’ with respect

to ¥Σ in a sense. Below, we make this precise in two equivalent formulations,

one based on indexed categories (Definition 3.1*5), and another based on fibrations
(Theorem 3.1*19). The former is more explicit while the latter is more convenient.

3.1*3. Recall that a morphism 𝑇 : ¤Σ→ ¤Ψ in Eqs(ℰ) is a functor ¤Ψ-Alg→ ¤Σ-Alg

such that U ¤Σ ◦ 𝑇 = U ¤Ψ : ¤Ψ-Alg → ℰ, so we can treat (−)-Alg as a functor

Eqs(ℰ)op→ CAT. Similarly, we have a functor (−)-Alg : Fop→ CAT.

3.1*4 Definition (Johnson and Yau [2020]). For a category 𝒞 and two functors

𝐹, 𝐺 : 𝒞 → CAT, a lax transformation 𝛼 : 𝐹 → 𝐺 consists of a family of functors

𝛼𝑋 : 𝐹𝑋 → 𝐺𝑋 for all 𝑋 ∈ 𝒞 and a family of natural transformations 𝛼 𝑓 :

𝐺 𝑓 ◦ 𝛼𝑋 → 𝛼𝑌 ◦ 𝐹 𝑓 for all morphisms 𝑓 : 𝑋 → 𝑌 in 𝒞:

𝐹𝑋 𝐹𝑌

𝐺𝑋 𝐺𝑌

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝛼𝑌
𝛼 𝑓

Additionally, 𝛼 must satisfy that 𝛼id𝑋 = id : 𝛼𝑋 → 𝛼𝑋 for all 𝑋 ∈ 𝒞, and for all

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in 𝒞, 𝛼𝑔· 𝑓 is exactly the pasting of 𝛼 𝑓 and 𝛼𝑔 :

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝛼𝑌
𝛼 𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔 =

𝐹𝑋 𝐹𝑌 𝐹𝑍

𝐺𝑋 𝐺𝑌 𝐺𝑍

𝛼𝑋

𝐺 𝑓

𝐹 𝑓

𝐺𝑔

𝐺𝑔

𝑎𝑍
𝛼𝑔· 𝑓

An oplax transformation from 𝐹 to 𝐺 is similar to a lax transformation except

that the direction of the 2-cells 𝛼 𝑓 becomes 𝛼𝑌 ◦ 𝐹 𝑓 → 𝐺 𝑓 ◦ 𝐺 𝑓 . An (op)lax

transformation 𝛼 is called strong if 𝛼 𝑓 is a natural isomorphism for every 𝑓 : 𝑋 →
𝑌 in 𝒞, and it is called strict if 𝛼 𝑓 is exactly the identity for every 𝑓 .

3.1*5 Definition. Given ¥Ψ ∈ F , a (strong/strict) modular model 𝑀 of ¥Ψ is a

(strong/strict) oplax transformation from (−)-Alg to (− + ¥Ψ)-Alg : Fop→ CAT.

3.1*6. Unpacking the definition, a modular model 𝑀 of ¥Ψ ∈ F consists of a

family of functors 𝑀 ¥Σ : ¥Σ-Alg → (¥Σ + ¥Ψ)-Alg for all ¥Σ ∈ F and a family of

69



natural transformations 𝑀𝑇 : 𝑀 ¥Σ ◦ 𝑇 → (𝑇 + ¥Ψ) ◦𝑀 ¥Σ′ for all 𝑇 : ¥Σ→ ¥Σ′ in F :

¥Σ-Alg ¥Σ′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg

𝑀 ¥Σ

𝑇

𝑀 ¥Σ′

𝑇+ ¥Ψ

𝑀𝑇

such that 𝑀id is the identity transformation, and for a pair of morphisms

𝑇 : ¥Σ→ ¥Σ′ and 𝑇′ : ¥Σ′→ ¥Σ′′, 𝑀𝑇′·𝑇 is exactly the pasting of 𝑀𝑇 and 𝑀𝑇′:

¥Σ-Alg ¥Σ′-Alg ¥Σ′′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg ( ¥Σ′′ + ¥Ψ)-Alg

𝑀 ¥Σ
𝑀𝑇

𝑇

𝑀 ¥Σ′
𝑀𝑇′

𝑇′

𝑀 ¥Σ′′

𝑇+ ¥Ψ 𝑇′+ ¥Ψ

Specially, the data of a strict modular model 𝑀 of ¥Ψ ∈ F is only a family of

functors 𝑀 ¥Σ such that the following diagram in CAT commutes:

¥Σ-Alg ¥Σ′-Alg

( ¥Σ + ¥Ψ)-Alg ( ¥Σ′ + ¥Ψ)-Alg

𝑀 ¥Σ

𝑇

𝑀 ¥Σ′

𝑇+ ¥Ψ

(3.1)

Therefore a strict modular model for ¥Ψ is exactly an ordinary natural transforma-

tion between the functors (−)-Alg and (− + ¥Ψ)-Alg : Fop→ CAT.

3.1*7 Example. For a trivial example, let F be the operation family containing

only the initial object ⟨Mon, Id : Mon → Mon⟩ of Mon/Eqs(ℰ). In this case,

⟨Mon, Id⟩ + ⟨Mon, Id⟩ is still ⟨Mon, Id⟩, so a modular model of ⟨Mon, Id⟩ is

exactly an endofunctor Mon(ℰ) →Mon(ℰ) over the category of monoids inℰ.

3.1*8 Example. Let ℰ be ⟨Endo𝜅(𝒞), ◦, Id⟩ for l𝜅p 𝒞. A strict modular model

𝑀 for the theory Et𝐸 of exception throwing (Example 2.4*8) in the family Alg(ℰ)
of algebraic operations is given by a family of functors

𝑀 ¥Σ : ¥Σ-Alg→ (¥Σ + Et𝐸)-Alg

natural in ¥Σ ∈ Alg(ℰ). Recall that each ⟨ ¤Σ, 𝑇Σ⟩ ∈ Alg(ℰ) is of the form

(𝑆 □ −)-Mon ↰ (K𝐺 ⊢ 𝐿 = 𝑅)

for some 𝑆 and 𝐺 ∈ Endo𝜅(𝒞), so objects of ¥Σ-Alg are tuples

⟨𝐴 ∈ Endo𝜅(𝒞), 𝛼 : 𝑆 ◦ 𝐴→ 𝐴, 𝜂𝐴 : Id→ 𝐴, 𝜇𝐴 : 𝐴 ◦ 𝐴→ 𝐴⟩

that are mapped by 𝐿 and 𝑅 to the same algebra. We define 𝑀 ¥Σ to send each

of them to a ( ¥Σ + Et𝐸)-algebra carried by 𝐶𝐴 := 𝐴 ◦ (�̄� + Id), i.e. the exception

70



monad transformer applied to 𝐴, where �̄� is the 𝐸-fold coproduct of the terminal

object 1 in Endo𝜅(𝒞). Using the internal language of Endo𝜅(𝒞), the operations

[𝛼♯ , 𝛽] : (𝑆 ◦ 𝐶𝐴) + �̄�→ 𝐶𝐴 are

𝛼♯ = J𝑠 : 𝑆, 𝑎 : 𝐴, 𝑒 : �̄� + Id ⊢ (𝛼(𝑠, 𝑎), 𝑒) : 𝐶𝐴K

𝛽 = J𝑒 : �̄� ⊢ (𝜂𝐴 , 𝜄1 𝑒) : 𝐶𝐴K

and 𝐶𝐴 has the following monad structure:

𝜂𝐶 = J⊢ (𝜂𝐴 , 𝜄2(∗)) : 𝐶𝐴K
𝜇𝐶 = J𝑎 : 𝐴, 𝑒 : �̄� + Id, 𝑎′ : 𝐴, 𝑒′ : �̄� + Id ⊢

let (𝑎′′, 𝑒′′) = 𝑑(𝑒 , 𝑎′) in (𝜇𝐴(𝑎, 𝑎′′), 𝜇�̄�+Id(𝑒′′, 𝑒′))K

where 𝑑 : (�̄� + Id) ◦ 𝐴→ 𝐴 ◦ (�̄� + Id) is the following distributive law:

𝑒 : �̄� + Id, 𝑎 : 𝐴 ⊢ case 𝑒 of { 𝜄1 𝑒′ ↦→ (𝜂𝐴 , 𝜄1𝑒′); 𝜄2 ∗ ↦→ (𝑎, 𝜄2∗) : 𝐶𝐴},

and 𝜇�̄�+Id
is the multiplication of the exception monad �̄� + Id:

𝑥 : �̄� + Id, 𝑦 : �̄� + Id ⊢ case 𝑥 of { 𝜄1 𝑒 ↦→ 𝜄1 𝑒; 𝜄2 ∗ ↦→ 𝑦} : �̄� + Id.

On morphisms, 𝑀 ¥Σ sends a ¤Σ-homomorphism ℎ : 𝐴→ 𝐵 to ℎ ◦ (�̄� + Id).
We need to check that the family of functors 𝑀 ¥Σ satisfies the naturality square

(3.1): for all morphisms 𝑇 : ¥Σ → ¥Σ′, every object ⟨𝐴, 𝛼, 𝜂𝐴 , 𝜇𝐴⟩ of ¥Σ′-Alg is

mapped by functors 𝑀 ¥Σ ◦ 𝑇 and (𝑇 + Et𝐸) ◦𝑀 ¥Σ′ to two objects in ( ¥Σ + Et𝐸)-Alg

with the same carrier 𝐶𝐴, the same Et𝐸-algebra structure, and the same monad

structure by construction. We need to show that the respective ¥Σ-algebras on 𝐶𝐴

are also the same: the ¥Σ-algebra on 𝐶𝐴 from 𝑀 ¥Σ ◦ 𝑇 is

𝑇𝛼 ◦ (�̄� + Id) : 𝑆 ◦ 𝐴 ◦ (�̄� + Id) → 𝐴 ◦ (�̄� + Id),

and the one from (𝑇 + Et𝐸) ◦𝑀 ¥Σ′ is 𝑇(𝛼 ◦ (�̄� + Id)). By 2.4*12, it is sufficient to

show that the following diagram commutes

𝑆 𝑆 ◦ 𝐶𝐴 𝐶𝐴
𝑆◦𝜂𝐶

𝑇𝛼◦(�̄�+Id)

𝑇(𝛼◦(�̄�+Id))
(3.2)

To see this, we first observe that we have the following ¥Σ′-homomorphism square:

𝑆′ ◦ 𝐴 𝐴

𝑆′ ◦ 𝐴 ◦ (�̄� + Id) 𝐴 ◦ (�̄� + Id)

𝛼

𝑆′◦𝐴◦𝜄2 𝐴◦𝜄2

𝛼◦(�̄�+Id)

71



and this square is mapped by the translation 𝑇 to a commuting square

𝑆 ◦ 𝐴 𝐴

𝑆 ◦ 𝐴 ◦ (�̄� + Id) 𝐴 ◦ (�̄� + Id)

𝑇𝛼

𝑆◦𝐴◦𝜄2 𝐴◦𝜄2

𝑇(𝛼◦(�̄�+Id))

This implies (3.2) because

𝑇(𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝜂𝐶)
= {definition of 𝜂𝐶}
𝑇(𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝐴 ◦ 𝜄2) · (𝑆 ◦ 𝜂𝐴)

= {by the last commutativity square above}
(𝐴 ◦ 𝜄2) · 𝑇𝛼 · (𝑆 ◦ 𝜂𝐴)

= {by naturality}
(𝑇𝛼 ◦ (�̄� + Id)) · (𝐴 ◦ 𝜄2) · (𝑆 ◦ 𝜂𝐴)

= (𝑇𝛼 ◦ (�̄� + Id)) · (𝑆 ◦ 𝜂𝐶)

3.1*9. CAT-valued functors also known as (strict) indexed categories, which are

equivalent to split fibrations via the Grothendieck construction, so we can alternatively

formulate modular models based on fibrations. The fibrational formulation is

usually easier to work with, especially when we talk about morphisms between

modular models later, which would be a 3-categorical concept in the indexed-

category formulation. Also, the fibrational formulation slightly simplifies some

‘dependently typed’ constructions such as mapping each ¥Σ in F to the initial

algebra in ¥Σ-Alg. We will only need the very basics about fibrations (see e.g.

Borceux [1994b]; Jacobs [1999]; Streicher [2023]), which we review below.

3.1*10 (Fibrations). Let 𝑃 : 𝒯 →ℬ be a functor. A morphism 𝑓 : 𝑋 → 𝑌 in 𝒯 is

called cartesian if for every 𝑔 : 𝑍→ 𝑌 and 𝑤 : 𝑃𝑍→ 𝑃𝑋 such that 𝑃𝑔 = 𝑃 𝑓 · 𝑤,

there is a unique ℎ : 𝑍→ 𝑋 in 𝒯 satisfying 𝑃ℎ = 𝑤 and 𝑓 · ℎ = 𝑔:

𝑍

𝑋 𝑌 𝒯

𝑃𝑍

𝑃𝑋 𝑃𝑌 ℬ

ℎ

𝑔

𝑓

𝑤

𝑃𝑔

𝑃 𝑓

𝑃

The functor 𝑃 called a (Grothendieck) fibration if for every morphism 𝑢 : 𝐼 → 𝐽

72



in ℬ and object 𝑌 ∈ 𝒯 such that 𝑃𝑌 = 𝐽, there exists a cartesian morphism

𝑓 : 𝑋 → 𝑌 in 𝒯 with 𝑃 𝑓 = 𝑢. It is customary to call the category 𝒯 the total
category and ℬ the base category. If an object 𝑋 or a morphism 𝑓 in 𝒯 is sent by

the functor 𝑃 to an object 𝐼 or a morphism 𝑢 in ℬ, we colloquially say that 𝑋 or 𝑓

is over 𝐼 or 𝑢. Given an object 𝐼 ∈ ℬ, the fiber category 𝒯𝐼 over 𝐼 is the subcategory

of 𝒯 consisting of objects over 𝐼 and morphisms over id𝐼 .
A cleavage for a fibration𝑃 : 𝒯 →ℬ is an assignment𝜅 of cartesian morphisms

𝜅(𝑌, 𝑢) over 𝑢 to all pairs of 𝑌 ∈ 𝒯 and 𝑢 : 𝐼 → 𝑃𝑌 for some 𝐼 ∈ ℬ. A

cleavage 𝜅 is said to be a split cleavage if it is functorial: 𝜅(𝑌, id𝑃𝑌) = id𝑌 and

𝜅(𝑌, 𝑢 · 𝑣) = 𝜅(𝑌, 𝑢) · 𝜅(Dom𝜅(𝑌, 𝑢), 𝑣). A split fibration is a fibration 𝑃 : 𝒯 →ℬ

equipped with a split cleavage.

Let 𝑃 : 𝒯 →ℬ be a fibration with a cleavage 𝜅. For every morphism 𝑢 : 𝐼 → 𝐽

in the base category ℬ, the reindexing functor 𝑢∗ : 𝒯𝐽 → 𝒯𝐼 sends every object

𝑌 ∈ 𝒯𝐽 to the domain object 𝑋 ∈ 𝒯𝐼 of the morphism 𝜅(𝑌, 𝑢) : 𝑋 → 𝑌 and sends

every morphism 𝑓 : 𝑌 → 𝑌′ in 𝒯𝐼 to the morphism ℎ : 𝑢∗𝑌 → 𝑢∗𝑌′ as follows:

𝑢∗𝑌 𝑌

𝑢∗𝑌′ 𝑌′

𝐼 𝐽

𝐼 𝐽

𝜅(𝑌,𝑢)

ℎ
𝑓

𝜅(𝑌′,𝑢)

𝑢

id
id

𝑢

where ℎ is obtained from the cartesianess of 𝜅(𝑌′, 𝑢) : 𝑢∗𝑌′ → 𝑌′ and the fact

that 𝑃( 𝑓 · 𝜅(𝑌, 𝑢)) = id · 𝑢 = 𝑢 = 𝑃(𝜅(𝑌′, 𝑢)). The functoriality of 𝑢∗ : 𝒯𝐽 → 𝒯𝐼 is

a consequence of the uniqueness part of cartesianess.

A morphism 𝑃 → 𝑃′ of fibrations is a pair of functors ⟨𝐹, 𝐺⟩ such that

the diagram below commutes and 𝐹 maps cartesian morphisms to cartesian

morphisms. A morphism ⟨𝑃, 𝜅⟩ → ⟨𝑃′, 𝜅′⟩ of split fibrations is a morphism

⟨𝐹, 𝐺⟩ : 𝑃 → 𝑃′ that strictly preserves the split cleavage: 𝐹𝜅(𝑌, 𝑢) = 𝜅(𝐹𝑌, 𝐺𝑢).

𝒯 𝒯
′

ℬ ℬ
′

𝐹

𝑃

𝐺

𝑃′ (3.3)

With component-wise identity functors and functor composition, fibrations (resp.

split fibrations) and morphisms form a category Fib (resp. Fib
𝑠
). Also, given a

category ℬ, there is a subcategory Fibℬ ⊆ Fib (resp. Fib
𝑠
ℬ
⊆ Fib

𝑠
) containing all

(resp. split) fibrations over ℬ and morphisms ⟨𝐹, Id : ℬ→ℬ⟩ : 𝑃 → 𝑃′.

73



Let 𝑃 : 𝒯 → ℬ be a fibration and 𝐹 : 𝒞 → ℬ be a functor. A basic

result [Jacobs 1999, Lemma 1.5.1] in fibred category theory is that the pullback

𝐹∗𝑃 : 𝐹∗𝒯 → 𝒞 of 𝑃 along 𝐹 in the (1-)category CAT is still a fibration:

𝐹∗𝒯 𝒯

𝒞 ℬ

𝐹∗𝑃 𝑃

𝐹

The fibration 𝐹∗𝑃 is called the change of base of 𝑃 along 𝐹. Moreover, if 𝑃

has a split cleavage then so does 𝐹∗𝑃. Explicitly, the objects of 𝐹∗𝒯 are pairs

⟨𝐼 ∈ 𝒞, 𝑋 ∈ 𝒯⟩ such that 𝐹𝐼 = 𝑃𝑋, the morphisms ⟨𝐼 , 𝑋⟩ → ⟨𝐽 , 𝑌⟩ in 𝐹∗𝒯 are

pairs ⟨ 𝑓 : 𝐼 → 𝐽 , 𝑔 : 𝑋 → 𝑌⟩ such that 𝐹 𝑓 = 𝑃𝑔. A morphism ⟨ 𝑓 , 𝑔⟩ in 𝐹∗𝒯 is

cartesian if and only if 𝑔 is cartesian.

3.1*11 Definition. Given a functor 𝐹 : ℬ
op→ CAT, the Grothendieck construction

is a split fibration 𝑃 : ∫ 𝐹→ℬ where the category ∫ 𝐹 has tuples ⟨𝐼 ∈ ℬ, 𝑎 ∈ 𝐹𝐼⟩
as objects, and its morphisms ⟨𝐼 , 𝑎⟩ → ⟨𝐽 , 𝑎′⟩ are pairs ⟨ 𝑓 , 𝑔⟩ for 𝑓 : 𝐼 → 𝐽

in ℬ and 𝑔 : 𝑎 → 𝐹 𝑓 𝑎′ in the category 𝐹𝐼. Identity arrows are ⟨id, id⟩ and

composition ⟨ 𝑓 ′, 𝑔′⟩ · ⟨ 𝑓 , 𝑔⟩ is ⟨ 𝑓 ′ · 𝑓 , 𝑔′ · 𝐹 𝑓 ′𝑔⟩. The fibration 𝑃 : ∫ 𝐹 → ℬ

is simply the projection functor ⟨𝐼 , 𝑎⟩ ↦→ 𝐼 for the first component. The split

cleavage 𝜅(⟨𝐼 , 𝑎⟩, 𝑢) for some 𝑢 : 𝐽 → 𝐼 is ⟨𝑢, id⟩ : ⟨𝐽 , (𝐹𝑢)𝑎⟩ → ⟨𝐼 , 𝑎⟩.

3.1*12. Applying Grothendieck construction to (−)-Alg : Fop → CAT, we

obtain a (split) fibration 𝑃 : F-Alg→ F , which we explicitly describe below. The

intuition is that F-Alg is the category of all models of all equational systems in F .

The objects of the category F-Alg are tuples

⟨ ¤Σ ∈ Eqs(ℰ), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ ℰ, 𝛼 : Σ𝐴→ 𝐴⟩

such that ⟨ ¤Σ, 𝑇Σ⟩ ∈ F and ⟨𝐴, 𝛼⟩ ∈ ¤Σ-Alg. Morphisms between two objects

⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩ and ⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ are pairs ⟨𝑇, ℎ⟩ where 𝑇 : ¤Σ → ¤Ψ is a functorial

translation in F , and the other component ℎ : 𝐴 → 𝐵 ∈ ℰ is a ¤Σ-algebra

homomorphism from ⟨𝐴, 𝛼⟩ to 𝑇⟨𝐵, 𝛽⟩:

Σ𝐵 Σ𝐴

𝐵 𝐴

𝛼𝑇𝛽

ℎ

Σℎ

in ¤Σ-Alg

𝑇←−−−−−
Ψ𝐵

𝐵

𝛽 in ¤Ψ-Alg

The identities in F-Alg are pairs ⟨Id : ¤Σ→ ¤Σ, id : 𝐴→ 𝐴⟩, and the composition

of two morphisms ⟨𝑇, ℎ⟩ and ⟨𝑇′, ℎ′⟩ is ⟨𝑇 ◦ 𝑇′, ℎ · ℎ′⟩.
The fibration 𝑃 : F-Alg→ F is the projection: 𝑃⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩ = ⟨ ¤Σ, 𝑇Σ⟩ and

𝑃⟨𝑇, ℎ⟩ = 𝑇. It has a split cleavage assigning to every pair of a morphism

𝑇 : ⟨ ¤Σ, 𝑇Σ⟩ → ⟨ ¤Ψ, 𝑇Ψ⟩ ∈ F and an object ⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ ∈ F-Alg a cartesian

74



morphism ⟨𝑇, id⟩ : ⟨ ¤Σ, 𝑇Σ, 𝐵, 𝑇𝛽⟩ → ⟨ ¤Ψ, 𝑇Ψ, 𝐵, 𝛽⟩ in F-Alg.

3.1*13 Example. Given an object ¥Ψ ∈ F , the Grothendieck construction of the

functor (− + ¥Ψ)-Alg : Fop → CAT is a split fibration 𝑄 : (F + ¥Ψ)-Alg → F .

Explicitly, the objects of (F + ¥Ψ)-Alg are tuples:

⟨ ¤Σ ∈ Eqs(ℰ), 𝑇Σ : Mon→ ¤Σ, 𝐴 ∈ ℰ, 𝛼 : Σ𝐴→ 𝐴, 𝛽 : Ψ𝐴→ 𝐴⟩

such that ⟨ ¤Σ, 𝑇Σ⟩ ∈ F , ⟨𝐴, 𝛼⟩ ∈ ¤Σ-Alg, ⟨𝐴, 𝛽⟩ ∈ ¤Ψ-Alg, and 𝑇Ψ𝛼 = 𝑇Σ𝛽. Mor-

phisms in (F + ¤Ψ)-Alg are similar to those ⟨𝑇, ℎ⟩ in F-Alg, but require ℎ also to

be a ¤Ψ-homomorphism. Therefore, objects of (F + ¥Ψ)-Alg are models of some

equational systems in F that are additionally equipped with a ¥Ψ-algebra. The

functor 𝑄 is the projection ⟨ ¤Σ, 𝑇, 𝐴, 𝛼, 𝛽⟩ ↦→ ⟨ ¤Σ, 𝑇⟩.
The split fibration 𝑄 : (F + ¥Ψ)-Alg → F can be alternatively given as the

change of base of the fibration𝑃 : F-Mon→ F along the functor (−+ ¥Ψ) : F → F ,

which is the following pullback in the category CAT of large categories:

(F + ¥Ψ)-Alg F-Alg

F F

𝑃

−+ ¥Ψ

𝐾

𝑄
(3.4)

The functor 𝐾 maps objects ⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼, 𝛽⟩ to ⟨⟨ ¤Σ, 𝑇Σ⟩ + ⟨ ¤Ψ, 𝑇Ψ⟩, 𝐴, [𝛼, 𝛽]⟩. The

pair ⟨𝐾, (− + ¤Ψ)⟩ is a morphism of split fibrations 𝑄 → 𝑃.

3.1*14 Example. Let 𝒞 be a category with finite limits. For every 𝑋 ∈ 𝒞, the full

subcategory of the slice category 𝒞/𝑋 containing monomorphisms is a preorder.

Considering the elements of this preorder up to isomorphism, we obtain a partial

order Sub(𝑋), whose elements are called subobjects of 𝑋. This extends to a functor

Sub : 𝒞
op→ CAT which acts on 𝑓 : 𝑋 → 𝑌 by pulling back along 𝑓 :

𝑓 ∗𝐴 𝐴

𝑋 𝑌
𝑓

The Grothendieck construction of Sub gives us a split fibration 𝒮→ 𝒞, where

the total category 𝒮 has as objects ⟨𝑋 ∈ 𝒞, 𝐴 ∈ Sub(𝑋)⟩, and a morphism

⟨𝑋, 𝐴⟩ → ⟨𝑌, 𝐵⟩ is a 𝒞-morphism 𝑓 : 𝑋 → 𝑌 such that there is a (necessarily

unique) 𝑖 satisfying 𝑓 · 𝑎 = 𝑏 · 𝑖 for all representative elements 𝑎 of 𝐴 and 𝑏 of 𝐵:

Dom 𝑎 Dom 𝑏

𝑋 𝑌

𝑖

𝑎 𝑏

𝑓

75



The category 𝒮 can be understood as the category of predicates on 𝒞-objects.

3.1*15 Definition. Given two fibrations 𝑃 : ℰ → ℬ and 𝑃′ : ℰ
′ → ℬ

′
, a lifting

of a functor 𝐹 : ℬ → ℬ
′

along 𝑃 and 𝑃′ is a functor 𝐺 : ℰ → ℰ
′

making the

following diagram commute strictly:

ℰ ℰ
′

ℬ ℬ
′

𝐺

𝑃 𝑃′

𝐹

The lifting is called fibred if ⟨𝐹, 𝐺⟩ is a morphism of fibrations (i.e. 𝐺 preserves all

cartesian morphisms). When 𝑃 and 𝑃′ have split cleavages, the lifting 𝐺 is called

split if ⟨𝐹, 𝐺⟩ is a morphism of split fibrations.

A morphism between two liftings 𝐺 → 𝐻 of 𝐹 is a natural transformation

𝜎 : 𝑀 → 𝑁 that is vertical, i.e. 𝑃′𝜎 = id𝑇◦𝑃 :

ℰ ℰ
′

ℬ ℬ
′

𝐺

𝐻𝑃 𝑃′

𝐹

𝜎

Liftings of 𝐹 along 𝑃 and 𝑃′ and morphisms between them form a category

Lift𝑃,𝑃′(𝐹), whose identity morphisms are the identity natural transformations,

and composition is vertical composition of natural transformations.

3.1*16 (Modular models as liftings). Using the language of fibrations, we have

now a very concise alternative formulation of modular models: a (strong/strict)

modular model 𝑀 of ¥Ψ ∈ F is just a (fibred/split) lifting of the endofunctor

(− + ¥Ψ) : F → F along the fibration 𝑃 : F-Alg→ F from 3.1*12:

F-Alg F-Alg

F F

𝑀

𝑃 𝑃

−+ ¥Ψ

The commutativity of the square ensures that the functor 𝑀 maps every object

⟨ ¥Σ, 𝐴, 𝛼⟩ to an object ⟨ ¥Σ + ¥Ψ, 𝐵, 𝛽⟩. Below, we show that this formulation of

modular models is equivalent to Definition 3.1*5 based on indexed categories.

3.1*17 Lemma. Given two fibrations 𝑃 : 𝒯 → ℬ, 𝑃′ : 𝒯
′ → ℬ

′
, and a functor

𝐹 : ℬ→ℬ
′
, let 𝐹∗𝑃′ : 𝐹∗𝒯′→ℬ be the change of base of 𝑃′ along 𝐹.

1. Liftings of 𝐹 along 𝑃 and 𝑃′ are in bĳection with CAT/ℬ(𝑃, 𝐹∗𝑃′).
2. Fibred liftings of 𝐹 along 𝑃 and 𝑃′ are in bĳection with Fibℬ(𝑃, 𝐹∗𝑃′).

76



3. If 𝑃 and 𝑃′ are equipped with split cleavages, split liftings of 𝐹 along 𝑃 and

𝑃′ are in bĳection with Fib
𝑠
ℬ
(𝑃, 𝐹∗𝑃′).

Proof. By definition, 𝐹∗𝑃′ is the pullback in the following diagram:

𝒯

𝐹∗𝒯 𝒯
′

ℬ ℬ
′

𝐻

𝐺

𝑃

𝐾

𝐹∗𝑃′ 𝑃′

𝐹

By definition, liftings of 𝐹 are functors 𝐺 : 𝒯 → 𝒯
′
such that 𝐹 ◦ 𝑃 = 𝑃′ ◦ 𝐺, so

by the universal property of the pullback, liftings 𝐺 are in bĳection with functors

𝐻 : 𝒯 → 𝐹∗𝒯′ such that (𝐹∗𝑃′) ◦ 𝐻 = 𝑃, and the backward direction is given by

𝐻 ↦→ 𝐾 ◦ 𝐻. This is the first item in the statement.

This bĳection cuts down to fibred (resp. split) liftings. The functor 𝐾 always

preserves cartesian morphisms and the split cleavage. Hence from one direction,

if 𝐻 preserves cartesian morphisms (resp. split cleavage), then so does 𝐾 ◦ 𝐻.

From the other direction, if𝐺 preserves cartesian morphisms (resp. split cleavage),

then the functor 𝐻 sends a cartesian morphism 𝑓 in 𝒯 to the pair ⟨𝑃 𝑓 , 𝐺 𝑓 ⟩,
which is cartesian with respect to the fibration 𝐹∗𝑃′. □

3.1*18 Lemma. For a category 𝒞 and two functors 𝐹, 𝐺 : 𝒞
op → CAT, denote

the Grothendieck construction of 𝐹 and 𝐺 by 𝑝 : ∫ 𝐹 → 𝒞 and 𝑞 : ∫ 𝐺 → 𝒞.

Oplax transformations 𝐹→ 𝐺 are in bĳection with CAT/𝒞(𝑝, 𝑞).

Proof. For one direction, given an oplax transformation 𝛼 : 𝐹→ 𝐺, we define a

functor 𝐾 : ∫ 𝐹→ ∫ 𝐺 as follows. On objects, 𝐾 sends every object ⟨𝐼 ∈ 𝒞, 𝑎 ∈ 𝐹𝐼⟩
to ⟨𝐼 , 𝛼𝐼𝑎 ∈ 𝐺𝐼⟩. On morphisms, 𝐾 sends every morphism

⟨ 𝑓 : 𝐼 → 𝐽 , 𝑔 : 𝑎 → (𝐹 𝑓 )𝑏⟩ : ⟨𝐼 , 𝑎⟩ → ⟨𝐽 , 𝑏⟩

in ∫ 𝐹 to ⟨ 𝑓 , 𝑔′⟩ where 𝑔′ is the following morphism in the fiber category 𝐺𝐼 :

𝛼𝐼𝑎
𝛼𝐼 𝑔−−→ 𝛼𝐼(𝐹 𝑓 𝑏)

𝛼 𝑓 ,𝑏
−−−→ (𝐺 𝑓 )𝛼𝐽𝑏.

The functor preserves identities and composition following the unity and compo-

sition axioms of oplax transformations.

For the other direction, given a functor 𝐾 : ∫ 𝐹 → ∫ 𝐺 with 𝑞 ◦ 𝐹 = 𝑝, we

define an oplax transformation 𝛼 : 𝐹 → 𝐺 as follows. For every object 𝐼 ∈ 𝒞,

we define the functor 𝛼𝐼 : 𝐹𝐼 → 𝐺𝐼 to be 𝐾 restricted to the fiber category of ∫ 𝐹
over 𝐼. For every 𝑓 : 𝐼 → 𝐽 in 𝒞, we need to define a natural transformation

𝛼 𝑓 : 𝛼𝐼 ◦ 𝐹 𝑓 → 𝐺 𝑓 ◦ 𝛼𝐽 : 𝐹𝐽 → 𝐺𝐼. For each object 𝑏 ∈ 𝐹𝐽, there is a morphism

77



⟨ 𝑓 , id⟩ : ⟨𝐼 , (𝐹 𝑓 )𝑏⟩ → ⟨𝐽 , 𝑏⟩ in the total category ∫ 𝐹, and this morphism is

mapped by 𝐾 to some ⟨ 𝑓 , 𝑔⟩ : ⟨𝐼 , 𝛼𝐼(𝐹 𝑓 𝑏)⟩ → ⟨𝐽 , 𝛼𝐽𝑏⟩, we define the natural

transformation 𝛼 𝑓 to be

𝛼 𝑓 ,𝑏 := 𝑔 : 𝛼𝐼(𝐹 𝑓 𝑏) → 𝐺 𝑓 (𝛼𝐽𝑏)

in the fiber category 𝐹𝐼. For every ℎ : 𝑏 → 𝑏′ in 𝐹𝐽, the naturality of 𝛼 𝑓 follows

from the fact that the following diagram commutes in ∫ 𝐹:

𝐼 , 𝐹 𝑓 𝑏 𝐽 , 𝑏

𝐼, 𝐹 𝑓 𝑏′ 𝐽 , 𝑏′

𝑓 ,𝑖𝑑

𝑖𝑑,ℎ𝑖𝑑,𝐹 𝑓 ℎ

𝑓 ,𝑖𝑑

and 𝐾 maps this diagram to ∫ 𝐺, which is the back square in

𝐼 , 𝛼𝐼(𝐹 𝑓 )𝑏 𝐽, 𝛼𝐽𝑏

𝐼, 𝐺 𝑓 𝛼𝐽𝑏

𝐼, 𝛼𝐼(𝐹 𝑓 )𝑏′ 𝐽 , 𝛼𝐽𝑏′

𝐼 , 𝐺 𝑓 𝛼𝐽𝑏′

𝐾⟨ 𝑓 ,id⟩

id,𝛼𝐽 ℎid,𝛼𝐼(𝐹 𝑓 )ℎ

𝐾⟨ 𝑓 ,id⟩

𝑓 ,idid,𝛼 𝑓 𝑏′

id,𝛼 𝑓 𝑏 𝑓 ,id

id,𝐺 𝑓 (𝛼𝐽 ℎ)

We observe that in this diagram the two triangles commute by the definition of

𝛼 𝑓 𝑏 and 𝛼 𝑓 𝑏′; the right diagram commute by the definition of arrow composition

in ∫ 𝐺. Hence the following diagram commute, which implies the naturality of

𝛼 𝑓 :

𝐼 , 𝛼𝐼(𝐹 𝑓 )𝑏

𝐼, 𝐺 𝑓 𝛼𝐽𝑏

𝐼, 𝛼𝐼(𝐹 𝑓 )𝑏′ 𝐽 , 𝛼𝐽𝑏′

𝐼 , 𝐺 𝑓 𝛼𝐽𝑏′

id,𝛼𝐼(𝐹 𝑓 )ℎ

𝑓 ,idid,𝛼 𝑓 𝑏′

id,𝛼 𝑓 𝑏

id,𝐺 𝑓 𝛼𝐽 ℎ

It can be checked that this natural transformations satisfies the axioms of oplax

transformations and that the two directions define a bĳection. □

3.1*19 Theorem. For every ¥Ψ ∈ F , the following are in bĳection with each other:

1. modular models (resp. strong or strict modular models) as in Definition 3.1∗5,

78



2. functors in CAT/F(𝑃, 𝑄) (resp. morphisms of fibrations or split fibrations from
𝑃 to 𝑄) where the split fibrations 𝑃 and 𝑄 are as in (3.4), and

3. liftings (resp. fibred or split liftings) of the endofunctor (− + ¥Ψ) : F → F along
the fibration 𝑃 : F-Alg→ F .

Proof. The bĳection between 2 and 3 is Lemma 3.1*17. The bĳection between mod-

ular models and morphisms in CAT/F is Lemma 3.1*18. The bĳection between

strong (resp. strict) modular models – which are exactly strong transformations

(resp. natural transformations) between CAT-valued functors – and morphisms

of fibrations (resp. split fibrations) is standard [Jacobs 1999, §1.10]. □

3.1*20 Notation. In the future, we will leave implicit the conversion between

modular models as oplax transformations and as liftings of functors, so we may

say ‘a modular model 𝑀 : F-Alg→ F-Alg of ¥Ψ’.

3.1*21. One advantage of the fibrational formulation is that we avoid the need

of a category of categories CAT bigger than the base category. Also, it reduces

the 2-categorical notion of oplax transformations to the 1-categorical notion of

functors. Consequently, 3-categorical concepts can be avoided when talking

about transformations of modular models, such as homomorphisms between

modular models and the concept of updaters below.

3.1*22 Definition. Let 𝑀 be a modular model of ¥Ψ ∈ F given in the lifting form.

An updater 𝑢 for 𝑀 is a natural transformation 𝑢 : Id→ 𝑀 such that

(𝑃 ◦ 𝑢) = (𝜄1 ◦ 𝑃) : 𝑃 → (𝑃 ◦𝑀) = (− + ¥Ψ) ◦ 𝑃

where 𝜄1 : (−) → (−) + ¥Ψ is the coprojection in F :

F-Alg F-Alg

F F

Id

𝑀

𝑃 𝑃

(−)

−+ ¥Ψ

𝑢

𝜄1

3.1*23. For an object ⟨ ¥Σ, 𝐴, 𝛼⟩ ∈ F-Alg, the component of 𝑢 at this object is a

¥Σ-homomorphism from ⟨𝐴, 𝛼⟩ to the algebra𝑀⟨ ¥Σ, 𝐴, 𝛼⟩ forgetting the ¥Ψ-algebra.

If we informally think of ¥Σ as a programming language, ¥Ψ as the new feature in

a new release of the programming language, and ⟨𝐴, 𝛼⟩ as the existing compiled

programs of ¥Σ, then the role of 𝑢 is updating existing compiled programs to the

new version, hence its name ‘updater’.

79



3.1*24. In the setting of Example 3.1*7, updaters correspond to exactly the lifting
operation 𝑙 : Id → 𝑇 : Mon(ℰ) → Mon(ℰ) of monad/monoid transformers

[Jaskelioff and Moggi 2010]. We have switched to the terminology lifting to avoid

the confusion with liftings along fibrations (Definition 3.1*15).

3.1*25. Assuming objects of F have initial algebras, the ‘dependently typed’

mapping sending every ⟨ ¤Σ, 𝑇Σ⟩ ∈ F to its initial algebra 𝜇 ¤Σ can be conveniently

formulated as a functor (−)★ : F → F-Alg using the fibrational language:

¥Σ★ = ⟨ ¤Σ, 𝑇Σ, 𝜇 ¤Σ, 𝛼Σ
: Σ(𝜇 ¤Σ) → 𝜇 ¤Σ⟩ (3.5)

(𝑇 : ¥Σ→ ¥Ψ)★ = ⟨𝑇, ! : ⟨𝜇 ¤Σ, 𝛼Σ⟩ → 𝑇⟨𝜇 ¤Ψ, 𝛼Ψ⟩⟩

where ! is the unique ¤Σ-homomorphism out of the initial algebra 𝜇 ¤Σ.

Let 𝑀 be a modular model of some ¥Ψ ∈ F in the lifting form. For every ¥Σ ∈ F ,

we have a unique ( ¥Σ + ¥Ψ)-homomorphism out of the initial algebra ( ¥Σ + ¥Ψ)★:

ℎ𝑀¥Σ : ( ¥Σ + ¥Ψ)★→ 𝑀 ¥Σ★, (3.6)

which defines a natural transformation

ℎ𝑀 : (− + ¥Ψ)★→ 𝑀(−)★ : F → F-Alg. (3.7)

This is how 𝑀 modularly handles/interprets ¤Ψ-operations in programs ( ¥Σ+ ¥Ψ)★
with both ¥Ψ-operations and some other ¥Σ-operations, leaving operations from the

other theory ¥Σ uninterpreted. Specially, ¥Σ can be the initial object ⟨Mon, Id⟩ of F ,

whose initial algebra is the initial monoid 𝐼. In this case, the morphism ℎ𝑀
Mon,Id

:

¥Ψ★→ 𝑀𝐼 interprets the abstract syntax ¥Ψ★
with no ‘residual operations’.

3.1*26 Remark. Since ¥Σ + ¥Ψ extends the theory of monoids, the interpretation

morphism (3.6) is always a monoid morphism, so it preserves monoid mul-

tiplication 𝜇. This is called the semantic substitution lemma [Tennent 1991] for

ℰ = ⟨Set
Fin, •, 𝑉⟩ since 𝜇 stands for substitution in this case.

3.2 Model Transformers

3.2*1. In the last section, we have seen modular models of theories of monoids

with operations as liftings of endofunctors − + ¥Ψ along a fibration 𝑃:

F-Alg F-Alg

F F

𝑀

𝑃 𝑃

−+ ¥Ψ

(3.8)

But there is no reason that the idea of modular models is specific to coproducts

− + ¥Ψ or the fibration F-Alg → F for algebras and theories of monoids with

80



operations, since we may be interested in ways of combining algebraic theories

other than coproducts, and we may be interested in other fibrations of theories

and algebras. Thus we shall just study liftings of arbitrary functors along two

possibly different fibrations. In this section, we justify the generalisation by

showing a few more instances of liftings along fibrations related to modularity.

3.2*2 (Commutative combination). Consider ℰ = ⟨Endo𝜅(𝒞), ◦, Id⟩ for some

𝒞 that is l𝜅p as a cartesian closed category, as ωCpo and Set. For functors

𝐴1, 𝐴2 ∈ Endo𝜅(𝒞), we had seen the Day tensor product 𝐴1 ⊗ 𝐴2 in Section 2.1.6:

(𝐴1 ⊗ 𝐴2)𝑛 =
∫ 𝑚,𝑘∈𝒞𝜅

𝐴1𝑚 × 𝐴2𝑘 × 𝑛𝑚×𝑘 ,

which is intuitively a pair of 𝐴1-operation and 𝐴2-operation that do not depend

on each other. This is clearly symmetric, so we have an isomorphism

𝑠 : 𝐴1 ∗ 𝐴2 � 𝐴2 ∗ 𝐴1.

Also, there is a canonical morphism 𝑖 : 𝐴1 ∗ 𝐴2→ 𝐴1 ◦ 𝐴2 as shown in 2.1.6*3.

We define a functor ⊗ : Alg(ℰ) × Alg(ℰ) → Alg(ℰ) as follows, which is

closely related to the commutative combination, also known as the tensor, of enriched

algebraic theories [Hyland et al. 2006]. Let ¥Σ𝑖 ∈ Alg(ℰ) be

⟨(𝐴𝑖 □ −)-Mon ↰ (K𝐵𝑖 ⊢ 𝐿𝑖 = 𝑅𝑖), 𝑇𝑖⟩, for 𝑖 = 1, 2.

We define ¥Σ1 ⊗ ¥Σ2 to be ¥Σ1 + ¥Σ2 extended with the following (constant) equation

𝑜 : 𝐴1 ∗ 𝐴2 ⊢ 𝑓 (𝑖 𝑜) = 𝑓 (𝑖 (𝑠 𝑜)) : 𝜏.

where the term 𝑜′ : 𝐴1 ◦ 𝐴2 ⊢ 𝑓 : 𝜏 is defined by

𝑜′ : 𝐴1 ◦ 𝐴2 ⊢ let (𝑎1, 𝑎2) = 𝑜′ in 𝜇 (op
1
(𝑎1, 𝜂 ∗), op

2
(𝑎2, 𝜂 ∗)) : 𝜏,

and op𝑖 : 𝐴𝑖 ◦ 𝜏 → 𝜏, 𝜂 : I → 𝜏, 𝜇 : 𝜏 ◦ 𝜏 → 𝜏 are respectively the algebraic

operations, the unit, and the multiplication of the monoid.

Informally, a model of ¥Σ1 ⊗ ¥Σ2 is a monad equipped with 𝐴1-operation and

𝐴2-operation such that the order of an adjacent pair of an 𝐴1-operation and an

𝐴2-operation can be swapped:

do {x← op
1
; y← op

2
; k x y} = do {y← op

2
; x← op

1
; k x y}.

The Day tensor 𝐴1 ∗ 𝐴2 shows up in the equation to ensure that each of the two

operations do not depend on the other’s output, so that it is possible to swap

them. The functor ⊗ can be extended to monoidal product on Alg(ℰ)with the

theory of monoids with no operations as the unit.

Let F be Alg(ℰ) and ¥Ψ ∈ F , a lifting of − ⊗ ¥Ψ along 𝑃 : F-Alg → F is

then a modular model of ¥Ψ such that operations of ¥Ψ commute with all other

81



operations, even if they may be unknown now. This may sound very strong, but

the state monad transformer gives such a modular model [Yang and Wu 2021, §6].

3.2*3 (Modular handlers). The theory of modular models is inspired by the

concept of modular handlers studied by Schrĳvers et al. [2019] and Yang and Wu

[2021] in the setting of Haskell programming. If we re-express them in category

theory, a reasonable definition of a modular handler of an equational system ¤Σ over a
category 𝒞 is a mapping from monads 𝑀 on 𝒞 to tuples ⟨𝐴, 𝑎, 𝑓 ⟩

Σ𝐴 𝐴 𝑀𝐴
𝑎 𝑓

where 𝐴 ∈ 𝒞, and 𝑎 : Σ𝐴→ 𝐴 is a ¤Σ-algebra, and 𝑓 ′ : 𝑀𝐴→ 𝐴 is an Eilenberg-

Moore algebra of 𝑀. The idea is similar to our modular models: for whatever

‘ambient effect’ 𝑀, there is a model 𝐴 of the effect ¤Σ, which also models any effect

that 𝑀 supports. In particular, if 𝑀 has an algebraic operation 𝑏 : 𝑆 ◦𝑀 → 𝑀

on 𝑀, then the object 𝐴 can ‘forward’ this operation by

𝑆𝐴 𝑆(𝑀𝐴) 𝑀𝐴 𝐴.
𝑆𝜂𝐴 𝑏 𝑓

Modular handlers in this sense are also an instance of liftings along fibrations.

Let |Mnd(𝒞)| be the discrete category of monads over 𝒞, then the identity functor

Id : |Mnd(𝒞)| → |Mnd(𝒞)| is a fibration. For every ¤Σ ∈ Eqs(𝒞), we define

the functor 𝑇¤Σ : |Mnd(𝒞)| → Eqs(𝒞) to be (−)-Act + ¤Σ, where (−)-Act is the

equational system of monad algebras from 2.2.1*8. Let 𝑃 : Alg(𝒞) → Eqs(𝒞)
be the Grothendieck construction of (−)-Alg : Eqs(𝒞)op → CAT. A modular

handler 𝐻 of ¤Σ is then a lifting of 𝑇¤Σ along Id and 𝑃:

|Mnd(𝒞)| Alg(𝒞)

|Mnd(𝒞)| Eqs(𝒞)

𝐻

Id 𝑃

𝑇¤Σ

In fact, most examples of modular handlers from Schrĳvers et al. [2019] and

Yang and Wu [2021], apart from those based on continuation monad transformers
𝑀 ↦→ (− ⇒ 𝑀𝑅) ⇒ 𝑀𝑅, are covariant functors Mnd(𝒞) → Alg(𝒞).

3.2*4 (Output Effects). An intuition for effect handlers is that they consume
effectful operations, but in almost all implementations of effect handlers, handlers

can also produce effectful operations. For example, a handler may handle an

exception by producing a nondeterministic failure, thus transforming the effect of

exceptions to the effect of nondeterminism. Such handlers with both input effect
(the operations to be handled) and output effect (the operations to be generated)

can be modelled as liftings along fibrations as well.

82



LetF be an operation family (Definition 2.5*2) closed under binary coproducts.

For every ¥Ψ ∈ F , we denote by U ¥Ψ : ¥Ψ/F → F the forgetful functor from the

coslice category under ¥Ψ ∈ F to F . We also denote by 𝑃 ¥Ψ : ( ¥Ψ/F)-Alg→ ¥Ψ/F
the change of base of the fibration 𝑃 : F-Alg→ F along the functor U ¥Ψ:

( ¥Ψ/F)-Alg F-Alg

¥Ψ/F F

𝑃 ¥Ψ 𝑃

U ¥Ψ

For every pair of ¥Σ, ¥Ψ ∈ F , we define a functor 𝑇¥Σ, ¥Ψ : ¥Σ/F → ¥Ψ/F

𝑇¥Σ, ¥Ψ ⟨ ¥Φ ∈ F , 𝑆 : ¥Σ→ ¥Φ⟩ = ⟨ ¥Φ + ¥Ψ, 𝜄2 : ¥Ψ→ ¥Φ + ¥Ψ⟩

A modular model 𝑀 of input effect ¥Ψ and output effect ¥Σ is then a lifting of the

functor 𝑇¥Σ, ¥Ψ along the fibrations 𝑃 ¥Σ and 𝑃 ¥Ψ:

( ¥Σ/F)-Alg ( ¥Ψ/F)-Alg

¥Σ/F ¥Ψ/F

𝑀

𝑃 ¥Σ 𝑃 ¥Ψ

𝑇¥Σ, ¥Ψ

(3.9)

Note that it is ¥Ψ rather than ¥Σ that is the input effect, since ¥Ψ is the effect to be

‘handled’ by this modular model; this is similar to how translations of equational

systems ¤Ψ→ ¤Σ are functors ¤Σ-Alg→ ¤Ψ-Alg from the opposite direction.

3.2*5. In the diagram (3.9), 𝑃 ¥Ψ is a pullback of 𝑃 : F-Alg → F along U ¥Ψ, so

functors 𝑀 making (3.9) commute are in bĳection with functors 𝑁 making

( ¥Σ/F)-Alg F-Alg

¥Σ/F ¥Ψ/F F

𝑁

𝑃 ¥Σ 𝑃

𝑇¥Σ, ¥Ψ U ¥Ψ

commute. When ¥Σ is the theory of monoids with no operations, this recovers

our earlier definition of modular models without output effects (3.8).

3.2*6. Moreover, the fibration F-Alg → F in 3.2*4 can be replaced by many

other fibrations whose base category is a category of some notion of algebraic

theories and total category is a category of pairs of a theory and its model. For

example, let FPCat be the category of small categories with finite products and

finite-product-preserving functors; there is a functor [−, Set] : FPCat
op→ CAT

sending every 𝒞 ∈ FPCat to the category of finite-product-preserving functors

𝒞→ Set, which induces a fibration 𝑃 : FPMod→ FPCat, and we can talk about

83



modular models of finite-product theories by replacing F-Alg → F in 3.2*4

with this fibration. The same thing can be said for generalised algebraic theories
[Cartmell 1986], second-order algebraic theories [Fiore and Mahmoud 2010], and so

on for any framework of algebraic theories that have a fibration of models over

theories and useful ways of combining theories such as coproducts.

3.2*7. Motivated by the above examples of liftings, we will use ‘model transform-

ers’ as a suggestive synonym for liftings along fibrations. We could similarly call

the functor 𝑇 : 𝒯 → 𝒯
′
a ‘theory transformer’, but we will just call it a functor

as it is shorter. Incidentally, Hyland et al. [2006] have a concept of ‘operation

transformers’, but they correspond to translations between algebraic theories

rather than functors between the categories of theories.

3.2*8 Definition. Given two fibrations 𝑃 : 𝒜→ 𝒯, 𝑃′ : 𝒜
′→ 𝒯

′
and a functor

𝑇 : 𝒯 → 𝒯
′
, a (strong/strict) model transformer𝑀 of𝑇 is defined to a (fibred/split)

lifting of 𝑇 along 𝑃 and 𝑃′ (Definition 3.1*15).

𝒜 𝒜
′

𝒯 𝒯
′

𝑀

𝑃 𝑃′

𝑇

The category Lift𝑃,𝑃′(𝑇) of liftings will also be denoted by Motr(𝑇).
Specially, model transformers of a coproduct functor − +Ψ : 𝒯 → 𝒯 will be

called modular models of Ψ ∈ 𝒯, reusing the terminology from the last section.

3.2*9. We can similarly generalise updaters (Definition 3.1*22) to general fibrations.

However, it seems more natural to require the two fibrations to be the same in

this case. Therefore, given a fibration 𝑃 : 𝒜 → 𝒯 and a pointed endofunctor

⟨𝑇 : 𝒯 → 𝒯 , 𝜂𝑇 : Id→ 𝒯⟩, an updater for a model transformer of 𝑇 along 𝑃 is a

natural transformation 𝑢 : Id→ 𝑀 such that 𝑃 ◦ 𝑢 = 𝜂𝑇 ◦ 𝑃:

𝒜 𝒜

𝒯 𝒯

Id

𝑀

𝑃 𝑃

Id

𝑇

𝑢

𝜂𝑇

We denote by Motr𝑢(𝑇) the category of model transformers of 𝑇 equipped with

an updater and whose morphisms ⟨𝑀, 𝑢⟩ → ⟨𝑁, 𝑣⟩ are morphisms 𝜎 : 𝑀 → 𝑁

that are compatible with the updaters: 𝑣 = 𝜎 · 𝑢 : Id→ 𝑁 .

84



3.3 Constructions of Model Transformers

3.3*1. The definition of model transformers is just a mathematical formulation

of semantic modularity, so in this section we will have a look at some concrete

examples and general constructions of model transformers. Each subsection

below discusses a construction and is basically independent of each other:

* initial model transformers (Section 3.3.1),

* initial model transformers with an updater (Section 3.3.2),

* free model transformers (Section 3.3.3),

* modular models from monoids transformers (Section 3.3.4),

* limits and colimits of model transformers (Section 3.3.5),

* modular models in symmetric monoidal categories (Section 3.3.7).

3.3.1 Initial Model Transformer

3.3.1*1. We begin with the initial model transformer. Let 𝑃 : 𝒜→ 𝒯 be a fibration

and 𝑃′ : 𝒜
′ → 𝒯

′
be a fibration with a cleavage 𝜅 such that for every object

Σ ∈ 𝒯
′
, the fiber category 𝒜

′
Σ

has a chosen initial object 𝜇Σ. Then for every

functor 𝑇 : 𝒯 → 𝒯
′
, we define a functor 0𝑇 : 𝒜→ 𝒜

′
such that

* for every object 𝐴 ∈ 𝒜, 0𝑇𝐴 = 𝜇(𝑇𝑃𝐴),
* for every morphism 𝑓 : 𝐴→ 𝐵 ∈ 𝒜, 0𝑇 𝑓 = 𝜅(𝜇(𝑇𝑃𝐵), 𝑇𝑃 𝑓 ) · 𝑣 as follows,

where 𝑣 : 𝜇(𝑇𝑃𝐴) → 𝑋 is the unique morphism out of the initial object

𝜇(𝑇𝑃𝐴) of the fiber category 𝒜
′
𝑇𝑃𝐴

:

𝜇(𝑇𝑃𝐴)

𝐴 𝐵 𝑋 𝜇(𝑇𝑃𝐵)

𝑃𝐴 𝑃𝐵 𝑇𝑃𝐴 𝑇𝑃𝐵

𝑣

𝑓 𝜅(𝜇(𝑇𝑃𝐵),𝑇𝑃 𝑓 )

𝑃 𝑓 𝑇𝑃 𝑓

3.3.1*2 Theorem. In the situation of 3.3.1∗1, the functor 0𝑇 : 𝒜 → 𝒜
′ is a model

transformer of 𝑇 : 𝒯 → 𝒯
′ and is initial in the category Motr(𝑇).

𝒜 𝒜
′

𝒯 𝒯
′

0𝑇

𝑃 𝑃′

𝑇

85



Moreover, when the cleavage𝜅 of𝑃′ preserves the chosen initial objects up to isomorphism
(resp. strictly), i.e. for all 𝑓 : Γ→ Σ ∈ 𝒯′, the domain of 𝜅(𝜇Σ, 𝑓 ) is initial in 𝒜

′
Γ

(resp.
exactly 𝜇Γ), 0𝑇 is a strong (resp. strict) model transformer.

Proof. The functor 0𝑇 satisfies 𝑃′ ◦ 0𝑇 = 𝑇 ◦ 𝑃 by construction, so it is a model

transformer by definition (Definition 3.2*8). Given any 𝐻 : 𝒜 → 𝒜
′
such that

𝑃′ ◦𝐻 = 𝑇 ◦ 𝑃, for every 𝐴 ∈ 𝒜, 𝐻𝐴 and 0𝑇𝐴 are both in the fibre category 𝒜
′
𝑇𝑃𝐴

,

so by the initiality of 0𝑇𝐴, there is a unique vertical morphism 𝑢𝐴 : 0𝑇𝐴→ 𝐻𝐴.

To show that 𝑢𝐴 is natural, consider every 𝑓 : 𝐴 → 𝐵 and the morphism

𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) : 𝑌 → 𝐻𝐵, we have the following situation

0𝑇𝐴 = 𝜇(𝑇𝑃𝐴) 𝑋 𝜇(𝑇𝑃𝐵) = 0𝑇𝐵

𝐻𝐴 𝑌 𝐻𝐵

𝑇𝑃𝐴 𝑇𝑃𝐵

𝑣

𝑢𝐴

𝜅(0𝑇𝐵,𝑇𝑃 𝑓 )

ℎ 𝑢𝐵

𝑘

𝐻 𝑓𝑃

𝜅(𝐻𝐵,𝑇𝑃 𝑓 )

𝑃′

𝑓

where 𝑣 : 0𝑇𝐴 → 𝑋 is the unique vertical morphism from 𝜇(𝑇𝑃𝐴) to 𝑋, and

ℎ : 𝑋 → 𝑌 is the unique vertical morphism making the upper-right square

commute, obtained from the cartesianess of 𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) : 𝑌 → 𝐻𝐵. Similarly, 𝑘

is the unique vertical morphism satisfying 𝜅(𝐻𝐵, 𝑇𝑃 𝑓 ) · 𝑘 = 𝐻 𝑓 . Note that 0𝑇 𝑓

is exactly the upper path 𝜅(0𝑇𝐵, 𝑇𝑃 𝑓 ) · 𝑣, and the upper-left square commutes

by the initiality of 0𝑇𝐴. Hence we have the commutativity of the large rectangle,

which is the naturality of 𝑢 : 0𝑇 → 𝐻. This concludes the proof of the initiality

of the model transformer 0𝑇 in Motr(𝑇).
For the second part of the theorem, if the cleavage 𝜅 preserves initial algebras

up to isomorphism, the object 𝑋 in the diagram above is also initial among

𝒜
′
𝑇𝑃𝐴

, so the morphism 𝑣 : 0𝑇𝐴 → 𝑋 is a vertical isomorphism, and 0𝑇 𝑓 =

𝜅(0𝑇𝐵, 𝑇𝑃 𝑓 ) · 𝑣 is also cartesian. The case for splitting fibrations is similar. □

3.3.1*3 Example. Let F be an operation family of monoids such that ¥Σ-Alg has

chosen initial algebras for all ¥Σ ∈ F . Applying the construction of initial model

transformers to the situation of 3.1*16, where𝑇 = −+ ¥Ψ for some ¥Ψ ∈ F , the model

transformer 0𝑇 then maps every ⟨ ¥Σ, 𝐴, 𝛼⟩ to the initial algebra of ¥Σ+ ¥Ψ, ignoring

the ‘existing model’ ⟨𝐴, 𝛼⟩ of the ‘existing syntax’ ¥Σ completely. Therefore the

initial model transformer does not have an updater (Definition 3.1*22) in general.

3.3.2 Initial Updatable Model Transformers

3.3.2*1. Instead of completely ignoring the existing model, we can alternatively

consider the free model of the new syntax over the existing model. As a special

86



case, let F be an operation family closed under coproducts, for every ¥Σ, ¥Ψ ∈ F ,

Theorem 2.2.2*14 provides a sufficient condition for the forgetful functor 𝑈 :

( ¥Σ + ¥Ψ)-Alg→ ¥Σ-Alg to have a left adjoint 𝐹 : ¥Σ-Alg→ (¥Σ + ¥Ψ)-Alg, the idea

is to define a model transformer of ¥Ψ ∈ F by sending every ⟨ ¥Σ, 𝐴, 𝛼⟩ ∈ F-Alg

to 𝐹⟨𝐴, 𝛼⟩. Moreover, the unit of the adjunction 𝐹 ⊣ 𝑈 defines an updater. The

universal property of the obtained model transformer is that it is the initial one

in the category of model transformers with an updater (3.2*9), so we will call it

the initial updatable model transformer for short.

3.3.2*2 Theorem. Let 𝑃 : 𝒜 → 𝒯 be a fibration with a cleavage such that for every
morphism 𝑡 : Γ→ Σ in 𝒯, there is an adjunction 𝑡! ⊣ 𝑡∗ : 𝒜Σ → 𝒜Γ. Let ⟨𝑇, 𝜂⟩ be a
pointed endofunctor on 𝒯. The category of Motr𝑢(𝑇) of model transformers of 𝑇 with
an updater as defined in 3.2∗9 has an initial object.

Proof. We define a model transformer 0
𝑢
𝑇

: 𝒜 → 𝒜 as follows. For every object

𝐴 ∈ 𝒜, we have a functor 𝜂𝑃𝐴
!

: 𝒜𝑃𝐴 → 𝒜𝑇𝑃𝐴 left adjoint to 𝜂∗
𝑃𝐴

: 𝒜𝑇𝑃𝐴 → 𝒜𝑃𝐴,

and we define 0
𝑢
𝑇
𝐴 := 𝜂𝑃𝐴

!
𝐴. For every 𝑓 : 𝐴→ 𝐵 ∈ 𝒜, let 𝑛𝐵 : 𝐵→ 𝜂∗

𝑃𝐵
𝜂𝑃𝐵

!
𝐵 be

the unit of the adjunction 𝜂𝑃𝐵
!
⊣ 𝜂∗

𝑃𝐵
. Since 𝑛𝐵 is a morphism in 𝒜𝑃𝐵, it is vertical:

𝑃𝑛𝐵 = id𝑃𝐵, and𝑃(𝑛𝐵 · 𝑓 ) = 𝑃 𝑓 . Therefore there is a unique ℎ : 𝐴→ (𝑃 𝑓 )∗𝜂∗
𝑃𝐵
𝜂𝑃𝐵

!
𝐵

making the upper square commute:

𝐴 𝐵

0
𝑢
𝑇
𝐴 = 𝜂𝑃𝐴

!
𝐴

(𝑃 𝑓 )∗𝜂∗
𝑃𝐵

𝜂𝑃𝐵
!
𝐵

�
𝜂∗
𝑃𝐴
(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵

!
𝐵

𝜂∗
𝑃𝐵
𝜂𝑃𝐵

!
𝐵

(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵
!
𝐵 𝜂𝑃𝐵

!
𝐵 = 0

𝑢
𝑇
𝐵

𝑃𝐴 𝑃𝐵

𝑇𝑃𝐴 𝑇𝑃𝐵

𝑓

ℎ 𝑛𝐵

𝑃 𝑓

𝜂𝑃𝐴

𝜂𝑃𝐵

𝑇𝑃 𝑓

𝑔
(3.10)

The unlabelled morphisms are the evident cartesian morphisms from the cleavage

𝜅. By the naturality of 𝜂 : Id → 𝑇, we have the commutativity of the bottom

square in 𝒯: 𝜂𝑃𝐵 · 𝑃 𝑓 = 𝑇𝑃 𝑓 · 𝜂𝑃𝐴. Reindexing is pseudofunctorial, so we have

(𝑃 𝑓 )∗𝜂∗𝑃𝐵𝜂
𝑃𝐵
!
𝐵 � 𝜂∗𝑃𝐴(𝑇𝑃 𝑓 )

∗𝜂𝑃𝐵
!
𝐵.

Hence the morphism ℎ determines a morphism 𝐴→ 𝜂∗
𝑃𝐴
(𝑇𝑃 𝑓 )∗𝜂𝑃𝐵

!
𝐵, which by

87



the adjunction 𝜂𝑃𝐴
!
⊣ 𝜂∗

𝑃𝐴
, determines a vertical morphism

𝑔 : 0
𝑢
𝑇𝐴 = 𝜂𝑃𝐴

!
𝐴→ (𝑇𝑃 𝑓 )∗𝜂𝑃𝐵

!
𝐵.

By composing 𝑔 with 𝜅(0𝑢
𝑇
𝐵, 𝑇𝑃 𝑓 ) : (𝑇𝑃 𝑓 )∗𝜂𝑃𝐵

!
𝐵→ 0

𝑢
𝑇
𝐵, we obtain a morphism

0
𝑢
𝑇
𝐴→ 0

𝑢
𝑇
𝐵, which is our definition of the action of 0

𝑢
𝑇

the morphism 𝑓 : 𝐴→ 𝐵.

We omit the checking of the functoriality of 0
𝑢
𝑇

: 𝒜→ 𝒜 here.

The functor 0
𝑢
𝑇

by construction is a lifting of 𝑇 : 𝒯 → 𝒯 along the fibration

𝑃 : 𝒜→ 𝒯. It has an updater 𝑢 : Id→ 0
𝑢
𝑇

given by

𝑢𝐵 := 𝜅(𝜂𝑃𝐵 , 𝜂𝑃𝐵
!
𝐵) · 𝑛𝐵 : 𝐵→ 𝜂𝑃𝐵

!
𝐵 = 0

𝑢
𝑇𝐵

for all 𝐵 ∈ 𝒜 as in the diagram (3.10) above. To see the naturality of 𝑢, for all

𝑓 : 𝐴→ 𝐵, the two morphisms 𝑢𝐵 · 𝑓 and 0
𝑢
𝑇
𝑓 · 𝑢𝐴 are over the same morphism in

𝒯, i.e. 𝜂𝑃𝐵 · 𝑃 𝑓 = 𝑇𝑃 𝑓 · 𝜂𝑃𝐴, so it is sufficient to show that their induced vertical

morphisms in 𝒜𝑃𝐴 are equal. It can be calculated that the one corresponds to

𝑢𝐵 · 𝑓 is ℎ as in (3.10) and the one corresponds to 0
𝑢
𝑇
𝑓 · 𝑢𝐴 is

(𝜂∗𝑃𝐴𝑔) · 𝑛𝐴 = 𝜂∗𝑃𝐴(𝑒𝐴 · 𝜂
𝑃𝐴
!
ℎ) · 𝑛𝐴 (3.11)

where 𝑒𝐴 : 𝜂𝑃𝐴
!

𝜂∗
𝑃𝐴
𝐴 → 𝐴 is the counit of the adjunction 𝜂𝑃𝐴

!
⊣ 𝜂∗

𝑃𝐴
. Using

naturality and triangle identity of the unit 𝑛 and counit 𝑒 of the adjunction

𝜂𝑃𝐴
!
⊣ 𝜂∗

𝑃𝐴
, the morphism (3.11) can be shown to be exactly ℎ.

As for the initiality of ⟨0𝑢
𝑇
, 𝑢⟩ in Motr𝑢(𝑇), for every ⟨𝑀, 𝑣⟩ ∈ Motr𝑢(𝑇)

and 𝐵 ∈ 𝒜, 𝑣𝐵 : 𝐵 → 𝑀𝐵 is over 𝜂𝑃𝐵 by the definition of updaters. Hence

there is a vertical morphism 𝑤 : 𝐵 → 𝜂𝑃𝐵
!
𝑀𝐵 such that 𝑣𝐵 = 𝜅(𝜂𝑃𝐵 , 𝑀𝐵) · 𝑤.

By the universal property of 𝑛𝐵 : 𝐵 → 𝜂∗
𝑃𝐵
𝜂𝑃𝐵

!
𝐵, there is a unique morphism

𝜎𝐵 : 𝜂𝑃𝐵
!
𝐵 = 0

𝑢
𝑇
𝐵→ 𝑀𝐵 such that 𝜂∗

𝑃𝐵
𝜎𝐵 · 𝑛𝐵 = 𝑤:

𝐵 𝜂∗
𝑃𝐵
𝜂𝑃𝐵

!
𝐵

𝜂∗
𝑃𝐵
𝑀𝐵

𝑛𝐵

𝑤 𝜂∗
𝑃𝐵

𝜎𝐵

We omit the checking of the naturality of 𝜎 here (it is similarly to the proof

of Theorem 3.3.1*2). Since every 𝜏 : ⟨0𝑢
𝑇
, 𝑢⟩ → ⟨𝑀, 𝑣⟩ is a vertical natural

transformation 𝜏 : 0
𝑢
𝑇
→ 𝑀 satisfying 𝜏𝐵 ·𝑢𝐵 = 𝑣𝐵, it must satisfy that 𝜂∗

𝑃𝐵
𝜏𝐵 ·𝑛𝐵 =

𝑤. Therefore, 𝜎 is the unique morphism ⟨0𝑢
𝑇
, 𝑢⟩ → ⟨𝑀, 𝑣⟩ in Motr𝑢(𝑇). □

3.3.2*3 Example. Let 𝒞 be a category and 𝒜 be a freeness condition for 𝒞 (Defi-

nition 2.2.1*21) that satisfies the assumption of Theorem 2.2.2*14 (for example,

preserving colimits of 𝛼-chains for some limit ordinal 𝛼 and 𝒞 being cocom-

plete). The fibration 𝑃 : Alg𝒜(𝒞) → Eqs𝒜(𝒞) then satisfies the condition of

Theorem 3.3.2*2, so the pointed functor (− + ¤Ψ) : Eqs𝒜(𝒞) → Eqs𝒜(𝒞) for every

88



¤Ψ ∈ Eqs𝒜(𝒞) then has an initial updatable model transformer.

3.3.2*4 Example. Letℰ be a cocomplete monoidal category such that the monoi-

dal product □ : ℰ×ℰ→ℰ preserves colimits of 𝛼-chains for some limit ordinal 𝛼.

Let F ⊆ Mon/Eqs(ℰ) be the operation family containing all equational systems

whose signature and context colimits of 𝛼-chains for some limit ordinal 𝛼. By

Theorem 2.2.2*14, for every morphism𝑇 : ¥Σ→ ¥Ψ ∈ F , the corresponding functor

𝑇 : ¥Ψ-Alg→ ¥Σ-Alg has a left adjoint. Therefore the fibration 𝑃 : F-Alg→ F
satisfies the condition of Theorem 3.3.2*2, and for every ¥Ψ ∈ F , the functor

− + ¥Ψ : F → F has an initial updater model transformer 0
𝑢

−+ ¥Ψ, which maps

every ¥Σ-algebra 𝐴 to the relative free ( ¥Σ + ¥Ψ)-algebra over 𝐴.

3.3.2*5 Example. For a concrete example, let us instantiate ℰ in the previous

example to be ⟨Set
Fin, •, 𝑉⟩ from 2.1.2*2. As we mentioned in 2.5*21, the syntax

of untyped 𝜆-calculus can be presented as an equational system Λ = Σ⟨𝑂,𝑎⟩-Mon

for the binding signature 𝑂 = {app, abs} with 𝑎(abs) = ⟨1⟩ and 𝑎(app) = ⟨0, 0⟩.
Models of Λ can be obtained from reflexive objects𝑈 � 𝑈𝑈

in any cartesian closed

category 𝐶: every𝑈 induces a functor �̄� : Fin→ Set with 𝑛 ↦→ 𝒞(𝑈𝑛 , 𝑈). The

functor �̄� has a monoid structure [𝜂𝑈 , 𝜇𝑈] (similar to that of the continuation

monad), and it is a model of Λ [Hyland 2017]:

abs𝑈 : �̄�𝑉𝑛 � 𝒞(𝑈𝑛+1, 𝑈) � 𝒞(𝑈𝑛 , 𝑈𝑈) � 𝒞(𝑈𝑛 , 𝑈) � �̄�𝑛
app𝑈 : (�̄� × �̄�)𝑛 � 𝒞(𝑈𝑛 , 𝑈 ×𝑈) � 𝒞(𝑈𝑛 , 𝑈𝑈 ×𝑈) evalUU ·−−−−−−−→ 𝒞(𝑈𝑛 , 𝑈) � �̄�𝑛

Now consider the theory St𝑆 of mutable state (Example 2.4*14) for some finite

set 𝑆. Its initial updatable model transformer maps the Λ-model on �̄� to a

(Λ +Mon St𝑆)-model whose carrier is the initial algebra

𝜇𝑋. �̄� + 𝑋 • 𝑋 +𝑉 + 𝑋𝑉 + 𝑋 × 𝑋 +∏𝑆 𝑋 +
∐

𝑆 𝑋 : Fin→ Set

quotiented by equations of Λ and St𝑆, as well as equations saying that the Λ

operations of the initial algebra acting on the first component �̄� is the same as

the model [𝜂𝑈 , 𝜇𝑈 , abs𝑈 , app𝑈] of �̄� .

3.3.2*6. Left adjoints to reindexing functors of a fibration are used for modelling

Σ-types and ∃-quantification in categorical logic, where the fibration models

types or predicates over a type, and reindexing models substitution. In this

context, reindexing functors typically preserve the left adjoints suitably, called

satisfying the Beck-Chevalley condition [Jacobs 1999, Definition 1.9.4], reflecting

the fact substitution commutes with Σ-types and ∃-quantifiers. Dually, in this

context reindexing functors usually have right adjoints, which model Π or ∀.
However, for fibrations of algebras and theories, the reindexing functors

typically do not have right adjoints (the translation functors between categories

89



of algebras almost never preserve colimits), and reindexing functors typically

do not preserve the left adjoints (relative free algebras), so the initial updatable

model transformer typically are not strong or strict. For example, consider

ℰ = ⟨Set,×, 1⟩. We have the following theories in the family Mon/Eqs𝒜(ℰ): Mon

with the identity translation; Grp with the inclusion translation 𝑇 : Mon→ Grp

(Example 2.2.2*4); and the theory BLat of bounded lattices with the translation

that maps monoid multiplication to lattice join ∨, monoid identity to lattice

bottom ⊥. The following diagram in CAT does not commute:

Mon-Alg Grp-Alg

(Mon + BLat)-Alg (Grp + BLat)-Alg

𝑇

FGrpFMon

𝑇+BLat

The theory Mon + BLat, bounded lattices whose join ∨ and ⊥ form a monoid, is

isomorphic to BLat since ⟨∨,⊥⟩ of a lattice is already a monoid, so FMon(𝑇𝐺) for

every group 𝐺 is the free bounded lattice over 𝐺 as a monoid. On the other hand,

the theory Grp + BLat, bounded lattices whose ⟨∨,⊥⟩ form a group, has only

trivial models since for every element 𝑥, ⊥ = 𝑥 ∨ 𝑥−1
, and by the idempotent law

of join,⊥ = (𝑥∨ 𝑥)∨ 𝑥−1 = 𝑥∨(𝑥∨ 𝑥−1) = 𝑥∨⊥ = 𝑥. Therefore (𝑇+BLat)(FGrp𝐺)
is always the trivial bounded lattice for every group 𝐺.

3.3.3 Free Model Transformers over Ordinary Models

3.3.3*1. Consider model transformers of − + ¥Ψ : F → F on an operation family

F : for every ¥Σ ∈ F and every 𝐴 ∈ ¥Σ-Alg, the initial model transformer 0 ¥Ψ just

ignores the algebra 𝐴 and freely generates a model of ¥Σ + ¥Ψ, whereas the initial

updatable model transformer 0
𝑢
¥Ψ takes into account of 𝐴 and freely generates a

model of ¥Σ + ¥Ψ that has a ¥Σ-homomorphism from 𝐴.

The natural next step is then freely generating a model of ¥Σ+ ¥Ψ that has both a

¥Σ-homomorphism from 𝐴 and a ¥Ψ-homomorphism from some fixed 𝐵 ∈ ¥Ψ-Alg,

using the construction in Example 2.2.2*18. In this way, we can turn an ordinary

model 𝐵 of ¥Ψ to a model transformer of ¥Ψ, and it is also going to be the free way.

3.3.3*2. In this subsection, we fix a fibration 𝑃 : 𝒜 → 𝒯 with a cleavage such

that 𝒯 has finite coproducts, and we fix a functor ⊕ : 𝒯 ×𝒯 → 𝒯 equipped

with a natural transformation 𝜏 : + → ⊕. For all Σ, Γ ∈ 𝒯, we define

𝜅1 := (Σ 𝜄1−→ Σ + Γ 𝜏−→ Σ ⊕ Γ) 𝜅2 := (Γ 𝜄2−→ Σ + Γ 𝜏−→ Σ ⊕ Γ)

The natural transformation 𝜅1 : − → − ⊕ Γ makes − ⊕ Γ a pointed functor,

enabling us to talk about updaters (3.2*9) of the functor − ⊕ Γ.

As usual, the category 𝒯 is expected to be a category of some notion of

90



algebraic theories and each fiber category 𝒜Σ is the category of models of Σ ∈ 𝒯.

For example, 𝑃 can be the fibration F-Alg→ F for an operation family and ⊕
can be just the coproduct or the commutative combination (3.2*2).

3.3.3*3 Definition. When the fiber category𝒜0 of the initial object 0 ∈ 𝒯 also has

an initial object 𝐼, for every Γ ∈ 𝒜 we define a functor U⊕Γ : Motr(− ⊕ Γ) → 𝒜Γ:

U⊕Γ 𝑀 := 𝜅∗
2
𝑀𝐼

where 𝜅∗
2

is the reindexing functor 𝒜0⊕Γ→ 𝒜Γ. The functor U⊕Γ is intuitively the

forgetful functor from model transformers of (⊕-combination with) Γ to ordinary

models of Γ. Composing U⊕Γ with the functor that forgets updaters (3.2*9), we

also have a functor Motr𝑢(− ⊕ Γ) → 𝒜Γ that we shall also denote by U⊕Γ.

3.3.3*4 Theorem. Assume that all reindexing functors !
∗

: 𝒜Γ → 𝒜0 to the fiber
category over the initial object 0 ∈ 𝒯 is monadic and every fiber category 𝒜Σ is finitely
cocomplete. The functor U⊕Γ : Motr𝑢(− ⊕ Γ) → 𝒜Γ for every Γ ∈ 𝒯 defined in
Definition 3.3.3∗3 has a left adjoint F⊕Γ : 𝒜Γ→Motr𝑢(− ⊕ Γ).

Proof. Every fibration is equivalent to a split one [Jacobs 1999, Corollary 5.2.5],

and the statement is stable under equivalence of fibrations, so we can assume

without loss of generality that 𝑃 is a split fibration. By Mac Lane [1998, §IV.1

Theorem 2], it is sufficient to construct for every ⟨𝐵, 𝛽⟩ ∈ 𝒜Γ a model transformer

with an updater 𝑀𝐵 ∈ Motr𝑢(− ⊕ Γ) and a universal arrow 𝑒 : ⟨𝐵, 𝛽⟩ → U⊕Γ𝑀𝐵
.

First we observe that for every Σ ∈ 𝒯, we have the following functors:

𝒜Σ ×𝒜Γ 𝒜Σ⊕Γ

𝒜0 ×𝒜0 𝒜0

!
∗
Σ
×!
∗
Γ

⟨𝜅∗
1
,𝜅∗

2
⟩

!
∗
Σ⊕Γ

Δ

This diagram commutes strictly since 𝜅1 · !Σ = !Σ⊕Γ = 𝜅2 · !Γ : 0 → Σ ⊕ Γ, and

we have assumed that 𝑃 is a split fibration. By the assumption that each fiber

category is finitely cocomplete, the category 𝒜0 has binary coproducts, so we

have an adjunction + ⊣ Δ : 𝒜0 → 𝒜0 × 𝒜0, and moreover the fiber category

𝒜Σ⊕Γ has coequalisers. By assumption !
∗
Σ
, !
∗
Γ
, and !

∗
Σ⊕Γ are monadic functors. The

product of monadic functors is also monadic, so !
∗
Σ
× !
∗
Γ

is monadic. By Borceux

[1994b, Theorem 4.5.6] (c.f. our discussion in 2.2.2*16), the functor ⟨𝜅∗
1
, 𝜅∗

2
⟩ on

the top of the diagram has a left adjoint 𝐹Σ⊕Γ : 𝒜Σ ×𝒜Γ→ 𝒜Σ⊕Γ.

Now we define 𝑀𝐵
via an oplax transformation by Lemma 3.1*18:

𝑀𝐵
: 𝒜−→ 𝒜−⊕Γ : 𝒯

op→ CAT.

We define the component 𝑀𝐵
Σ

at every Σ ∈ 𝒯 to be 𝐹Σ⊕Γ⟨−, 𝐵⟩ : 𝒜Σ→ 𝒜Σ⊕Γ. For

91



every morphism 𝑡 : Σ→ Φ, we have the following functors:

𝒜Φ ×𝒜Γ 𝒜Φ⊕Γ

𝒜Σ ×𝒜Γ 𝒜Σ⊕Γ

𝐹Φ⊕Γ
𝑡∗×id

⟨𝜅∗
1
,𝜅∗

2
⟩

(𝑡⊕id)∗

𝐹Σ⊕Γ

⟨𝜅∗
1
,𝜅∗

2
⟩

⊣
⊣

By the naturality of 𝜅, we have strict commutativity:

id : (𝑡∗ × id) ◦ ⟨𝜅∗
1
, 𝜅∗

2
⟩ = ⟨𝑡∗𝜅∗

1
, 𝜅∗

2
⟩ = ⟨𝜅∗

1
, 𝜅∗

2
⟩ ◦ (𝑡 ⊕ id)∗,

which determines a canonical natural transformation

𝜏 : 𝐹Σ⊕Γ ◦ (𝑡∗ × id) → (𝑡 ⊕ id)∗ ◦ 𝐹Φ⊕Γ

called the mate [nLab 2024b] or the conjugate of id [Mac Lane 1998, §IX.7]. Namely,

𝜏 is the transpose along the adjunction 𝐹Σ⊕Γ ⊣ ⟨𝜅∗
1
, 𝜅∗

2
⟩ of

(𝑡∗ × id)
𝜂
−→ ⟨𝜅∗

1
, 𝜅∗

2
⟩ ◦ 𝐹Σ⊕Γ ◦ (𝑡∗ × id) id−→ ⟨𝜅∗

1
, 𝜅∗

2
⟩ ◦ (𝑡 ⊕ id)∗ ◦ 𝐹Φ⊕Γ.

We define the 2-cell 𝑀𝐵
𝑡

:= (𝜏 ◦ ⟨Id,K𝐵⟩) : 𝑀𝐵
Σ
◦ 𝑡∗→ (𝑡 ⊕ Γ)∗ ◦𝑀𝐵

Φ
.

Then we define an updater 𝑢 : Id → 𝑀𝐵
for 𝑀𝐵

. For every 𝐴 ∈ 𝒜, letting

Σ := 𝑃𝐴, we define 𝑢𝐴 to be

𝐴
𝜋1𝜂𝐴,𝐵−−−−→ 𝜅∗

1
𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅1−→ 𝑀𝐵𝐴

where 𝜂𝐴,𝐵 : ⟨𝐴, 𝐵⟩ → ⟨𝜅∗
1
, 𝜅∗

2
⟩(𝐹Σ⊕Γ⟨𝐴, 𝐵⟩) is the unit of the adjunction, 𝜅1 is the

cartesian morphism over 𝜅1 from the cleavage. The naturality of 𝑢 is essentially

a consequence of the naturality of 𝜂.

We have defined a model transformer 𝑀𝐵
with an updater 𝑢 for every

𝐵 ∈ 𝒜Γ, and what remains is to define a universal arrow 𝑒 : 𝐵 → U⊕Γ⟨𝑀𝐵 , 𝑢⟩.
By Definition 3.3.3*3, U⊕Γ⟨𝑀𝐵 , 𝑢⟩ is 𝜅∗

2
(𝐹0⊕Γ⟨𝐼 , 𝐵⟩) ∈ 𝒜Γ. Therefore we define

𝑒 : 𝐵→ U⊕Γ⟨𝑀𝐵 , 𝑢⟩ to be the second projection of the unit

𝜂𝐼 ,𝐵 : ⟨𝐼 , 𝐵⟩ → ⟨𝜅∗
1
, 𝜅∗

2
⟩(𝐹0⊕Γ⟨𝐼 , 𝐵⟩).

To show the universality of 𝑒, given any model transformer ⟨𝑁, 𝑣⟩ ∈ Motr𝑢(−⊕Γ)
with a morphism 𝑓 : 𝐵 → U⊕Γ⟨𝑁, 𝑣⟩ in 𝒜Γ, we need to show that there is a

unique 𝜎 : ⟨𝑀𝐵 , 𝑢⟩ → ⟨𝑁, 𝑣⟩ in Motr(− ⊕ Γ) such that (U⊕Γ𝜎) · 𝑒 = 𝑓 .

First of all, the codomain of 𝑓 is by definition 𝜅∗
2
(𝑁𝐼), where 𝐼 is the initial

object of 𝒜0. It is not hard to see that the object 𝐼 is also the initial object of the

total category 𝒜, so for every 𝐴 ∈ 𝒜, we have a morphism

𝑓𝐴 := ((𝜅∗
2
𝑁 !) · 𝑓 ) : 𝐵→ 𝜅∗

2
𝑁𝐴.

Now recall that a morphism 𝜎 in Motr𝑢(− ⊕ Γ) is a vertical natural trans-

92



formation 𝑀𝐵 → 𝑁 that commutes with the updaters 𝑢 and 𝑣. For every

𝐴 ∈ 𝒜, letting Σ := 𝑃𝐴, the updater 𝑣 at 𝐴 is a morphism 𝑣𝐴 : 𝐴 → 𝜅∗
1
(𝑁𝐴).

Paired with 𝑓𝐴, we have a morphism ⟨𝑣𝐴 , 𝑓𝐴⟩ : ⟨𝐴, 𝐵⟩ → ⟨𝜅∗
1
, 𝜅∗

2
⟩(𝑁𝐴), and we

define 𝜎𝐴 : 𝑀𝐵𝐴 = 𝐹Σ⊕Γ⟨𝐴, 𝐵⟩ → 𝑁𝐴 to be the transpose of ⟨𝑣𝐴 , 𝑓𝐴⟩ along the

adjunction 𝐹Σ⊕Γ ⊣ ⟨𝜅∗
1
, 𝜅∗

2
⟩. We omit the verification of naturality here.

What remains is to show that 𝜎 defined above is the unique morphism

⟨𝑀𝐵 , 𝑢⟩ → ⟨𝑁, 𝑣⟩ satisfying (U⊕Γ𝜎) · 𝑒 = 𝑓 . First of all, 𝜎 satisfies this equation

since by definition U⊕Γ𝜎 = 𝜅∗
2
𝜎𝐼 and 𝜎𝐼 makes the following triangle commute

⟨𝐼 , 𝐵⟩ ⟨𝜅∗
1
, 𝜅∗

2
⟩𝐹𝐼⊕Γ⟨𝐼 , 𝐵⟩

⟨𝜅∗
1
, 𝜅∗

2
⟩𝑁𝐼

𝜂𝐼 ,𝐵

⟨𝑉𝐼 , 𝑓 𝐼⟩
⟨𝜅∗

1
,𝜅∗

2
⟩𝜎𝐼

in the category 𝒜0 ×𝒜Γ. The second projection of this commutativity diagram

is exactly (U⊕Γ𝜎) · 𝑒 = 𝑓 . For the uniqueness of 𝜎, given another 𝜏 satisfying

(U⊕𝜏𝜎) · 𝑒 = 𝑓 , for every Σ ∈ 𝒯 and 𝐴 ∈ 𝒜Σ, the naturality of 𝜏 for the unique

morphism ! : 𝐼 → 𝐴 implies the commutativity of the right trapezium below:

𝐵 𝜅∗
2
𝐹𝐼⊕Γ⟨𝐼 , 𝐵⟩ 𝜅∗

2
𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅∗
2
𝑁𝐼

𝜅∗
2
𝑁𝐴

𝑒

𝑓

𝑓 𝐴

𝜅∗
2
𝑀𝐵

!

𝜅∗
2
𝜏𝐼

𝜅∗
2
𝜏𝐴

𝜅∗
2
𝑁 !

(3.12)

Moreover, it can be shown that the following diagram in 𝒜 ×𝒜 commutes by

expanding out the definition of the action of 𝑀𝐵
: 𝒜→ 𝒜 on morphisms:

⟨𝐼 , 𝐵⟩ ⟨𝜅∗
1
, 𝜅∗

2
⟩𝐹0⊕Γ⟨𝐼 , 𝐵⟩

⟨𝐴, 𝐵⟩ ⟨𝜅∗
1
, 𝜅∗

2
⟩𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜂𝐼 ,𝐵

⟨!,𝐵⟩ ⟨𝜅∗
1
,𝜅∗

2
⟩𝑀𝐵

!

𝜂𝐴,𝐵

Applying the second projection to this commutative diagram,

𝜋2𝜂𝐴,𝐵 = 𝜋2(𝜂𝐴,𝐵 · ⟨!, 𝐵⟩) = 𝜋2(⟨𝜅∗
1
, 𝜅∗

2
⟩𝑀𝐵

! · 𝜂𝐼 ,𝐵) = 𝜅∗
2
𝑀𝐵

! · 𝜋2𝜂𝐼 ,𝐵.

Recall that 𝑒 is exactly 𝜋2𝜂𝐼 ,𝐵, so the top horizontal path of the diagram (3.12) is

equal to 𝜋2𝜂𝐴,𝐵. Then the diagram (3.12) implies that 𝜅∗
2
𝜏𝐴 · 𝜋2𝜂𝐴,𝐵 = 𝑓 𝐴. This,

93



together with the fact 𝜏 is compatible with the updaters,

𝐴 𝜅∗
1
𝐹Σ⊕Γ⟨𝐴, 𝐵⟩

𝜅∗
1
𝑁𝐴

𝑢𝐴

𝑣𝐴 𝜅∗
1
𝜏𝐴

implies that 𝜏𝐼 is the transpose of ⟨𝑣𝐴 , 𝑓𝐴⟩ along 𝐹Σ⊕Γ ⊣ ⟨𝜅∗
1
, 𝜅∗

2
⟩, so 𝜏𝐼 = 𝜎𝐼 . □

3.3.3*5 Example. Let𝒞 be a cocomplete category and𝒜 be the freeness condition

(2.2.1*21) containing all pairs of endofunctors that preserve colimits of 𝛼-chains

for some limit ordinal 𝛼. By Theorem 2.2.1*12 and Theorem 2.2.2*14, the fibration

𝑃 : Alg𝒜(𝒞) → Eqs𝒜(𝒞) of algebras and equational systems in 𝒜 then satisfies

the assumptions of Theorem 3.3.3*4. For every ¤Ψ ∈ Eqs𝒜(𝒞), instantiating ⊕ to

be + : Eqs𝒜(𝒞) × Eqs𝒜(𝒞) → Eqs𝒜(𝒞), Theorem 3.3.3*4 constructs a modular

model F𝐵 of ¤Ψ from an ordinary model 𝐵 of ¤Ψ.

3.3.3*6 Example. Similarly, let F andℰ be the operation family and monoidal

category in Example 3.3.2*4. Theorem 3.3.3*4 lets us construct modular models

of theories of monoids with operations from ordinary models.

In particular, ifℰ = ⟨Endo𝜅(𝒞), ◦, Id⟩ for some l𝜅p𝒞, and ¥Ψ ∈ F be the theory

of monads with some scoped operations, then Theorem 3.3.3*4 lets us construct

a modular model F𝐵 of ¥ΨF from a monad 𝐵 equipped with a ¥Ψ-operation. For

any theory ¥Σ ∈ F of monads with operations, every monad 𝐴 equipped with

a ¥Σ-operation is sent by the modular model F𝐵 to a new monad 𝐶 with monad

morphisms 𝐴→ 𝐶 and 𝐵→ 𝐶 that are respectively a ¥Σ-homomorphism and a

¥Ψ-homomorphism.

3.3.3*7 Example. Let ℰ be a monoidal category, F be the operation family

Alg(ℰ) of algebraic operations on ℰ-monoids, and ¥Ψ ∈ F . If the fibration

𝑃 : F-Alg→ F satisfies the assumption of Theorem 3.3.3*4, the free modular

model 𝐹𝐵 of ¥Ψ over some 𝐵 ∈ ¥Ψ-Alg has a simple characterisation – for every

¥Σ ∈ Alg(ℰ) and 𝐴 ∈ ¥Σ-Alg, 𝐹𝐵 simply maps 𝐴 to the coproduct of 𝐵 and 𝐴

treated as monoids inℰ. This is because an algebraic operation 𝑆 ◦𝑀 → 𝑀 on a

monoid 𝑀 is equivalently a morphism 𝑆 → 𝑀 (2.4*12), so the initial monoid

with both ¥Σ and ¥Ψ operations together with a ¥Σ-homomorphism from 𝐴 and a

¥Ψ-homomorphism from 𝐵 is the same thing as the initial monoid with monoid

morphisms from 𝐴 and 𝐵, i.e. the coproduct of 𝐴 and 𝐵 as monoids:

𝑆 𝐴 𝐵 𝑆′

𝑀

94



3.3.4 Modular Models from Monoid Transformers

3.3.4*1. The concept of modular models is directly inspired by Moggi’s monad
transformers and their generalisation, monoid transformers [Jaskelioff and Moggi

2010], to monoids in monoidal categories. A monoid transformer maps every

monoid 𝑀 in a monoidal categoryℰ to a monoid 𝑇𝑀 together with a monoid

morphism 𝑖 : 𝑀 → 𝑇𝑀. The central question about monoid transformers is:

If there is an operation on the monoid 𝑀, can this operation be

transformed to an operation on 𝑇𝑀?

The standard terminology here is to lift the operation to 𝑇𝑀 rather than to

transform but we use the latter to avoid the confusion with liftings along fibrations.

This question was first formulated by Moggi [1989b, §4.1], accompanied by a

basic result [Moggi 1989b, Proposition 4.1.3]: operations of the form 𝛼 : 𝐴→ 𝑀

for some fixed endofunctor 𝐴 can always be transformed to 𝐴→ 𝑇𝑀, namely

𝑖 · 𝛼 : 𝐴 → 𝑇𝑀. About 20 years later, Jaskelioff and Moggi [2010] gave a new

result: for functorial monoid transformers 𝑇 on a right-closed monoidal category,

every operation on 𝑀 of the form 𝐴□𝑀 → 𝑀 can be lifted to 𝐴□ 𝑇𝑀 → 𝑇𝑀.

What we have done in this thesis is bringing equations on operations into

the view and formulating transformations of operations as model transformers

(liftings along fibrations). In this subsection, we put the old wine by Moggi

[1989b] and Jaskelioff and Moggi [2010] in our new bottle.

3.3.4*2. In this subsection, we fix a monoidal categoryℰ with finite coproducts

that is right-distributive: (∐𝑖∈𝑆 𝐴𝑖) □ 𝐵 �
∐

𝑖∈𝑆(𝐴𝑖 □ 𝐵), which ensures that

Alg(ℰ) and Scp(ℰ) from Section 2.5 are closed under coproducts.

3.3.4*3 Theorem. Let F be Alg(ℰ) and ¥Ψ = ⟨ ¤Ψ, 𝑇Ψ⟩ ∈ F . Every functor 𝐻 :

Mon(ℰ) → ¤Ψ-Alg together with a natural transformation 𝜏 : Id→ 𝑇Ψ ◦ 𝐻

¤Ψ-Alg

Mon(ℰ) Mon(ℰ)

𝐻 𝑇Ψ

Id

𝜏

defines a strict modular model 𝑀 of ¤Ψ ∈ F making the following commute:

F-Alg (F + ¥Ψ)-Alg

Mon(ℰ) ¤Ψ-Alg

�̄�

𝐻

(3.13)

where �̄� : F-Alg→ (F + ¤Ψ)-Alg is the functor corresponding to 𝑀 by items 1 and 2

95



of Theorem 3.1∗19, and the unlabelled vertical arrows are the evident projection functors.
Moreover, 𝑀 has an updater 𝑢⟨ ¤Σ,𝑇Σ ,𝐴,𝛼⟩ = 𝜏⟨𝐴, 𝑇Σ𝛼⟩.

Proof. For every object ⟨ ¤Σ, 𝑇Σ, 𝐴, 𝛼⟩ of F-Alg with

¤Σ = (𝑆 ◦ −)-Mon ↰ (K𝐺 ⊢ 𝐿 = 𝑅),

we define 𝑀 : F-Alg → F-Alg to send it to an ( ¤Σ + ¤Ψ)-algebra with the

same carrier of 𝐻⟨𝐴, 𝑇Σ𝛼⟩ ∈ ¤Ψ-Alg. Since 𝐻⟨𝐴, 𝑇Σ𝛼⟩ already has a ¤Ψ-algebra,

we only need to equip it with an (𝑆 ◦ −)-operation. This can be done by the

observation [Jaskelioff and Moggi 2010, Theorem 3.4] that algebraic operations can

be transformed along monoid morphisms. Namely, the transformed operation is

𝛼♯ = J𝑠 : 𝑆, ℎ : 𝐻𝐴 ⊢ 𝜇𝐻(𝜏𝐴(𝛼𝑆(𝑠, 𝜂𝐴)), ℎ) : 𝐻𝐴K (3.14)

where 𝐻𝐴 and 𝜏𝐴 stand for the carrier of 𝐻⟨𝐴, 𝑇Σ𝛼⟩ and 𝜏⟨𝐴,𝑇Σ𝛼⟩ : 𝐴 → 𝐻𝐴

respectively, and 𝛼𝑆 : 𝑆 ◦𝐴→ 𝐴 is the component of 𝛼 for the algebraic operation

on 𝐴. We also need to show that the operation (3.14) satisfies the equation

K𝐺 ⊢ 𝐿 = 𝑅. This follows from the functoriality of

𝐿, 𝑅 : ((𝑆 ◦ −) + ΣMon)-Alg→ 𝐺-Alg,

which implies that the following diagrams commute

𝐺 𝐴

𝐻𝐴

𝐿⟨𝐴, 𝛼⟩

𝜏𝐴
𝐿⟨𝐻𝐴 , 𝛼♯⟩

and

𝐺 𝐴

𝐻𝐴

𝑅⟨𝐴, 𝛼⟩

𝜏𝐴
𝑅⟨𝐻𝐴 , 𝛼♯⟩

If 𝛼 satisfies the equation 𝐿 = 𝑅 (i.e. 𝐿⟨𝐴, 𝛼⟩ = 𝑅⟨𝐴, 𝛼⟩), so does 𝛼♯
. It can be

shown that 𝑀 is a strict modular model of ¤Ψ by the same argument for the special

case of exception monad transformers in Example 3.1*8. □

3.3.4*4. Example 3.1*8 is exactly this theorem applied to the exception monad

transformer. The state monad transformer 𝐴 ↦→ (𝐴(𝑆 × −))𝑆 for a set 𝑆 with |𝑆 | < 𝜅

together with its model for the theory St𝑆 of mutable state (Example 2.4*14)

yields a modular model of St𝑆 in Alg(Endo𝜅(𝒞)). The list monad transformer
𝐴 ↦→ 𝜇𝑋.𝐴(1+ (−×𝑋)) [Jaskelioff and Moggi 2010] with its model for the theory

of explicit nondeterminism also gives rise to a modular model.

3.3.4*5. Now we move on to scoped operations. First we recall that Scp𝑙(ℰ) from

2.5*19 is the operation family of scoped operations on monoids and transliterations.
Let us again start with a concrete example.

3.3.4*6 Example. The theory Ec of exception throwing and catching in 2.4*11 is in

the family Scp𝑙(ℰ) forℰ = ⟨Endo𝜅(Set), ◦, Id⟩. A strict modular model for it can

96



be constructed by extending the modular model of throwing in Example 3.1*8

with (1) a model of catching on 𝐶𝐴 = 𝐴 ◦ (1 + Id) and (2) a way to transform

existing scoped operations on 𝐴 to 𝐶𝐴.

For (1), we define catch : (𝐶𝐴 × 𝐶𝐴) ◦ 𝐶𝐴 → 𝐶𝐴 by catch := 𝜇𝐶 · ((𝑐 · 𝑠) ◦ 𝐶𝐴)
where 𝜇𝐶 : 𝐶𝐴 ◦ 𝐶𝐴 → 𝐶𝐴 is the multiplication on 𝐶𝐴 defined in Example 3.1*8,

and 𝑠 is the following morphism in which the unlabelled arrow is the canonical

strength for the functor 𝐴 ∈ Endo𝜅(Set):

𝑠 : 𝐶𝐴 × 𝐶𝐴 = (𝐴 ◦ (1 + Id)) × 𝐶𝐴 → 𝐴 ◦ ((1 + Id) × 𝐶𝐴) � 𝐴 ◦ (𝐶𝐴 + Id × 𝐶𝐴),

and lastly the morphism 𝑐 : 𝐴 ◦ (𝐶𝐴 + Id × 𝐶𝐴) → 𝐶𝐴 is denoted by

𝑎 : 𝐴, 𝑏 : (𝐶𝐴 + Id × 𝐶𝐴) ⊢ 𝜇𝐶
(
(𝑎, 𝜄2 ∗),

case 𝑏 of {𝜄1 ℎ ↦→ ℎ; 𝜄2 ih ↦→ 𝜂𝐶 (𝜋1 ih)}
)

: 𝐶𝐴

The operational idea for this term is that the computation 𝑎 is first executed and

𝑏 is its result. The case 𝑏 = 𝜄1 ℎ means that an exception is thrown and ℎ is the

exception handler, so ℎ is executed in this case. On the other hand, the case

𝑏 = 𝜄2 ih means a normal termination, and the handler is ignored by 𝜋1 ih.

For (2), to transform a scoped operation 𝛼 : 𝑆 ◦ 𝐴 ◦ 𝐴 → 𝐴 on 𝐴 to 𝐶𝐴, we

define 𝛼♯
: 𝑆 ◦ 𝐶𝐴 ◦ 𝐶𝐴 → 𝐶𝐴 by the term

𝑠 : 𝑆, 𝑎 : 𝐴, 𝑚 : 1 + Id, 𝑘 : 𝐶𝐴 ⊢ 𝜇𝐶((𝛼(𝑠, 𝑎, 𝜂𝐴), 𝑚), 𝑘) : 𝐶𝐴.

The transformed operation 𝛼♯
satisfies any constant equation K𝐶 ⊢ 𝐿 = 𝑅

whenever 𝛼 does by the same argument as in the proof of Theorem 3.3.4*3.

3.3.4*7. Theorem 3.3.4*3 constructs modular models for algebraic operations

from monoid transformers. Jaskelioff and Moggi [2010] shows that this is also

possible for scoped operations, provided that the monoid transformer is functorial.

3.3.4*8 Definition (Jaskelioff and Moggi [2010]). A functorial monoid transformer
on a monoidal categoryℰ consists of two functors ¤𝐹 : Mon(ℰ) →Mon(ℰ) and

𝐹 : ℰ→ℰ and two natural transformations ¤𝜎 : Id→ ¤𝐹 and 𝜎 : Id→ 𝐹:

Mon(ℰ) Mon(ℰ)

ℰ ℰ

Id

¤𝐹

UMon UMon

Id

𝐹

¤𝜎

𝜎

such that UMon ◦ ¤𝜎 = 𝜎 ◦UMon

3.3.4*9. As shown by Jaskelioff and Moggi [2010], many monad transformers in

programming languages are functorial, including the exception monad trans-

97



former 𝑀(𝐸 + −) for monads 𝑀, the state monad transformer 𝑆 ⇒ 𝑀(𝑆 × −),
the writer monad transformer 𝑀(𝑊 × −), and the (generalised) resumption

monad transformer 𝜇𝑋. 𝑀(Σ𝑋 + −) [Cenciarelli and Moggi 1993]. However, the

seemingly functorial list transformer 𝐿𝑀 := 𝜇𝑋. 𝑀(1 + (− × 𝑋)) is in fact not

functorial, because the associated natural transformation ¤𝜎 : 𝑀 → 𝐿𝑀 defined

by 𝑎 : 𝑀 ⊢ (𝑎, 𝜄2 ⟨∗, (𝜂𝑀 , 𝜄1 ⟨⟩)⟩) : 𝑀 ◦ (1 + Id × 𝐿𝑀) refers to the unit 𝜂𝑀 of 𝑀,

which is not a part of the underlying functor of 𝑀.

3.3.4*10 Theorem. Assume that the monoidal category ℰ is right-closed. Let ¥Ψ be
some ⟨ ¤Ψ, 𝑇Ψ⟩ ∈ Scp𝑙(ℰ). A functorial monoid transformer ⟨ ¤𝐹, 𝐹, ¤𝜎, 𝜎⟩ and a functor
𝐻 : Mon(ℰ) → ¤Ψ-Alg such that ¤𝐹 = 𝑇Ψ · 𝐻 induce a strict modular model 𝑀 of
¥Ψ ∈ Scp𝑙(ℰ) with an updater 𝑢⟨ ¤Σ,𝑇Σ ,𝐴,𝛼⟩ = 𝜎⟨𝐴, 𝑇Σ𝛼⟩.

Proof sketch. Compared to Theorem 3.3.4*3, what is new is how scoped operations

𝛼 : 𝑆 □ 𝐴 □ 𝐴 → 𝐴 on a monoid ⟨𝐴, 𝜂𝐴 , 𝜇𝐴⟩ are transformed to 𝐹𝐴. Such a

transformation (not necessarily the unique one) is given by Jaskelioff and Moggi

[2010], whose insight is that that scoped operations on 𝐴 are the same as an

algebraic operation on the monoid 𝐴/𝐴, which embed 𝐴 by Cayley’s theorem

(Example 2.3.2*4), and we already know how to transform algebraic operations

along monoid transformers. This is why we need (right) closedness in the

assumption. We briefly record the transformation below and refer the reader to

Jaskelioff and Moggi [2010, §5.1] for more details.

Firstly, recall that we have the Cayley embedding 𝑒 : 𝐴 → 𝐴/𝐴 and its

retraction 𝑟 : 𝐴/𝐴→ 𝐴 defined as follows:

𝑒 = (𝑎 : 𝐴 ⊢ 𝜆𝑥. 𝜇𝐴(𝑎, 𝑥) : 𝐴/𝐴) 𝑟 = ( 𝑓 : 𝐴/𝐴 ⊢ 𝑓 𝜂𝐴 : 𝐴).

We can similarly transpose the scoped operation 𝛼 : 𝑆 □ 𝐴 □ 𝐴 → 𝐴 on 𝐴 to

obtain a morphism �̃� : 𝑆→ 𝐴/𝐴:

�̃� = (𝑠 : 𝑆 ⊢ 𝜆𝑥. 𝛼(𝑠, 𝑥, 𝜂𝐴) : 𝐴/𝐴)

The transformed operation 𝛼♯
: 𝑆 □ 𝐹𝐴□ 𝐹𝐴→ 𝐹𝐴 is then defined by

𝑠 : 𝑆, 𝑎 : 𝐹𝐴, 𝑏 : 𝐹𝐴 ⊢ 𝜇𝐹𝐴
(
𝐹𝑟

(
𝜇𝐹(𝐴/𝐴) (𝜎𝐴/𝐴 (�̃� 𝑠), 𝐹𝑒 𝑎)

)
, 𝑏
)

: 𝐹𝐴

This transformed operation 𝛼♯
preserves any constant equation K𝐶 ⊢ 𝐿 = 𝑅

satisfied by 𝛼 by the same argument for Theorem 3.3.4*3. Moreover, the

definition of 𝛼♯
is natural w.r.t. Scp𝑙(ℰ): given any transliteration 𝑓 : 𝑆′ → 𝑆

between scoped operations, we have

𝛼♯ · ( 𝑓 □ 𝐹𝐴□ 𝐹𝐴) = (𝛼 · ( 𝑓 □ 𝐴□ 𝐴))♯ ,

which can be directly checked or deduced from the general fact that all the term

formers of monoidal algebraic theories are natural, similar to the abstraction

98



theorem of simply typed lambda calculus [Reynolds 1983]. □

3.3.4*11 Remark. The theorem above needs the monoid transformer ¤𝐹 to be over

some 𝐹 : ℰ → ℰ because the retract 𝑟 : 𝐴/𝐴 → 𝐴 of the Cayley embedding

(Example 2.3.2*4) used in the proof is not a monoid morphism, so we need

𝐹 : ℰ → ℰ to have 𝐹𝑟 : 𝐹(𝐴/𝐴) → 𝐴. The requirement of having 𝜎 : Id → 𝐹

below ¤𝜎 : Id → ¤𝐹 is also essential. It is needed for showing that the updater

is an algebra-homomorphism [Jaskelioff and Moggi 2010, Lemma 5.3] and the

equations are preserved, which are omitted in the proof sketch above.

3.3.4*12. A mistake in the earlier paper [Yang and Wu 2023] by the author is

that the strict modular models from Theorem 3.3.4*10 and Example 3.3.4*6 were

claimed to be w.r.t. the family Scp(ℰ) rather than Scp𝑙(ℰ). This is wrong because

the operation transformation 𝛼♯
: 𝑆 □ 𝐹𝐴□ 𝐹𝐴→ 𝐹𝐴 from a scoped operation

𝛼 : 𝑆 □ 𝐴 □ 𝐴 → 𝐴 in these modular models is not natural with respect to

translations in Scp(ℰ), i.e. there exist translations 𝑇 such that (𝑇𝛼)♯ ≠ 𝑇(𝛼♯).
For a counterexample, consider the modular model of exception catching in

from Example 3.3.4*6. Let ¥Σ ∈ Scp(Endo𝜅(Set)) be the theory of monads with a

binary scoped operation 𝑏 : (Id × Id) ◦ 𝐴 ◦ 𝐴→ 𝐴, and let ¥Σ′ ∈ Scp(Endo𝜅(Set))
be an arbitrary theory. In the category Scp (but not in Scp𝑙), we have a translation

𝑇 : ¥Σ→ ¥Σ′ that as a functor sends every ⟨𝐴, 𝜇𝐴 , 𝜂𝐴 , 𝛼⟩ ∈ ¥Σ′-Alg to the ¥Σ-algebra

⟨𝐴, 𝜇𝐴 , 𝜂𝐴 , 𝜇𝐴 · (𝑐 ◦ 𝐴)⟩ where 𝑐 is

(Id × Id) ◦ 𝐴 = 𝐴 × 𝐴 𝑠−→ 𝐴 ◦ (Id × 𝐴) 𝐴◦𝜋2−−−−→ 𝐴 ◦ 𝐴 𝜇𝐴−−→ 𝐴

and the arrow 𝑠 is the canonical strength 𝑠𝑛 : 𝐴𝑛 × 𝐴𝑛 → 𝐴(𝑛 × 𝐴𝑛) for the

set-endofunctor 𝐴. Note that this translation completely ignores the original

operation 𝛼. It is perhaps more intuitive to use the syntax of an ordinary

programming language here, say Haskell, which would be the following:

𝑇𝛼 :: 𝐴 x→ 𝐴 x→ (x→ 𝐴 y) → 𝐴 y
𝑇𝛼 m n k = do _← m; x← n; k x

In prose, 𝑇 translates the binary scoped operation 𝑏(𝑥, 𝑦) to the computation that

first runs 𝑥, ignores its result, and then runs 𝑦.

The operation lifting 𝛼♯
in Example 3.3.4*6 for a binary scoped operation

𝛼 :: 𝐴 x→ 𝐴 x→ (x→ 𝐴 y) → 𝐴 y)would be the following in Haskell:

data Maybe x = Nothing | Just x
data MaybeT 𝐴 x = MaybeT (𝐴 (Maybe x))
𝛼♯

:: MaybeT 𝐴 x→MaybeT 𝐴 x→ (x→MaybeT 𝐴 y) →MaybeT 𝐴 y
𝛼♯ (MaybeT m′) (MaybeT n′) k = do x←MaybeT (𝛼 m′ n′ return); k x

Now we can see that the two binary scoped operation (𝑇𝛼)♯ and 𝑇(𝛼♯) are not

equal. The operation 𝑇(𝛼♯)written in Haskell would be

99



b1 :: MaybeT 𝐴 x→MaybeT 𝐴 x→ (x→MaybeT 𝐴 y) →MaybeT 𝐴 y
b1 m n k = do _← m; x← n; k x

while the operation (𝑇𝛼)♯ would be

b2 (MaybeT m′) (MaybeT n′) k = do x←MaybeT (do _← m′; n′); k x

The difference is that when m throws an exception, i.e. when 𝑚′ returns Nothing,

b1 will stop after 𝑚, whereas b2 will continue as 𝑛′.

3.3.5 Colimits and limits of Model Transformers

3.3.5*1. The category of model transformers (i.e. liftings along fibrations) seems

to inherit many properties of categories of ordinary models (i.e. fiber categories).

As a first step, in the following we show colimits and reindexing-stable limits of

ordinary models can be lifted to model transformers.

3.3.5*2 Theorem. Let 𝑃 : 𝒜 → 𝒯 be a fibration and 𝑃′ : 𝒜
′ → 𝒯

′ be a fibration
with a cleavage 𝜅, and let 𝑇 : 𝒯 → 𝒯

′ be a functor and 𝒟 be a category. If every fiber
category 𝒜

′
Σ

of 𝑃′ has (chosen) 𝒟-indexed colimits, the category Motr(𝑇) of model
transformers of 𝑇 also has 𝒟-indexed colimits, which are computed fiberwise.

Moreover, if reindexing functors of 𝑃′ preserve (or strictly preserves) 𝒟-indexed col-
imits, the full subcategory of Motr(𝑇) containing strong (or strict) model transformers
are closed under 𝒟-indexed colimits in Motr(𝑇).

Proof. Let 𝑀 : 𝒟→Motr(𝑇) be a 𝒟-diagram of model transformers. We define

a functor 𝐶 : 𝒜→ 𝒜
′
that sends every object 𝐴 ∈ 𝒜 to the colimit of 𝑀𝑖𝐴 in the

fiber category 𝒜𝑇𝑃𝐴. For every morphism 𝑓 : 𝐴→ 𝐵 in 𝒜, let 𝛼𝐴
𝑖

: 𝑀𝑖𝐴→ 𝐶𝐴

and 𝛼𝐵
𝑖

: 𝑀𝑖𝐵→ 𝐶𝐵 be the colimiting cocones:

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝐶𝐴 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝐶𝐵

𝛼𝐴
𝑖 𝛼𝐴

𝑗

𝛼𝐵
𝑖 𝛼𝐵

𝑗

𝑀𝑖 𝑓
𝑀𝑗 𝑓

Writing 𝑟 := 𝑇𝑃 𝑓 , for every 𝑖 ∈ 𝒟, the morphism 𝑀𝑖 𝑓 : 𝑀𝑖𝐴 → 𝑀𝑖𝐵 factors

as a vertical morphism 𝑣𝑖 : 𝑀𝑖𝐴 → 𝑟∗(𝑀𝑖𝐵) in 𝒜
′
𝑇𝑃𝐴

followed by a cartesian

morphism. The reindexing functor 𝑟∗ sends the cocone 𝛼𝐵
𝑖

in 𝒜
′
𝑇𝑃𝐵

to a cocone

100



𝑟∗𝛼𝐵
𝑖

: 𝑟∗𝑀𝑖𝐵→ 𝑟∗𝐶𝐵 in 𝒜
′
𝑇𝑃𝐴

:

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝐶𝐴

𝑟∗𝑀𝑖𝐵 𝑟∗𝑀 𝑗𝐵 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝑟∗𝐶𝐵 𝐶𝐵

𝛼𝐴
𝑖𝑣𝑖

𝛼𝐴
𝑗 𝑣 𝑗

𝑟∗𝛼𝐵
𝑖 𝑟∗𝛼𝐵

𝑗
𝛼𝐵
𝑖 𝛼𝐵

𝑗

𝜅(𝐶𝐵,𝑟)

𝑢

(3.15)

The composite (𝑟∗𝛼𝐵
𝑖
) · 𝑣𝑖 : 𝑀𝑖𝐴→ 𝑟∗𝐶𝐵 can be checked to be a cocone too. By

the universal property of 𝐶𝐴 as a colimit of 𝑀𝑖𝐴, we have a unique vertical

morphism 𝑢 : 𝐶𝐴→ 𝑟∗𝐶𝐵 such that 𝑢 · 𝛼𝐴
𝑖
= 𝑟∗𝛼𝐵 · 𝑣𝑖 . We define the action of 𝐶

on the morphism 𝑓 : 𝐴→ 𝐵 to be 𝜅(𝐶𝐵, 𝑟) · 𝑢 : 𝐶𝐴→ 𝐶𝐵. The functoriality of 𝐶

is a consequence of the functoriality of 𝑀𝑖 and the universal property of 𝐶𝐴 as

colimits. For example, if 𝑓 : 𝐴→ 𝐵 above is id𝐴 : 𝐴→ 𝐴, it can be checked by

diagram chasing that for all 𝑖 ∈ 𝒟, 𝐶id𝐴 · 𝛼𝐴𝑖 = 𝛼𝐴
𝑖
·𝑀𝑖id𝐴 = 𝛼𝐴

𝑖
, so 𝐶id𝐴 = id𝐴.

The case for 𝐶(𝑔 · 𝑓 ) = 𝐶𝑔 · 𝐶 𝑓 is more complex but similar.

The functor 𝐶 is by construction a lifting of 𝑇. For each 𝑖, we show that the

family of morphisms 𝛼𝐴
𝑖

: 𝑀𝑖𝐴→ 𝐶𝐴 is natural in 𝐴. In the following diagram,

𝑀𝑖𝐴

𝐶𝐴

𝑟∗𝑀𝑖𝐵 𝑀𝑖𝐵

𝑟∗𝐶𝐵 𝐶𝐵

𝛼𝐴
𝑖𝑣𝑖

𝜅(𝑀𝑖𝐵,𝑟)

𝑟∗𝛼𝐵
𝑖

𝛼𝐵
𝑖

𝜅(𝐶𝐵,𝑟)

𝑢

we have𝐶 𝑓 ·𝛼𝐴
𝑖
= 𝜅(𝐶𝐵, 𝑟)·𝑢 ·𝛼𝐴

𝑖
= 𝜅(𝐶𝐵, 𝑟)·𝑟∗(𝛼𝐵

𝑖
)·𝑣𝑖 . The morphism 𝑟∗𝛼𝐵

𝑖
, which

is the image of 𝛼𝐵
𝑖

under reindexing 𝑟∗, is by definition the unique morphism

making the square at the bottom commute, so we have 𝜅(𝐶𝐵, 𝑟) · 𝑟∗(𝛼𝐵
𝑖
) · 𝑣𝑖 =

𝛼𝐵
𝑖
· 𝜅(𝑀𝑖𝐵, 𝑟) · 𝑣𝑖 = 𝛼𝐵

𝑖
· 𝑀𝑖 𝑓 . Hence we have shown the required naturality:

𝐶 𝑓 · 𝛼𝐴
𝑖
= 𝛼𝐵

𝑖
·𝑀𝑖 𝑓 , and thus we have a cocone ⟨𝛼𝑖⟩𝑖∈𝒟 in Motr(𝑇).

Given any cocone ⟨𝛽𝑖 : 𝑀𝑖 → 𝑁⟩𝑖∈𝒟, for every 𝐴 ∈ 𝒜, ⟨𝛽𝐴
𝑖
⟩ is a cocone in

𝒜𝑇𝑃𝐴 from 𝑀𝑖𝐴 to𝑁𝐴, so there is a unique mediating morphism 𝜎𝐴 : 𝐶𝐴→ 𝑁𝐴

such that 𝜎𝐴 · 𝛼𝐴
𝑖
= 𝛽𝐴

𝑖
. It can be checked by diagram chasing that the family of

morphisms 𝜎𝐴 is natural in 𝐴, so 𝐶 is the colimit of 𝑀𝑖 in Motr(𝑇).
Finally, by the construction of the colimit 𝐶 above, we can see that if reindexing

functors of 𝑃′ (strictly) preserve 𝒟-indexed colimits in fiber categories, then when

𝑓 : 𝐴→ 𝐵 is cartesian and all 𝑀𝑖 are strong, the two cocones in the left of (3.15)

101



are isomorphic (the same), therefore 𝐶 is strong (strict) too. □

3.3.5*3. The situation for limits is slightly different: we need reindexing functors

to preserve limits in fiber categories for Motr(𝑇) to inherit these limits. This

requirement is not too demanding though, since in many fibrations of algebras

and theories, reindexing functors are right adjoints so they preserve all limits.

3.3.5*4 Theorem. Let 𝑃 : 𝒜 → 𝒯 be a fibration and 𝑃′ : 𝒜
′ → 𝒯

′ be a fibration
with a cleavage 𝜅, and let 𝑇 : 𝒯 → 𝒯

′ be a functor and 𝒟 be a category. If every fiber
category 𝒜

′
Σ

of 𝑃′ has (chosen) 𝒟-indexed limits, and reindexing functors preserve these
limits, then the category Motr(𝑇) has 𝒟-indexed limits. Moreover, the subcategory
containing strong/strict model transformers are closed under these limits.

Proof sketch. Similar to the case of colimits above, the limit 𝐿 of a diagram 𝑀𝑖 of

model transformers is defined fiberwise: for every object 𝐴 ∈ 𝒜, 𝐿𝐴 is defined

to be the (chosen) limit of 𝑀𝑖𝐴 in the fiber category 𝒜
′
𝑃𝑇𝐴

. However, the action

of 𝐿 on a morphism 𝑓 : 𝐴→ 𝐵 is different from the situation of colimits:

𝐿𝐴

𝑀𝑖𝐴 𝑀 𝑗𝐴

𝑟∗𝐿𝐵 𝐿𝐵

𝑟∗𝑀𝑖𝐵 𝑟∗𝑀 𝑗𝐵 𝑀𝑖𝐵 𝑀 𝑗𝐵

𝛼𝐴
𝑖

𝛼𝐴
𝑗

𝑟∗𝛼𝐵
𝑖

𝑟∗𝛼𝐵
𝑗

𝛼𝐵
𝑖

𝛼𝐵
𝑗𝜅(𝐿𝐵,𝑟)

𝑢
𝑣𝑖 𝑣 𝑗

By reindexing the limiting cone 𝛼𝐵
𝑖

: 𝐿𝐵→ 𝑀𝑖𝐵 along 𝑟 := 𝑇𝑃 𝑓 , we have a cone

𝑟∗𝛼𝐵
𝑖

: 𝑟∗𝐿𝐵→ 𝑟∗𝑀𝑖𝐵. Let 𝑣𝑖 : 𝑀𝑖𝐴→ 𝑟∗𝑀𝑖𝐵 be the unique vertical morphism

𝜅(𝑀𝑖𝐵) · 𝑣𝑖 = 𝑀𝑖 . We have a cone (𝑣𝑖 · 𝛼𝐴𝑖 ) : 𝐿𝐴 → 𝑟∗𝑀𝑖𝐵. Now we use the

assumption that 𝑟∗ preserves 𝒟-limits, so 𝑟∗𝛼𝐵
𝑖

: 𝑟∗𝐿𝐵→ 𝑟∗𝑀𝑖𝐵 is still a limiting

cone, and we have a vertical morphism 𝑢 : 𝐿𝐴→ 𝑟∗𝐿𝐵. The rest of this proof is

similar to the proof of Theorem 3.3.5*2. □

3.3.5*5. Under the assumptions of Theorem 3.3.5*4 and additionally that 𝑃 = 𝑃′

are the same fibration, and 𝑇 : 𝒯 → 𝒯 is equipped with 𝜂 : Id→ 𝑇, the category

Motr𝑢(𝑇) of updatable model transformers also has 𝒟-indexed limits. In fact,

limits in Motr𝑢(𝑇) are strictly created by the forgetful functor U : Motr𝑢(𝑇) →
Motr(𝑇), which means that for every diagram 𝐷 : 𝒟→ Motr𝑢(𝑇), whenever

U◦𝐷 has a limiting cone 𝛼𝑖 : 𝐿→ U𝐷𝑖 in Motr(𝑇), there exists a unique updater

𝑢 for 𝐿 making 𝛼𝑖 : ⟨𝐿, 𝑢⟩ → 𝐷𝑖 a limiting cone in Motr𝑢(𝑇).
To prove this, recall that an updater 𝑢 for a model transformers 𝑀 is a natural

transformation 𝑢 : Id→ 𝑀 over 𝜂 : Id→ 𝑇. For a 𝒟-indexed diagram ⟨𝑀𝑖 , 𝑢𝑖⟩
in Motr𝑢(𝑇), for every 𝐴 ∈ 𝒜, we have a vertical morphism 𝑢𝐴

𝑖
: 𝐴→ 𝜂∗

𝐴
𝑀𝑖𝐴.

102



Since morphisms in Motr𝑢(𝑇) are compatible with updaters, 𝑢𝐴
𝑖

is a cone over

𝜂∗
𝐴
𝑀𝑖𝐴. In the proof of Theorem 3.3.5*4, the limit 𝐿 of 𝑀𝑖 is computed pointwise

and fiberwise, so 𝐿𝐴 is the limit of 𝑀𝑖𝐴 in the fiber 𝒜𝑇𝑃𝐴. Moreover, the limit 𝐿𝐴

is preserved by reindexing 𝜂∗
𝐴

, so 𝜂∗𝐿𝐴 is a limit of 𝜂∗
𝐴
𝑀𝑖𝐴 in 𝒜𝑃𝐴, and the cone

𝑢𝐴
𝑖

: 𝐴→ 𝜂∗
𝐴
𝑀𝑖𝐴 then gives us a unique mediating morphism 𝑢𝐴 : 𝐴→ 𝜂∗𝐿𝐴.

It can be checked that this 𝑢 is natural and is an updater for 𝐿.

Note however, the forgetful functor Motr𝑢(𝑇) → Motr(𝑇) does not create

colimits: a cone 𝑢𝐴
𝑖

: 𝐴→ 𝜂∗
𝐴
𝑀𝑖𝐴 does not give us a morphism 𝐴→ 𝜂∗

𝐴
𝐶𝐴 into

the colimit that commutes with 𝜂∗
𝐴
𝛼𝐴
𝑖

: 𝜂∗
𝐴
𝑀𝑖𝐴→ 𝜂∗

𝐴
𝐶𝐴 for all 𝑖 ∈ 𝒟.

3.3.5*6. There are many more properties that we may wish to lift from ordinary

models to model transformers. In particular, a question for the future is

If every fiber category is locally 𝜅 presentable, under what conditions

the category of model transformers is also locally 𝜅-presentable?

3.3.6 Composition and Fusion of Model Transformer

3.3.6*1. Model transformers are readily composable horizontally. Let 𝑀 and 𝑁

be two (strict/strong) model transformers of functors 𝑆 and 𝑇 respectively,

𝒜 𝒜
′

𝒜
′′

𝒯 𝒯
′

𝒯
′′

𝑀

𝑃

𝑁

𝑃′ 𝑃′′

𝑆 𝑇

it is immediate that the composite functor 𝑁 ◦ 𝑀 is a (strict/strong) model

transformers of 𝑇 ◦ 𝑆 : 𝒯
′ → 𝒯

′′
. Moreover, when 𝑃, 𝑃′, and 𝑃′′ are the same

fibration, and the functors 𝑆 and𝑇 are pointed, an updater 𝑢 of 𝑀 and an updater

𝑣 of 𝑁 can be composed horizontally to an updater 𝑣 ◦ 𝑢 : Id→ 𝑁 ◦𝑀 as well.

In particular, the composition of a modular model 𝑀 of Σ ∈ 𝒯 (i.e. a model

transformer of − + Σ : 𝒯 → 𝒯) and a modular model 𝑁 of Φ ∈ 𝒯 gives us a

modular model of Σ +Φ via the isomorphism − + (Σ +Φ) � (− + Σ) +Φ.

3.3.6*2 Example. Let 𝑀𝐸 be the modular model of exception throwing and

catching (Example 3.3.4*6), and 𝑀𝑆 be the modular model of mutable state arising

from the state monad transformer by Theorem 3.3.4*3. The composite 𝑀𝑆 ◦𝑀𝐸

is a modular model of Ec + St𝑆, the theories of exception and mutable state.

3.3.6*3. Coproducts of theories are commutative, Σ + Φ � Φ + Σ, but the

composition of modular models is of course not. For example, the opposite

order 𝑀𝐸 ◦ 𝑀𝑆 of composing the modular models in Example 3.3.6*2 gives

rise to another modular model of the coproduct Ec + St𝑆. Both 𝑀𝑆 ◦𝑀𝐸 and

𝑀𝐸 ◦ 𝑀𝑆 satisfy the respective equations of exception and mutable state, but

103



they validate different interaction equations: 𝑀𝑆 ◦ 𝑀𝐸 additionally validates

commutativity of stateful operations and exception throwing, so the following

program equivalence is validated by 𝑀𝑆 ◦𝑀𝐸:

catch (do put s; throw) h = catch (do throw; put s) h = catch throw h = h,

where the second step throw; put s = throw is due to the algebraicity of throw as a

nullary operation. On the other hand, 𝑀𝐸 ◦𝑀𝑆 validates

catch (do put s; p) h = do put s; catch p h,

so catch (do put s; throw) h = do put s; catch throw h = do put s; h. An operational

interpretation is that when an exception is caught, 𝑀𝑆 ◦ 𝑀𝐸 will roll back to

the state before the catch, whereas 𝑀𝐸 ◦ 𝑀𝑆 will keep the state as it is. Both

behaviours are desirable depending on the application. More discussion about

interaction of effectful operations can be found in Yang and Wu [2021].

3.3.6*4. A straightforward but useful result about composites of model transform-

ers is the fusion lemma below: interpreting a term with two model transformers

sequentially is equal to interpreting with the composite model transformer.

Therefore two consecutive interpretations can be combined into one, eliminating

the need to generate the intermediate result that is consumed immediately, a

program optimisation known as short-cut fusion [Gill et al. 1993; Hinze et al. 2011].

Generalising the natural transformation ℎ𝑀 : (− + ¥Ψ)★ → 𝑀(−)★ in 3.1*25,

let 𝑃 : 𝒜 → 𝒯 be a fibration with a cleavage such that that all fiber categories

have initial objects. We then have a functor (−)★ : 𝒯 → 𝒜 that maps every object

Σ ∈ 𝒯 to the initial object 0Σ in the fiber 𝒜Σ, and (−)★ maps every morphism

𝑡 : Σ→ Γ to the unique morphism 0Σ→ 𝑡∗0Γ followed by the cartesian morphism

over 𝑡. For every model transformer 𝑀 : 𝒜 → 𝒜 of some functor 𝑇 : 𝒯 → 𝒯,

we then have a unique natural transformation ℎ𝑀 : (𝑇−)★→ 𝑀(−)★:

𝒜 𝒜

𝒯 𝒯

𝑀

𝑃 𝑃(−)★

𝑇

ℎ𝑀 (−)★

that interprets the abstract syntax (𝑇Σ)★ with the model 𝑀Σ★
for every Σ ∈ 𝒯.

3.3.6*5 Lemma (Fusion). For 𝑖 ∈ {1, 2, 3}, let 𝑃 𝑖 : 𝒜
𝑖 → 𝒯

𝑖
be a cloven fibration

such that every fiber category has initial objects. Given model transformers

104



𝑁 : 𝒜
1→ 𝒜

2
of 𝑆 : 𝒯

1→ 𝒯
2

and 𝑀 : 𝒜
2→ 𝒜

3
of 𝑇 : 𝒯

2→ 𝒯
3
, we have

𝒜
1

𝒜
2

𝒜
3

𝒯
1

𝒯
2

𝒯
2

𝑁 𝑀

(−)★

𝑆

ℎ𝑁

𝑇

ℎ𝑀 (−)★ =

𝒜
1

𝒜
2

𝒜
3

𝒯
1

𝒯
2

𝒯
2

𝑁 𝑀

(−)★

𝑆 𝑇

ℎ𝑀◦𝑁 (−)★

i.e. ℎ𝑀◦𝑁
Σ

= (𝑀ℎ𝑁
Σ
) · ℎ𝑀

𝑆Σ
: (𝑇𝑆Σ)★→ 𝑀𝑁Σ★

for every Σ ∈ 𝒯1
.

Proof. The component at Σ of these two natural transformations are both the

unique morphism out of the initial object of the fiber category over 𝑇𝑆Σ. □

3.3.7 Modular Models in Symmetric Monoidal Categories

3.3.7*1. In this subsection, we will have a look at some constructions of modular

models that are only possible in symmetric monoidal categories ℰ, such as

⟨𝒞,×, 1⟩ for cartesian monoids and ⟨Endo𝜅(Set), ∗, Id⟩ for applicative functors.

3.3.7*2. To begin with, we can upgrade ordinary models of algebraic and scoped

operations to modular models by using the fact that in a symmetric ℰ, two

monoids ⟨𝐴, 𝜇𝐴 , 𝜂𝐴⟩ and ⟨𝐵, 𝜇𝐵 , 𝜂𝐵⟩ induces a monoid structure on 𝐴□ 𝐵.

3.3.7*3 Theorem (Independent Combination). Let ℰ be a symmetric monoidal
category and F be Alg(ℰ) or Scp𝑙(ℰ). For each ¥Ψ ∈ F , every ¤𝐴 ∈ ¥Ψ-Alg induces a
strict modular model 𝑀 of ¥Ψ ∈ F such that 𝑀⟨ ¥Σ, 𝐵, 𝛽⟩ is carried by 𝐴 □ 𝐵, and 𝑀

has an updater 𝑢 ¥Σ,𝐵,𝛽 = (𝐵 � 𝐼 □ 𝐵
𝜂𝐴□𝐵
−−−−→ 𝐴□ 𝐵).

Proof. Given a monoid ⟨𝐵, 𝜇𝐵 , 𝜂𝐵⟩, 𝐴□ 𝐵 has the following monoid structure:

𝜂𝐴□𝐵 = (𝐼 � 𝐼 □ 𝐼
𝜂𝐴□𝜂𝐵

−−−−−→ 𝐴□ 𝐵)
𝜇𝐴□𝐵 =

(
(𝐴□ 𝐵)□ (𝐴□ 𝐵) � (𝐴□ 𝐴)□ (𝐵 □ 𝐵) 𝜇𝐴□𝜇𝐵−−−−−→ 𝐴□ 𝐵

)
Moreover, we can transform a scoped operation 𝛼 : 𝐶 □ 𝐴 □ 𝐴→ 𝐴 on 𝐴 to a

scoped operation 𝛼♯
on 𝐴□ 𝐵 as follows:

𝐶 □ (𝐴□ 𝐵)□ (𝐴□ 𝐵) � 𝐶 □ (𝐴□ 𝐴)□ (𝐵 □ 𝐵) 𝛼□𝜇𝐵−−−−→ 𝐴□ 𝐵

Symmetrically, every scoped operation on 𝐵 can also be transformed to 𝐴 □ 𝐵.

Furthermore, algebraic operations are special cases of scoped operations, so they

can be transformed in the same way. The preservation of (constant) equations of

the operation transformation is the same as the proof of Theorem 3.3.4*3. □

3.3.7*4. Forℰ = ⟨Endo𝜅(Set), ∗, Id⟩, the intuition for 𝐴 ∗𝐵 is that two applicative-

computations 𝐴 and 𝐵 are combined in the way that they execute independently,

and operations act on 𝐴 ∗ 𝐵 pointwise.

105



There is another way to compose two applicatives, namely 𝐴 ◦ 𝐵 [Mcbride

and Paterson 2008]. In this way, the 𝐵-computation can depend on the result of 𝐴.

3.3.7*5 Theorem (Dependent Combination). Letℰ be ⟨Endo𝜅(Set), ∗, Id⟩ andF be
Alg(ℰ) or Scp𝑙(ℰ). For each ¥Ψ ∈ F , every ¤𝐴 ∈ ¥Ψ-Alg induces a strict modular model
𝑀 of ¥Ψ such that 𝑀 ¥Σ⟨𝐵, 𝛽⟩ is carried by 𝐴 ◦ 𝐵, and 𝑀 has an updater 𝑢 ¥Σ,𝐵,𝛽 = 𝜂𝐴 ◦ 𝐵.

Proof sketch. Given two applicative functors ⟨𝐴, 𝜇𝐴 , 𝜂𝐴⟩ and ⟨𝐵, 𝜇𝐵 , 𝜂𝐵⟩, their

composition 𝐴 ◦ 𝐵 as functors can be equipped with an applicative structure

with unit 𝜂𝐴◦𝐵 = 𝜂𝐴 ◦ 𝜂𝐵 and the following multiplication 𝜇𝐴◦𝐵:

((𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐴(𝐵𝑚) × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘
𝑓
−→

∫ 𝑚,𝑘
𝐴(𝐵𝑚) × 𝐴(𝐵𝑘) × (𝐵𝑛)𝐵𝑚×𝐵𝑘

𝑔
−→

∫ 𝑚′,𝑘′
𝐴𝑚′ × 𝐴𝑘′ × (𝐵𝑛)𝑚′×𝑘′

� (𝐴 ∗ 𝐴)(𝐵𝑛)
𝜇𝐴

−−→ 𝐴(𝐵𝑛)

where the arrow 𝑔 is the substitution of the bound variables of the coend𝑚′ = 𝐵𝑚

and 𝑘′ = 𝐵𝑘 ; the arrow 𝑓 uses functoriality of the coend and the morphism

𝑛𝑚×𝑘 → (𝐵𝑛)𝐵𝑚×𝐵𝑘 given by the transpose of the following morphism:

𝑛𝑚×𝑘 × 𝐵𝑚 × 𝐵𝑘
𝜄𝑚,𝑘−−→

∫ 𝑚,𝑘
𝐵𝑚 × 𝐵𝑘 × 𝑛𝑚,𝑘 � (𝐵 ∗ 𝐵)𝑛

𝜇𝐵

−−→ 𝐵𝑛.

To transform a scoped operation 𝛼 : 𝑆 ∗ 𝐴 ∗ 𝐴→ 𝐴 to 𝐴 ◦ 𝐵, we use the fact that

there is a canonical morphism 𝑠 : 𝑆 ∗ (𝐴 ◦ 𝐵) → (𝑆 ∗ 𝐴) ◦ 𝐵 as follows:

(𝑆 ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝑆𝑚 × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝑆𝑚 × 𝐴(𝐵𝑘) × (𝐵𝑛)𝑚×𝐵𝑘

→
∫ 𝑚,𝑘′

𝑆𝑚 × 𝐴𝑘′ × (𝐵𝑛)𝑚×𝑘′

� (𝑆 ∗ 𝐴)(𝐵𝑛)

where the first step uses the action of the functor 𝐵 on morphisms: 𝑛𝑘 → (𝐵𝑛)(𝐵𝑘),
and the second steps is the substitution of the bound variable 𝑘′ = 𝐵𝑘. We define

the transformation of 𝛼 to 𝐴 ◦ 𝐵 to be

𝑆 ∗ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
𝑠∗(𝐴◦𝐵)

−−−−−−−−−−−→ ((𝑆 ∗ 𝐴) ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
(𝛼◦𝐵)∗(𝐴◦𝐵)
−−−−−−−−−−−→ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)

𝜇
−→ 𝐴 ◦ 𝐵

where 𝛼 = (𝑆 ∗ 𝐴
𝑆∗𝐴∗𝜂𝐴
−−−−−→ 𝑆 ∗ 𝐴 ∗ 𝐴 𝛼−→ 𝐴).

To transform a scoped operation 𝛽 : 𝐺 ∗ 𝐵 ∗ 𝐵 → 𝐵 to 𝐴 ◦ 𝐵, we need the

106



following canonical morphism 𝑡 : 𝐺 ∗ (𝐴 ◦ 𝐵) → 𝐴 ◦ (𝐺 ∗ 𝐵):

(𝐺 ∗ (𝐴 ◦ 𝐵))𝑛 �
∫ 𝑚,𝑘

𝐺𝑚 × 𝐴(𝐵𝑘) × 𝑛𝑚×𝑘

→
∫ 𝑚,𝑘

𝐴(𝐺𝑚 × 𝐵𝑘 × 𝑛𝑚×𝑘)

→
∫ 𝑚,𝑘

𝐴((𝐺 ∗ 𝐵)𝑛)
� 𝐴((𝐺 ∗ 𝐵)𝑛)

where the first step uses the canonical strength of 𝐴 to push 𝐺𝑚 and 𝑛𝑚×𝑘

inwards; the second step uses the coprojection 𝜄𝑚,𝑘 : 𝐺𝑚 × 𝐵𝑘 × 𝑛𝑚×𝑘 → (𝐺 ∗ 𝐵)𝑛.

With 𝑡 we define the transformed scoped operation on 𝐴 ◦ 𝐵:

𝐺 ∗ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)
𝑡∗(𝐴◦𝐵)
−−−−−−−−−→ (𝐴 ◦ (𝐺 ∗ 𝐵)) ∗ (𝐴 ◦ 𝐵)
(𝐴◦𝛽)∗(𝐴◦𝐵)
−−−−−−−−−→ (𝐴 ◦ 𝐵) ∗ (𝐴 ◦ 𝐵)

𝜇𝐴◦𝐵

−−−−−−−−−→ 𝐴 ◦ 𝐵

where 𝛽 = (𝐺 ∗ 𝐵
𝐺∗𝐵∗𝜂𝐵
−−−−−→ 𝐺 ∗ 𝐵 ∗ 𝐵

𝛽
−→ 𝐺). □

3.3.7*6. To see the difference between Theorem 3.3.7*3 and Theorem 3.3.7*5, let

¤𝐴 be the applicative functor induced by the exception monad �̄�+ Id. It is a model

of the applicative version of the theory Et𝐸 of exception throwing, equipped

with an operation throw : �̄� ∗ (�̄� + Id) → (�̄� + Id). Using Theorem 3.3.7*5,

it can be extended to a modular model using (�̄� + Id) ◦ 𝐵 � (�̄� + 𝐵) for all

applicatives 𝐵. In this model, it holds that for all elements 𝑥, 𝑦 ∈ (�̄� + 𝐵)𝑋,

throw ⟨𝑒 , 𝑥⟩ = 𝜄1𝑒 = throw ⟨𝑒 , 𝑦⟩, which means that exception throwing discards

any 𝐵-computation. But it is not true for the independent composition (�̄�+ Id) ∗𝐵.

3.3.7*7. Our final example is an interesting modular model for phased computation,

generalising the construction that Kidney and Wu [2021] and Gibbons et al. [2022]

use for breadth-first search. The theory Pha ∈ Scp(ℰ) has a unary scoped operation

later. The intention is that a program may have multiple phases of execution, and

the operation later𝑝 delays the execution of p to the next phase.

For example, if 𝐹 is an applicative functor in Haskell with later :: F a→ F a,

given 𝑝𝑖 :: F a, the following Haskell program of type F a

do later (do later 𝑝3

𝑝21)
𝑝11

later 𝑝22

𝑝12

is supposed to execute 𝑝11 and 𝑝12 at phase 1, 𝑝22 and 𝑝21 at phase 2, and 𝑝3

at phase 3. A standard example of such an applicative functor F is the nested

107



list functor [[a]], where the 𝑖-th element of the outer list contains all possible

outcomes of the computation at phase 𝑖, and later xs = [[ ] : xs].
In a symmetric closed monoidal categoryℰ such that every object has a free

monoid over it, given a monoid ¤𝐴 = ⟨𝐴, 𝜇𝐴 , 𝜂𝐴⟩, Kidney and Wu [2021]’s idea can

be abstracted as equipping (the carrier of) the free monoid 𝑆𝐴 = 𝜇𝑋. 𝐴□𝑋+𝐼 over

𝐴with a nonstandard monoid structure ⟨𝑆𝐴 , 𝜇𝑆𝐴 , 𝜂𝑆𝐴⟩with𝜂𝑆𝐴 : 𝐼 → 𝜇𝑋. 𝐴□𝑋+𝐼
given by ⊢ in (𝜄2 ∗)where out : (𝑆𝐴 � 𝐴□ 𝑆𝐴 + 𝐼) : in is the isomorphism for the

initial algebra, and 𝜇𝑆𝐴 is denoted by 𝑠 : 𝑆𝐴 , 𝑡 : 𝑆𝐴 ⊢ 𝑚 : 𝑆𝐴 where 𝑚 is

case (out 𝑠, out 𝑡) of
(𝜄1 (𝑎, 𝑥), 𝜄1 (𝑎′, 𝑦)) ↦→ in (𝜄1 (𝜇𝐴(𝑎, 𝑎′), 𝜇𝑆𝐴(𝑥, 𝑦))
(𝜄2 ∗, 𝑦) ↦→ in 𝑦
(𝑥, 𝜄2 ∗) ↦→ in 𝑥

Note that the use of variable 𝑥 and 𝑎′ in the first case does not match their order

in the context, so we need a symmetric monoidal category, and we also need

closedness for interpreting structural recursion on the initial algebra 𝑆𝐴. The

intuition is that 𝑆𝐴 = 𝜇𝑋.𝐴□𝑋 + 𝐼 is a list of 𝐴-computations at each phase, and

𝜇𝑆𝐴 merges two lists by multiplying computations at the same phase. The later
operation on 𝑆𝐴 is defined as

𝑝 : 𝑆𝐴 , 𝑘 : 𝑆𝐴 ⊢ 𝜇𝑆𝐴 (in (𝜄1 (𝜂𝐴 , 𝑝), 𝑘)) : 𝑆𝐴.

The construction 𝐴 ↦→ 𝑆𝐴 is a functorial monoid transformer, so we can use

Theorem 3.3.4*10 to obtain a modular model of phasing in Scp𝑙(ℰ).

∗ ∗ ∗

3.3.7*8. To summarise this chapter, we have studied modular constructions of

algebraic structures in the framework of lifting functors 𝑇 : 𝒯 → 𝒯
′
along two

fibrations 𝑃 : 𝒜 → 𝒯
′
and 𝑃′ : 𝒜

′→ 𝒯
′
. The base categories 𝒯 and 𝒯

′
of the

fibrations contain some notion of algebraic theories, and the total categories 𝒜

and 𝒜
′
contain models of all these theories. The functor 𝑇 : 𝒯 → 𝒯

′
transforms

every theory in a certain way, for example, by combining it with another fixed

theory. Liftings of 𝑇 along 𝑃 and 𝑃′ sends an object in every fiber category 𝒜Σ to

an object in the fiber 𝒜
′
𝑇𝑃Σ

, so we call them model transformers. We can intuitively

think of a functor 𝑇 : 𝒯 → 𝒯 as a theory 𝑇Σ parameterised by some potential

future extension with Σ ∈ 𝒯, then a model transformer 𝑀 of 𝑇 can be thought of

as a model of the ‘parameterised theory’ 𝑇.

We have also seen a handful of universal constructions of model transformers

as well as some more concrete constructions, such as using monoid transformers.

Lastly, we comment that liftings along fibrations have many other applications in

computer science, such as in logical relations for computational types (lifting a

108



computational monad 𝑇 along a fibration of predicates over sets) [Katsumata

2005], in Hoare logics (lifting a computation monad 𝑇 along a fibration of

specifications over types) [Aguirre et al. 2022], and in behaviour metrics of states

of automata (lifting a coalgebra encoding an automaton along a fibrations of

metric spaces over sets) [Baldan et al. 2014]. It is an interesting question for the

future to find out whether the lifting techniques developed in these contexts give

interesting modular models of algebraic theories.

109



Part II

Language

110



Chapter 4

A Logical Framework for LCCCs

4*1. In the second part of this thesis, we switch our topic from categorical

structures to programming languages of higher-order algebraic effects. The

design space for such a language is vast:

* In the axis of foundational strength, does it have dependent types, impred-

icative polymorphism, general recursion, quotient types?

* In the axis of user interface, does it have an effect system? Does it provide

pattern matching on computations (i.e. shallow handlers) or only the

recursor of computations (i.e. deep handlers)? Does it call by value, call by

push value, or call by name? Does it allow dependent let-binding?

As a first step, in this thesis we explore a corner of the space, particularly, a

(fine-grained) call-by-value language with impredicative polymorphism and

possibly general recursion but no full dependent types, which we call System Fω
ha

.

4*2. The author’s motivation for studying this particular configuration of lan-

guage features is that Nicolas Wu and the author are implementing a Haskell

library of higher-order algebraic effects, which uses more than 40 GHC extensions,
so the author hopes to clarify what exactly language features are needed for

implementing higher-order algebraic effects in languages similar to Haskell.

The omission of dependent types implies that we will have only degenerated

equation-less algebraic theories in Fω
ha

, and it is not just the equations on effectful

operations that we have to leave out; we cannot enforce the monadic laws on

user-defined monads either. However, what is interesting, and surprising to

the author, is that even though user-defined models of effects are lawless ‘raw

monads’, the computation judgements of Fω
ha

can still satisfy the monadic laws

strictly and can be eliminated into lawless monads without causing inconsistency.

4*3. Before we go into Fω
ha

, in this chapter we introduce a logical framework (LF)

that we will use for studying Fω
ha

. Logical frameworks are type theories for

defining logics and programming languages conveniently. In particular, the

logical framework in this chapter will not only provide us with a concise notation

111



for defining programming languages, liberating us from the bureaucracy of

dealing with variables and contexts that are common in programming languages,

but also provide a notion of categorical models automatically for languages

defined using the logical framework.

The categorical structure corresponding to the LF in this chapter is locally
cartesian closed categories (LCCCs), just as monoidal categories correspond to

monoidal algebraic theories in Section 2.3, and as categories with finite products

correspond to multi-sorted algebraic theories, and as categories with finite limits

correspond to essentially algebraic theories [Adámek and Rosicky 1994]. For this

reason, we will refer to the LF by LccLF in this thesis.

4*4. LccLF is originally introduced in Sterling [2021, §1]’s thesis, as a simpler

alternative to Uemura [2021, 2023]’s second-order generalised algebraic theories.
LccLF has been used in the study of several type theories [Grodin et al. 2024;

Niu et al. 2022; Sterling and Angiuli 2021; Sterling and Harper 2022]. We refer

the reader to [Sterling 2021, §0.1.2.2 and §1.2*2] for an insightful discussion of

the comparison of LccLF and other logical frameworks.

However, some crucial meta-theory of LccLF is still missing in the literature.

Although readers well versed in categorical logic can probably see how it should

work, in this chapter we take the chance to work it out in some detail.

4*5. The structure of this chapter is as follows:

* In Section 4.1, we introduce the syntax of LccLF and explain how a

programming language can be defined as a signature in LccLF (which is

formally a context in LccLF) following the motto of judgements as types.

* In Section 4.2, we describe the category of judgements Jdg 𝑆 of a signature 𝑆.

Functors 𝑀 : Jdg 𝑆→ 𝒞 into an LCCC 𝒞 preserving the locally cartesian

closed structure then provide functorial models of the signature 𝑆 in 𝒞 in

the tradition of functorial semantics pioneered by Lawvere [1963b].

* In Section 4.3, we define a notion of diagrammatic models of an LccLF-

signature 𝑆. Unlike a functorial model 𝑀 : Jdg 𝑆 → 𝒞, which specifies

the interpretation of all the judgements generated by the signature 𝑆 in a

coherent way, a diagrammatic model only needs to specify the interpretation

of the generating operations in the signature 𝑆, so diagrammatic models

are the notion that we actually want to work with when concretely defining

a model of a signature. Due to type dependency in LccLF, the definition of

diagrammatic models is much more involved than that of, e.g. monoidal

algebraic theories in 2.3.1*6. The main technical tool that we will need is

the concept of universes in categories, and the theorem that for every LCCC

112



𝒞, there is a universe in Pr𝒞 that classifies exactly the Yoneda embedding

of objects and morphisms of 𝒞.

* In Section 4.4, we prove that there is an equivalence of groupoids

𝑆-Mod(𝒞) � LCCC�(Jdg 𝑆,𝒞),

where 𝑆-Mod(𝒞) contains diagrammatic models of a signature 𝑆 and

isomorphisms between them, and LCCC�(Jdg 𝑆,𝒞) is the groupoid of func-

torial models and natural isomorphisms. To define the groupoid 𝑆-Mod(𝒞),
a technique similar to, but at one dimensional higher than, Altenkirch

et al.’s [2019] syntactic translation for setoid type theory is used. The reason

that only isomorphisms instead of homomorphisms are considered that

LccLF has dependent function types so type expressions are not necessarily

covariant with respect to variables in it.

* In Section 4.5, we make some wrap-up comments on this chapter.

4*6. In the rest of the thesis, we will assume familiarity with (extensional)

dependent type theory and its categorical semantics. An exceptionally good

exposition on dependent type theory is Angiuli and Gratzer [2024]; an elementary

account of the categorical semantics is Hofmann [1997], which should be sufficient

for our needs in this thesis; a comprehensive textbook account is Jacobs [1999].

Some basic knowledge of topos theory is also helpful, as all denotational models

in this thesis are either in presheaf toposes or realizability toposes.

4.1 Syntax of the Logical Framework

4.1*1. In brief, the logical framework LccLF is a dependent type theory with a

unit type 1, Σ-types, and a Tarski-style universe type J such that

1. the universe J is closed under the unit type and Σ-types;

2. the universe J is closed under extensional equality types;

3. there are Π-types Π 𝐴 𝐵 provided that 𝐴 is in the universe J. If the

codomain 𝐵 is a type family valued in J, the Π-type Π 𝐴 𝐵 is also in J.

In other words, J is a universe having all connectives of extensional Martin-Löf

type theory (MLTT), while types outside J have only the unit type, Σ-types, and

restricted Π-types whose domain must be in J.

The precise type formation rules of the logical framework are in Figure 4.1,

and the term formation rules for the universe J are in Figure 4.2. All other rules,

including the rules for contexts, substitutions, term formations, and judgemental

equalities (𝛽 and 𝜂 equalities for all type formers) are the same as the usual

113



Γ ⊢ 1 type

Γ ⊢ 𝐴 type Γ, 𝑎 : 𝐴 ⊢ 𝐵 type

Γ ⊢ Σ 𝐴 𝐵 type Γ ⊢ J type

Γ ⊢ 𝐴 : J

Γ ⊢ El 𝐴 type

Γ ⊢ 𝐴 : J Γ ⊢ 𝑎 : El 𝐴 Γ ⊢ 𝑏 : El 𝐴

Γ ⊢ Eq(𝑎, 𝑏) type

Γ ⊢ 𝐴 : J Γ, 𝑎 : El 𝐴 ⊢ 𝐵 type

Γ ⊢ Π 𝐴 𝐵 type

Figure 4.1: Type formation rules for the logical framework

Γ ⊢ 1̂ : J

Γ ⊢ 𝐴 : J Γ, 𝑎 : El 𝐴 ⊢ 𝐵 : J

Γ ⊢ Σ̂ 𝐴 𝐵 : J

Γ ⊢ 𝐴 : J Γ ⊢ 𝑎 : El 𝐴 Γ ⊢ 𝑏 : El 𝐵

Γ ⊢ Êq(𝑎, 𝑏) : J

Γ ⊢ 𝐴 : J Γ, 𝑎 : El 𝐴 ⊢ 𝐵 : J

Γ ⊢ Π̂ 𝐴 𝐵 : J

Figure 4.2: Codes of types in the universe J

extensional Martin-Löf type theory [Hofmann 1997; Martin-Löf 1984; Nordström

et al. 1990] and thus omitted here.

A small difference between the framework defined here and the one in

Sterling’s thesis [2021] is that op. cit. all types have extensional equality types, not

just those in J. Those extensional equality types play the role of sort equations in

Cartmell [1986]’s generalised algebraic theories. Although they are sometimes

handy when specifying type theories in the LF, they necessitate considerations of

strict equalities between objects in a category when considering categorical models

of theories specified in the LF, making the notion of models not invariant under

equivalences of categories. They also complicate the definition of isomorphisms

of models. For these reasons, they are left out in the LF here.

4.1*2 Notation. In the rest of the thesis we will extensively use dependent type

theories – the logical framework for presenting object type theories and internal

languages of categories for studying the meta-theoretic properties of the object

type theories. To make working with type theories as natural as working with

ordinary maths, we impose the following notational conventions, which resemble

the concrete syntax of Agda [Norell 2009].

* Dependent function types, i.e. Π-types, are written as (𝑎 : 𝐴) → 𝐵, or

𝐴→ 𝐵 when 𝐵 does not depend on 𝐴. Function abstraction is 𝜆(𝑥 : 𝐴). 𝑡,
or 𝜆𝑥. 𝑡 if 𝐴 can be inferred; function application is 𝑓 𝑎 as usual.

* We use implicit function types {𝑎 : 𝐴} → 𝐵, whose function application and

abstraction are elided when they can be inferred or have a unique choice.

114



When they are hard to infer, we make their application and abstraction

explicit by writing 𝑓 {𝑎} and 𝜆{𝑎 : 𝐴}. 𝑡 respectively.

When the type 𝐴 of 𝑎 can be inferred from the uses of 𝑎, we sometimes

further abbreviate the notation {𝑎 : 𝐴} → 𝐵 as {𝑎} → 𝐵.

* Dependent pair types, i.e. Σ-types, are written as Σ(𝑎 : 𝐴). 𝐵, or 𝐴 × 𝐵 if 𝐵

does not depend on 𝐴. Pairing is (𝑎, 𝑏) and projections are 𝜋1 𝑝 and 𝜋2 𝑝.

We also use the record syntax for iterative Σ-types with named fields:

record R : 𝒰 where

fld
1

: A1

. . .

fldn : An

means the iterative Σ-type of the fields 𝐴1, . . . 𝐴𝑛 , where each field may

depend on previous fields. A field of a record 𝑟 : 𝑅 is accessed by 𝑟.fldi. A

record 𝑟 : 𝑅 is constructed using the ‘co-pattern matching’ syntax which

specifies each field of r by a list of declarations:

𝑟.fld
1
= 𝑡1

. . .

𝑟.fldn = 𝑡𝑛

* We will use the same notation for type formers and their codes in universes.

The decoding operator El of universes will be also elided, as if we are

working with Russell-style universes. For example, we write

𝐴 : J, 𝐵 : 𝐴→ J ⊢ (𝑥 : 𝐴) → 𝐵 : J

to mean 𝐴 : J, 𝐵 : El 𝐴→ J ⊢ Π̂ 𝐴 𝐵 : J.

* The extensional equality type Eq(𝑎, 𝑏) will be written as simply 𝑎 = 𝑏,

and its only constructor is refl : 𝑎 = 𝑎. There is no special notation for

consuming extensional equality types since they are consumed by equality
reflection: if we have an element of the type 𝑎 = 𝑏, then 𝑎 and 𝑏 can be used

interchangeably, i.e. they are judgementally equal.

* An identifier that contains underscores ‘_’ is used as an operator. For

example, if _+_ : 𝐴→ 𝐴→ 𝐴, we can write 𝑎+𝑏 for 𝑎, 𝑏 : 𝐴. Such operators

do not have to be binary. For example, if _⟨_⟩_ : 𝐴→ 𝐵→ 𝐴→ 𝐶, we can

write 𝑎⟨𝑏⟩𝑎′ : 𝐶 for 𝑎, 𝑎′ : 𝐴 and 𝑏 : 𝐵.

However, a single underscore ‘_’ that appears alone just means a ‘wildcard’

that take the place of something inferable or irrelevant.

115



4.1*3. A type theory is defined in the logical framework as a context, or equiva-

lently a closed type, since a context (𝑎1 : 𝐴1, . . . , 𝑎𝑛 : 𝐴𝑛) can be packed into a

record type with fields 𝑎𝑖 : 𝐴𝑖 . The idea is the judgements-as-types principle of the

Edinburgh Logical Framework [Harper et al. 1993]: judgements of the object type

theory (e.g. something being a type) are declared as types in the universe J in the

logical framework; inference rules are declared as functions between judgements;

deductions are then terms of judgements that make use of the previously declared

judgements and inference rules.

4.1*4 Terminology. To avoid confusion with concepts in object type theories,

henceforth we will call LF contexts signatures or occasionally theories. The

variables of an LF contexts are referred to as declarations of the signature. An LF

type in the universe J will be called judgements.

4.1*5 Example. The signature of barebone type theory has two declarations

ty : J tm : ty→ J

which are respectively the judgement for something being a type and the family of

judgements for something being a term of a type. This signature alone is not very

interesting but it serves as a basic building block for more complex type theories.

4.1*6 Example. The signature of simply typed 𝜆-calculus (STLC) extends barebone

type theory (Example 4.1*5) with the following declarations:

𝜄 : ty _⇒_ : ty→ ty→ ty
abs : {a, b : ty} → (tm a→ tm b) → tm (a⇒ b)
app : {a, b : ty} → tm (a⇒ b) → (tm a→ tm b)

_ : {a, b : ty} → { f : tm a→ tm b} → app (abs f ) = f
_ : {a, b : ty} → {g : tm (a⇒ b)} → abs (app g) = g

The declaration 𝜄 : ty corresponds to the inference rule of a base type in STLC,

and the declaration _⇒_ corresponds to the inference rule of (non-dependent)

function types. Terms of function types are specified using higher-order abstract
syntax (HOAS) via an isomorphism with the function space in the logical

framework, which is also the reason why we do not need a judgement of STLC

contexts. With these declarations, we can define STLC terms such as

abs (𝜆f → abs (𝜆x→ app f (app f x))) : tm ((𝜄⇒ 𝜄) ⇒ (𝜄⇒ 𝜄)).

4.1*7. It is a common pattern that a type former in the object type theory is

specified by internalising an LF judgement via an isomorphism, which is precisely

the purpose of introducing logical frameworks. Thus for convenience we define

the judgement of isomorphisms given two judgements 𝐴, 𝐵:

116



record A � B : J where

fwd : A→ B
bwd : B→ A
_ : (a : A) → bwd (fwd a) = a
_ : (b : B) → fwd (bwd b) = b

Using isomorphisms to LF judgements to specify object type theories does

not entail that object type theories are restricted to sublanguages of the logical

framework. The following two examples shows how general recursion and

impredicative polymorphism can be specified in this way, although the logical

framework does not have general recursion or any impredicativity.

4.1*8 Example. The signature of PCF [Plotkin 1977] extends STLC in Exam-

ple 4.1*6 with a fixed-point combinator at every type

Y : {a : ty} → (tm a→ tm a) → tm a

as well as some new base types and terms

0 : tm 𝜄 succ, pred : tm 𝜄→ tm 𝜄 o : ty tt, ff : tm o
iszero : tm 𝜄→ tm o ⊃ : {a : ty} → tm o→ tm a→ tm a

and also the following equational declarations (whose names are irrelevant):

{n : tm 𝜄 } → pred (succ n) = n pred 0 = 0 iszero 0 = tt
{n : tm 𝜄 } → iszero (succ n) = ff

{a : ty} {x, y : tm a} → (⊃ tt x y = x) × (⊃ ff x y = y)
{a : ty} → { f : tm a→ tm a} → f (Y f ) = Y f

Within the logical framework, in the context of this signature, we can write

programs such as addition of numbers:

_+_ : tm (𝜄⇒ 𝜄⇒ 𝜄)
_+_ = abs (𝜆n→ Y (𝜆rec→ abs (𝜆m→

⊃ (iszero m) n (succ (app rec (pred m))))))
The equational axioms in the signature implies, for example, that 0 + succ 0

is judgementally equal to succ 0 in the logical framework. Note that in this way

PCF is formulated as an equational theory rather than a reduction system of

terms, viz a small-step operational semantics.

4.1*9 Example. The signature of System 𝐹 [Girard 1972; Reynolds 1974] extends

the one of STLC in Example 4.1*6 with the following declarations:

∀ : (ty→ ty) → ty
∀-iso : {A : ty→ ty} → tm (∀ A) � ((𝛼 : ty) → tm (A 𝛼))

117



where _�_ is the judgement of isomorphisms (4.1*7). Since polymorphic (and

ordinary) functions in this signature are specified by function types of the logical

framework, they inherit the 𝛽 and 𝜂 equalities of LF function types.

As an example, letting Abs = ∀-iso.bwd, we can define Church numerals:

CNum : ty
CNum = ∀ (𝜆 𝛼→ (𝛼⇒ 𝛼) ⇒ 𝛼⇒ 𝛼)
C2 : tm CNum
C2 = Abs (𝜆 𝛼→ abs (𝜆 f → abs (𝜆 x→ app f (app f x))))

4.1*10. Let us compare the examples of LF presentations of type theories above

and their more traditional gamma-and-turnstile presentations.

(1) In the LF, Σ-types are used to pack two judgements together. This is

implicit in traditional presentations. For example, (Σ(𝑎 : ty). tm a) → 𝐽 is just

𝑎 type 𝑡 : 𝑎

𝐽

(2) Equality types of the LF are used to specify the equational theory of the

object type theory, and since equality types are respected by all constructions of

the LF, there is no need to manually specify any congruence rules.

(3) A more noticeable difference is that dependent function types in the

universe J (which may be called higher-order judgements as we call elements of J

judgements) uniformly handles two different things in traditional presentations:

contexts of hypotheses Γ ⊢ 𝐽 and schematic inference rules 𝐽
𝐾 . Taking the rule of

function abstraction in STLC for example, the traditional presentation is

Γ, 𝑥 : 𝑎 ⊢ 𝑡 : 𝑏

Γ ⊢ 𝜆𝑥. 𝑡 : 𝑎 ⇒ 𝑏

while in the LF presentation (Example 4.1*6), this rule is

abs : {a, b : ty} → (tm a→ tm b) → tm (a⇒ b)

The higher-order judgement tm a → tm b corresponds to a deduction of 𝑡 : 𝑏

with a new hypothesis 𝑥 : 𝑎 in the context, and (tm a → tm b) → tm (a ⇒ b)
corresponds to the inference rule. In traditional presentations, contexts Γ can

only contain certain basic judgements, such as 𝑥 : 𝑎, but not for example

Γ, 𝑥 : (𝑎 type) ⊢ · · · or even Γ, 𝑥 : (Γ, 𝑥 : 𝑎 ⊢ 𝑡 : 𝑏) ⊢ · · · ,

so there need to be two layers of entailment, Γ ⊢ 𝐽 and
𝐽
𝐾 . In contrast, both of

them are handled as higher-order judgements in the logical framework.

However, introducing higher-order judgements raises the question that

whether a type theory defined in the LF is the same as its traditional presenta-

118



tion, since higher-order judgements a priori may introduce new terms to base

judgements. This question is called the adequacy of LF presentations [Harper et al.

1993]. Using a gluing argument similar to the one by Gratzer and Sterling [2021],

adequacy of the logical framework that we use here can be proven with respect

to Uemura [2021, 2023]’s logical framework, which can be seen as a faithful

formulation of traditional presentations of type theories.

4.1*11. Because of extensional equalities in J, LccLF does not enjoy decidable type

checking, so the type theory of LccLF cannot be implemented as a mechanised

proof assistant as is. This is not a problem for us since we only use LccLF as a

paper-and-pencil logical framework. The undecidability of LccLF is no different

from the undecidability of the word problem of universal algebra [Boone 1958].

However, if we are after mechanically checking the signatures and terms

defined in LccLF, we can ‘approximate’ LccLF using existing proof assistants

implementing intensional equality types, such as Agda, with the axioms of

uniqueness of identity proofs (uip) and function extensionality (funext) as

postulates, since extensional Martin-Löf type theory is conservative with respect

to intensional Martin-Löf type theory augmented with uip and funext [Hofmann

1995a; Kapulkin and Li 2023]. The (unavoidable) cost of this is that some extra

transportations along intensional equalities must be inserted manually.

4.2 Functorial Semantics of Signatures

4.2*1. Type theories, like other flavours of algebraic theories, or languages

in general, are invented for talking about things, either mathematical objects

or intuitive objects in ‘the physical world’. Therefore a logical framework is

incomplete if it does not provide a notion of models of signatures defined in it.

In this section, we show how this is done for LccLF in Section 4.1 by means of

functorial semantics à la Lawvere theories [Lawvere 1963b], except that categories

with finite products are replaced by locally cartesian closed categories.

4.2*2. The syntax of LccLF, quotiented by judgemental equalities, forms a

category with families (CwF) with the extra structures in Figure 4.1, henceforth

called an LF-CwF. It can further be proven to be initial among all LF-CwFs,

similarly to the initiality results of many other dependent type theories in the

literature [de Boer 2020; Kaposi et al. 2020; Pitts 2001; Streicher 1991]. In outline,

we first define a partial interpretation of the raw syntax for every LF-CwF by

induction on the raw syntax, and then we show that the partial interpretation is

defined on well typed terms by induction on the typing derivation, and finally

we show that the interpretation respects judgemental equalities.

119



Alternatively, from a more abstract point of view, we can view the typing

rules of LccLF as a generalised algebraic theory (GAT) [Cartmell 1986; Sterling 2019]

or the signature of a quotient inductive-inductive type (QIIT) [Altenkirch et al. 2018;

Kaposi et al. 2019; Kovács 2023]. Then we can directly take the initial model of

this GAT or this QIIT as the definition of the syntax of LccLF. The existence of

the initial model is shown by Cartmell [1986] in a set-theoretic metatheory and

by Kaposi et al. [2019] in a type-theoretic metatheory. In this way, there is no

need to prove initiality manually, since we are essentially using existing logical

frameworks (GATs or QIITs) to define our logical framework. In fact, it is folklore

that every elementary topos with a natural number object has finitary quotient

inductive-inductive types; see Kovács [2023, §4.6] for more discussion.

4.2*3. Either (i) by constructing the abstract syntax of LccLF from raw syntax

and proving the initiality manually or (ii) by taking the initial model as the

definition of the abstract syntax of the LF, in what follows we write LfSig for the

category of LF-contexts and substitutions between contexts, i.e.,

Obj LfSig = {⊢ Γ ctx} HomLfSig(Δ, Γ) = {Δ ⊢ 𝛾 : Γ},

and TyLF : LfSig
op→ Set for the presheaf of LF-types over contexts,

TyLF(Γ) = {Γ ⊢ 𝐴 type},

and TmLF : (∫TyLF)op → Set for the presheaf of terms over the category of

elements of TyLF, i.e. for every context Γ and 𝐴 ∈ TmLF(Γ),

TmLF(Γ;𝐴) = {Γ ⊢ 𝑎 : 𝐴}.

The context extension of Γ ∈ LfSig with 𝐴 ∈ TyLF(Γ) is written as just Γ.𝐴 ∈ LfSig,

together with the projection substitution 𝑝 : Γ.𝐴→ Γ.

4.2*4 Definition. For every signature 𝑆, i.e. a context, of LccLF, its category of
judgements Jdg 𝑆 is the full subcategory of the slice category LfSig/𝑆 spanned by

projection maps 𝑝 : 𝑆.𝐴→ 𝑆 of context extensions for 𝑆 ⊢ 𝐴 : J.

4.2*5. The objects of Jdg 𝑆 can be identified with judgements 𝑆 ⊢ 𝐴 : J in

the context of 𝑆; the morphisms 𝑡 : 𝐴 → 𝐵 can be identified with functions

𝑆 ⊢ 𝑓 : 𝐴→ 𝐵. Since the universe J is closed under precisely the connectives of

extensional MLTT (1, Σ, Π, and extensional equality types), the category Jdg 𝑆 is

the category of types for extensional MLTT with the additional constants from 𝑆.

Consequently, Jdg 𝑆 is locally cartesian closed. In every slice category Jdg 𝑆/𝐴,

* the terminal object is (𝜆𝑎. 𝑎) : 𝐴→ 𝐴, where we omit 𝑆 ⊢ for clarity;

120



* the product of 𝑓 : 𝐵→ 𝐴 and 𝑔 : 𝐶 → 𝐴 is 𝜆𝑝. 𝑓 (𝜋1 𝑝) : 𝑃 → 𝐴 where

𝑃 := Σ(𝑏 : 𝐵). Σ(𝑐 : 𝐶). ( 𝑓 𝑏 = 𝑔 𝑐);

* the exponential of 𝑓 : 𝐵→ 𝐴 and 𝑔 : 𝐶 → 𝐴 is 𝜋1 : 𝐸→ 𝐴 where

𝐸 := Σ(𝑎 : 𝐴). 𝐵𝑎 → 𝐶𝑎 ,

𝐵𝑎 := Σ(𝑏 : 𝐵). 𝑓 𝑏 = 𝑎,

𝐶𝑎 := Σ(𝑐 : 𝐶). 𝑔 𝑐 = 𝑎.

4.2*6 Example. Consider the signature of PCF in Example 4.1*8. Some examples

of objects and morphisms of the category of judgements for PCF are

tm 𝜄 × tm o

(tm 𝜄→ tm 𝜄) tm 𝜄 Σ(𝑡 : ty). tm t

1 ty

𝜋1

succ
0

𝜄

succ

This category is not the same as the usual category of contexts for PCF, since it

contains higher-order judgements such as tm 𝜄→ tm 𝜄 or (tm 𝜄→ tm 𝜄) → tm 𝜄

that do not correspond to any PCF-contexts. However, the adequacy of the LF

encoding of PCF implies that the category of PCF-contexts can be fully faithfully

embedded in the category of judgements. Namely, it is the full subcategory

spanned by finite products of objects in the set {tm A | 𝐴 : ty}.

4.2*7 Definition. Let 𝑆 be a signature in LccLF and 𝒞 a locally cartesian closed

category (LCCC). A (functorial) model of 𝑆 in 𝒞 is a functor 𝑀 : Jdg 𝑆→ 𝒞 that

preserves the locally cartesian closed structure.

4.2*8. Because the objects of the category of judgements Jdg 𝑆 are generated by

a quite intricate induction, it is not straightforward to define a functorial model

of 𝑆 explicitly. We will solve this by using internal languages later, but for now

let us sketch a partial example for some intuition.

The following lemma about presheaf categories is well known (see e.g. [nLab

2024d]) and will be used in the example.

4.2*9 Lemma. For every small category 𝒞 and presheaf 𝐴 : 𝒞
op → Set, there

is an equivalence of categories Pr𝒞/𝐴 � Pr (∫𝐴) between the slice category

Pr𝒞/𝐴 and the presheaf category Pr (∫𝐴) over the category of element of 𝐴.

4.2*10 Example. Consider the signature of STLC in Example 4.1*6. Let 𝒞 be

a small cartesian closed category. The category 𝒞 has enough structure for

121



interpreting the category of contexts of STLC [Lambek and Scott 1986] but not

enough for interpreting the category of judgements of STLC, since 𝒞 may not be

locally cartesian closed. However, we can interpret the category of judgement in

the presheaf category Pr𝒞, which is always locally cartesian closed.

Firstly, we define Ty ∈ Pr𝒞 to be the constant presheaf

Ty(Γ) = Obj𝒞 Ty(𝛾) = id,

and Tm ∈ Pr𝒞 to be the presheaf defined by

Tm(Γ) = {(𝐴, 𝑓 ) | 𝐴 ∈ Obj𝒞, 𝑓 : Γ→ 𝐴}

Tm(𝛾) = (𝐴, 𝑓 ) ↦→ (𝐴,Δ
𝛾
−→ Γ

𝑓
−→ 𝐴)

for all Γ,Δ ∈ 𝒞 and 𝛾 : Δ → Γ. As the names suggest, the projection map

𝑝 : Tm→ Ty is going to be the interpretation of the morphism

𝜋1 : Σ(𝑡 : ty). tm t→ ty ∈ Jdg
STLC

.

The interpretation of the declaration 𝜄 : ty can be any global element 1→ Ty,

i.e. any object of 𝒞. The interpretation of the declaration _⇒_ : ty→ ty→ ty in

Pr𝒞 is given by the adjunct of the natural transformation 𝐹 : Ty × Ty→ Ty:

𝐹Γ (𝐴, 𝐵) = 𝐵𝐴 for all (𝐴, 𝐵) ∈ Ty × Ty (Γ).

To interpret the isomorphism pair abs and app, following the interpretation of

MLTT in LCCCs [Hofmann 1997; Seely 1984], we need to construct in the slice

category Pr𝒞/Ty×Ty an isomorphism between the object 𝐹∗𝑝 : 𝐹∗Tm→ Ty×Ty,

obtained by pulling back 𝑝 along 𝐹,

𝐹∗Tm Tm

Ty × Ty Ty

𝐹∗𝑝 𝑝

𝐹

and the object 𝜋∗
1
𝑝 ⇒ 𝜋∗

2
𝑝, obtained by taking the exponential of 𝜋∗

1
𝑝 and 𝜋∗

2
𝑝 in

Pr𝒞/Ty × Ty, where 𝜋∗
𝑖
𝑝 is respectively obtained by the pullback

𝜋∗
𝑖
Tm Tm

Ty × Ty Ty

𝜋∗
𝑖
𝑝 𝑝

𝜋𝑖

We can construct this isomorphism pointwise for each object Γ ∈ 𝒞. An element

of Ty × Ty (Γ) is a pair (𝐴, 𝐵) of 𝒞-objects, so the presheaf 𝐹∗Tm at Γ is the set

{(𝐴, 𝐵, 𝑓 ) | 𝐴, 𝐵 ∈ 𝒞, 𝑓 : Γ→ 𝐵𝐴}. (4.1)

122



The object 𝜋∗
1
𝑝 ⇒ 𝜋∗

2
𝑝 is harder to compute, but by using Lemma 4.2*9 and the

end formula of exponentials in presheaf categories, we can compute that the

fiber of 𝜋∗
1
𝑝 ⇒ 𝜋∗

2
𝑝 over (𝐴, 𝐵) ∈ Ty × Ty (Γ) is the set∫

Δ∈𝒞
∏

𝒞(Δ,Γ)𝒞(Δ, 𝐴) ⇒ 𝒞(Δ, 𝐵)
� {powering in Set is the same as exponentiating}∫

Δ∈𝒞 𝒞(Δ, Γ) ⇒ 𝒞(Δ, 𝐴) ⇒ 𝒞(Δ, 𝐵)
� {by uncurrying}∫

Δ∈𝒞 𝒞(Δ, Γ) ×𝒞(Δ, 𝐴) ⇒ 𝒞(Δ, 𝐵)
� {ty the universal property of products}∫

Δ∈𝒞 𝒞(Δ, Γ × 𝐴) ⇒ 𝒞(Δ, 𝐵)
� {by Yoneda embedding}
𝒞(Γ × 𝐴, 𝐵)

which is indeed isomorphic to the fiber of 𝐹∗Tm (4.1) over (𝐴, 𝐵) in a canonical

way. We omit the verification of naturality here.

We have sketched the interpretations of the declarations of STLC from

Example 4.1*6 in Pr𝒞. These data can be in fact extended to an LCC-functor

𝑀 : Jdg
STLC
→ Pr𝒞,

but we will not do it here since we will study the general case below.

4.2*11. If the reader is more interested in higher-order algebraic effects than

the meta-theory of LccLF, they can now jump to Chapter 5, which will use

Theorem 4.4*10 below but only in a blackbox way.

4.3 Diagrammatic Semantics of Signatures

4.3*1. Since the category of judgement Jdg 𝑆 is comprised of syntactic entities

that are inductively generated, it is natural to expect that Jdg 𝑆 has some universal

property so that functorial models of 𝑆, i.e. LCC-functors Jdg 𝑆→ 𝒞, correspond

to certain structures in 𝒞 that we may call diagrammatic models of 𝑆. The situation

should generalise that of Lawvere theories – if Jdg 𝑆 is the Lawvere theory

generated by a signature 𝑆, a product-preserving functor Jdg 𝑆→ 𝒞 corresponds

to an object in 𝒞 equipped with the operations from the signature 𝑆.

Taking the example of STLC (Example 4.1*6) again, it is natural to expect that

123



LCCC-functors Jdg
STLC
→ 𝒞 correspond to diagrams in 𝒞 of the shape

𝜋∗
1
𝑝 ⇒ 𝜋∗

2
𝑝 Tm

Ty × Ty Ty 1

𝑝

𝐹 𝜄

where 𝜋∗
1
𝑝 ⇒ 𝜋∗

2
𝑝 is the exponential of 𝜋∗

1
𝑝 and 𝜋∗

2
𝑝 in the slice 𝒞/Ty × Ty, and

the square must be a pullback.

To define a notion of diagrammatic models in an LCCC 𝒞 for every signature

𝑆, we need to perform an induction on the syntax of LccLF, since a signature

𝑆 is nothing other than an LF context. An induction on the LF is the same as

constructing a CwF with the type connectives of the LF.

However, we cannot directly use the LCCC 𝒞 as the (underlying category

of) the CwF, since 𝒞 does not have the structure for interpreting the universe J.

The solution is, again, passing to the presheaf category Pr𝒞, in which we can

construct a universe containing (the Yoneda embedding of) objects of 𝒞.

4.3.1 Universes in Categories

4.3.1*1. The concept of universes in toposes dates back to Bénabou [1973] and

Maurer [1975], and was developed later by Streicher [2005]. A more general

account of universes in categories is developed by Voevodsky [2015, 2017] and

Kapulkin and Lumsdaine [2021] in the study of homotopy type theory; see also

Gratzer [2023, §3.2, 3.3] for an excellent exposition.

In this subsection, we will have a brief digression on universes without

going into much technical detail, culminating in the theorem that a universe of

𝒞-objects can be constructed in the presheaf category Pr𝒞 (Theorem 4.3.1*11).

4.3.1*2 Definition. A universe in a category 𝒞 is simply a morphism 𝑝 : �̃� → 𝑈

equipped with chosen pullbacks along every morphism 𝐴 : Γ→ 𝑈 :

Γ.𝐴 �̃�

Γ 𝑈

𝐴∗𝑝 𝑝

𝐴

A morphism 𝐴→ 𝐵 in 𝒞 is said to be classified by a universe 𝑝 : �̃� → 𝑈 if it is a

pullback of 𝑝 along some (not necessarily unique) morphism 𝐵→ 𝑈 .

A universe may additionally be equipped with logical structures such as

Π-types and Σ-types; see [Kapulkin and Lumsdaine 2021, §1.4] or [Gratzer 2023,

§3.2] for details. For example, binary product on a universe 𝑝 : �̃� → 𝑈 is a pair of

124



morphisms prod : 𝑈 ×𝑈 → 𝑈 and pair : �̃� × �̃� → �̃� forming a pullback:

�̃� × �̃� �̃�

𝑈 ×𝑈 𝑈

pair

𝑝×𝑝 𝑝

prod

(4.2)

4.3.1*3. Universes abound in logic and type theory.

1. In the category of sets, every Grothendieck universe𝑈 determines a universe

𝜋1 : �̃� → 𝑈 where �̃� is the set of pointed𝑈-small sets:

�̃� = {(𝐴, 𝑎) | 𝐴 ∈ 𝑈, 𝑎 ∈ 𝐴},

and 𝜋1(𝐴, 𝑎) = 𝐴 is the projection function.

2. For a small category 𝒞, every Grothendieck universe𝑈 of sets can be lifted to

a universe 𝜋1 : �̃� → 𝑉 in the presheaf category Pr𝒞 by the Hofmann-Streicher
lifting [Hofmann and Streicher 1999]: 𝑉 maps every Γ ∈ 𝒞 to the set of

𝑈-valued presheaves over 𝒞/Γ, and �̃� maps every Γ ∈ 𝒞 to the set

{(𝐴, 𝑎) | 𝐴 ∈ 𝑉(Γ), 𝑎 : 1→ 𝐴 ∈ Pr (𝒞/Γ)}.

The actions of 𝑉 and �̃� on morphisms 𝛾 : Δ→ Γ is given by precomposing

with the functor (𝛾 · −) : (𝒞/Δ)op→ (𝒞/Γ)op
.

However, the universe 𝑉 constructed in this way is not what we want for

interpreting the universe of judgements J, because 𝑉 classifies all (𝑈-small)

presheaves rather than just (Yoneda-embedding of) 𝒞-objects.

3. Liftings of Grothendieck universes of sets to sheaf toposes in general [Gratzer

et al. 2022; Streicher 2005], categories of assemblies, and realizability toposes

[Streicher 2005] also exist.

4. A syntactic example of universes is the map 𝜋1 : (𝐴 : J, 𝑎 : 𝐴) → (𝐴 : J) in the

category LfSig of LF-signatures (4.2*3). The pullback of 𝜋1 along an arbitrary

morphism 𝐵 : 𝑆→ (𝐴 : J) can be chosen to be simply

𝑆.𝐵 (𝐴 : J, 𝑎 : 𝐴)

𝑆 (𝐴 : J)
𝐵

All the examples above can be equipped with structures of Σ-types, Π-types,

and extensional equality types.

4.3.1*4 Definition. For a universe 𝑝 : �̃� → 𝑈 in a category 𝒞, its externalisation
[𝑝 : �̃� → 𝑈], or simply [𝑈]when it causes no confusion, is the fibration over 𝒞

125



whose fiber category [𝑈]Γ over every object Γ ∈ 𝒞 has as objects 𝒞-morphisms

𝐴 : Γ→ 𝑈 . Morphisms 𝐴→ 𝐵 in the fiber [𝑈]Γ are 𝒞-morphisms ℎ : Γ.𝐴→ Γ.𝐵

making the following diagram commute:

Γ.𝐴 Γ.𝐵

Γ

ℎ

𝐴∗𝑝 𝐵∗𝑝

where Γ.𝐴 and Γ.𝐵 arise from pulling back 𝑝 along 𝐴 and 𝐵 respectively. The

reindexing functor 𝛾∗ : [𝑈]Γ→ [𝑈]Δ for a morphism 𝛾 : Δ→ Γ is precomposition:

𝑦∗(Γ 𝐴−→ 𝑈) = (Δ
𝛾
−→ Γ

𝐴−→ 𝑈).

4.3.1*5. For an LF-signature 𝑆, the category Jdg 𝑆 of judgements of 𝑆 from

Definition 4.2*4 is precisely the fiber over 𝑆 of the externalisation of the universe

𝜋1 : (𝐴 : J, 𝑎 : 𝐴) → (𝐴 : J)

in the category LfSig of LF-contexts from 4.2*3.

4.3.1*6. When a universe is additionally equipped with logical structures, these

structures can be carried over to the externalisation. For example, if the universe

is equipped with binary product prod : 𝑈 × 𝑈 → 𝑈 as in (4.2), the cartesian

product of two objects 𝐴, 𝐵 : Γ→ 𝑈 in the fiber [𝑈]Γ is

Γ 𝑈 ×𝑈 𝑈
⟨𝐴,𝐵⟩ prod

Moreover, this choice of cartesian products are strictly preserved by the reindexing

functor 𝛾∗ : [𝑈]Γ→ [𝑈]Δ since reindexing is defined to be precomposition.

If the universe𝑈 is equipped with Σ-types, Π-types, and extensional equality

types, each fiber category of [𝑈] has an LCCC structure given in a way similar to

4.2*5. The reindexing functor strictly preserves the LCCC structure.

4.3.1*7. Example 4.2*10 contains another example of universes: starting from

a cartesian closed category 𝒞, we constructed in the presheaf category Pr𝒞 a

morphism 𝑝 : Tm→ Ty, which can be succinctly defined as∐
𝐴∈Obj𝒞 Y𝐴

∐
𝐴∈Obj𝒞 1

∐
𝐴∈Obj𝒞! (4.3)

This morphism as a universe classifies (the Yoneda embedding of) all projection

morphisms in 𝒞: for every projection morphism Γ × 𝐴→ Γ in 𝒞, we can choose

126



a morphism ⌈𝐴⌉ : YΓ→ Ty making a pullback square:

Y(Γ × 𝐴) Tm

YΓ Ty

Y𝜋1
𝑝

⌈𝐴⌉

The morphism ⌈𝐴⌉ can just be the one corresponding to the element 𝐴 ∈ Ty(Γ)
by Yoneda lemma, but any object isomorphic to 𝐴 in 𝒞 is equally good, so 𝑝 only

weakly classifies projection morphisms of 𝒞.

Conversely, for every Γ ∈ 𝒞 and morphism 𝐴 : YΓ → Ty, the pullback of

𝑝 : Tm→ Ty along 𝐴 is (isomorphic to) the Yoneda embedding of the projection

map 𝜋1 : Γ × 𝐴 → Γ, where we identify the morphism 𝐴 with an element of

Ty(Γ) = Obj𝒞 by Yoneda lemma.

As a consequence of these observations, the fiber category [Ty]1 of the

externalisation over the terminal object is isomorphic to the category 𝒞 itself,

justifying the view of Ty as a universe of 𝒞-objects.

Moreover, in Example 4.2*10 we saw how exponentials in 𝒞 can be lifted

to the universe 𝑝 : Tm→ Ty. However, 𝑝 inherently only supports simply typed
structures. For an arbitrary type family over Γ, i.e. an arbitrary morphism

𝑓 : 𝐵→ Γ in 𝒞, there may be no morphism YΓ→ Ty making a pullback square:

Y𝐵 Tm

YΓ Ty

Y 𝑓 𝑝

?

4.3.1*8. The good news is that the dependently typed version of the construction

(4.3) exists. Perhaps unexpectedly, what we are looking for is exactly Hofmann

[1995b]’s technique for interpreting extensional MLTT in locally cartesian closed

categories. Op. cit., Hofmann showed how to construct a CwF (with the structures

of extensional MLTT) over an arbitrary LCCC 𝒞, but as pointed out by Fiore

[2012] and Awodey [2018], a CwF structure ⟨Ty, Tm⟩ over𝒞 is precisely a universe

𝑝 : Tm → Ty in Pr𝒞 that is a representable morphism, a perspective known as

natural models of dependent type theories [Awodey 2018; Newstead 2018].

4.3.1*9 Definition. A morphism 𝑝 : Tm → Ty in a presheaf category Pr𝒞 is

called representable if for every Γ ∈ 𝒞 and 𝐴 : YΓ→ Ty, there is an object Γ.𝐴 ∈ 𝒞
and a morphism 𝑓 : Γ.𝐴→ Γ in 𝒞 making a pullback square:

YΓ.𝐴 Tm

YΓ Ty

Y 𝑓 𝑝

𝐴

127



4.3.1*10. Two decades after Hofmann [1995b]’s construction of CwFs from

LCCCs, Awodey [2018] found another construction of CwFs, known as the local
universe construction, which additionally supports intensional equality types.

Although we do not need intensional equalities, the local universe construction

is worth a mention for its remarkable elegance: given a small category 𝒞, the

local universe construction is the following representable map:∐
𝑓 ∈Mor𝒞 Y(Dom 𝑓 )

∐
𝑓 ∈Mor𝒞 Y(Cod 𝑓 )

∐
𝑓 ∈Mor𝒞 Y 𝑓 (4.4)

The logical structures on 𝒞, such as Π and Σ types, can be lifted to this repre-

sentable map (as a universe) as well. Using either Hofmann [1995b]’s construction

or the local universe construction, we have the following result.

4.3.1*11 Theorem (Awodey 2018; Hofmann 1995b). For every small locally cartesian
closed category 𝒞, there is a universe 𝑝 : �̃�𝒞 → 𝑈𝒞 in Pr𝒞 such that (1) 𝑝 is
representable; (2) every morphism 𝑓 : 𝐴→ 𝐵 in 𝒞 is classified by 𝑝; (3) 𝑝 supports 1,
Σ, Π, and extensional equality types.

4.3.1*12. In the situation of Theorem 4.3.1*11, by the representability of 𝑝, the fiber

[𝑈𝒞]1 of the externalisation over the terminal object 1 contains only representable

objects. And since 𝑝 classifies (the Yoneda embedding of) all morphisms of 𝒞,

it in particularly classifies all morphisms Y𝐴 → Y1𝒞 = 1. Therefore the fiber

category [𝑈𝒞]1 is equivalent to the LCCC 𝒞.

4.3.2 Diagrammatic Models

4.3.2*1. By Theorem 4.3.1*11, Pr𝒞 has the structure for interpreting the universe

of judgements J and the type connectives on J. The presheaf category Pr𝒞 can

interpret the unit type and Σ-types of the LF as usual [Hofmann 1997]. Thus we

can turn Pr𝒞 into an LF-CwF. Since the abstract syntax of the LF is initial among

all LF-CwFs (4.2*2), there is a unique LF-CwF homomorphism, which consists

of (1) a functor interpreting LF-signatures (i.e. LF-contexts) as 𝒞-presheaves

J−K : LfSig −−−→ Pr𝒞 (4.5)

and (2) mappings from LF-types/terms to Pr𝒞-types/terms that strictly preserve

all operations, which we also denote by J−K.

4.3.2*2 Definition. A diagrammatic model of an LF-signature 𝑆 in an LCCC 𝒞 is a

global element 𝑚 : 1→ J𝑆K of the interpretation of 𝑆 in Pr𝒞.

128



4.3.2*3. Diagrammatic models are more ergonomic to work with than functorial

models because Pr𝒞 as a presheaf topos has a very rich structure that we can

manipulate using a type theoretic language. In this way, a diagrammatic model

of 𝑆 in 𝒞 is a closed element of the record type J𝑆K in the internal language of

Pr𝒞, containing all fields of 𝑆 and with J replaced by its interpretation𝑈𝒞.

4.3.2*4 Example. The signature of barebone type theory from Example 4.1*5 is

interpreted as the presheaf JBTTK ∈ Pr𝒞 denoted by the record type

record JBTTK where

ty :𝑈𝒞

tm : ty→ 𝑈𝒞

A closed element of this record consists of (1) a morphism 𝐴 : 1→ 𝑈𝒞, which

gives rise to an object �̃� in 𝒞 by the representability of �̃�𝒞 → 𝑈𝒞, and (2) a

morphism 𝐵 : Y�̃�→ 𝑈𝒞 which gives rise to a morphism �̃�→ �̃� in 𝒞:

Y�̃�

Y�̃� �̃�𝒞

1 � Y1𝒞 𝑈𝒞

𝐵

𝐴

Thus a diagrammatic model of BTT in a locally cartesian closed category 𝒞 gives

rise to a morphism �̃�→ �̃� in 𝒞.

4.3.2*5. In Definition 4.2*4, the category Jdg 𝑆 of judgements for a signature 𝑆 is

defined to be the full subcategory of the slice LfSig/𝑆 spanned by projections

𝑆.𝐴 → 𝑆 for judgements 𝑆 ⊢ 𝐴 : J. Every such judgement is sent by the

interpretation functor J−K : LfSig→ Pr𝒞 (4.5) to a morphism J𝐴K : J𝑆K→ 𝑈𝒞,

which is exactly an object in the fiber of the externalisation [𝑈𝒞] over J𝑆K. Since

J−K is a homomorphism of LF-CwFs, it (strictly) preserves context extensions, so

the context projection 𝑆.𝐴→ 𝑆 is sent to the morphism J𝑆K.J𝐴K→ J𝑆K in Pr𝒞:

𝑆.𝐴 (𝐵 : J, 𝑏 : 𝐵) J𝑆K.J𝐴K �̃�𝒞

𝑆 (𝐵 : J) J𝑆K 𝑈𝒞
𝐴 J𝐴K

J−K

Therefore J−K sends the morphisms of Jdg 𝑆 to morphisms of [𝑈𝒞]J𝑆K as well. In

conclusion, we have a functor for every LCCC 𝒞

G𝒞 : Jdg 𝑆 −−−→ [𝑈𝒞]J𝑆K,

129



which preserves LCCC structures since the type connectives giving the LCCC

structures of Jdg 𝑆 4.2*5 are preserved by interpretation.

4.3.2*6 Definition. Every diagrammatic model 𝑚 : 1 → J𝑆K in an LCCC 𝒞

determines a functorial model 𝐹(𝑚) := 𝑚∗ ◦G𝒞 : Jdg 𝑆→ 𝒞 by composing G𝒞

with the reindexing functor 𝑚∗ : [𝑈𝒞]J𝑆K→ [𝑈𝒞]1 � 𝒞:

Jdg 𝑆 [𝑈𝒞]J𝑆K

𝒞 � [𝑈𝒞]1

G𝒞

𝐹(𝑚) 𝑚∗

4.3.2*7. Using 𝐹(𝑚)will be our go-to way of constructing functorial models in

the rest of the thesis. Of course, if the LCCC 𝒞 that we start with already has

a universe 𝑈 that can model J, for example, when 𝒞 is a topos, then we may

also directly construct diagrammatic models classified by𝑈 in the language of 𝒞

itself, which is a just sublanguage of that of Pr𝒞.

4.3.3 From Functorial Models to Diagrammatic Models

4.3.3*1. Unsurprisingly, from the other direction a functorial model Jdg 𝑆→ 𝒞

induces a diagrammatic model as well, although this direction is more involved.

4.3.3*2 Lemma. Let 𝑆 be a signature and 𝒞 an LCCC. Every functorial model

𝑀 : Jdg 𝑆→ 𝒞 determines a diagrammatic model 𝐷(𝑀) : 1→ J𝑆K and a natural

isomorphism 𝜙𝑀 : 𝐹(𝐷(𝑀)) � 𝑀 : Jdg 𝑆→ 𝒞.

4.3.3*3. Before proving 4.3.3*2, we first observe that every LF-signature 𝑆 is

isomorphic (in the category LfSig of LF-signatures) to a standard signature, which

is inductively defined to be either

1. the empty signature,

2. a signature (𝑇, 𝑎 : 𝐴) for some standard 𝑇 and 𝑇 ⊢ 𝐴 : J, or

3. a signature (𝑇, 𝐵 : 𝐴→ J) for some standard 𝑇 and 𝑇 ⊢ 𝐴 : J.

Moreover, every judgement 𝑆 ⊢ 𝐴 : J in the context of a standard signature 𝑆

is equal (in the equational theory of the LF) to a standard judgement, which is

inductively defined to be either

1. 𝑆 ⊢ 𝐵 𝑎 : J for some declaration 𝐵 : 𝐴→ J in 𝑆 and 𝑆 ⊢ 𝑎 : 𝐴, or

2. the type formers 1, Σ, Π, 𝑎 = 𝑏 of J applied to standard judgements.

130



These claims can be shown by induction on the syntax of the LF. Note that

they are not the same as normalisation of the LF – we do not claim terms have any

standard or normal form (which is in indeed not true because extensional equality

types do not enjoy normalisation [Hofmann 1995a, §3.2.2]).

When proving statements 𝑃(𝑆) about LF-signatures 𝑆 that are invariant

along isomorphisms or defining constructions 𝐶(𝑆) for LF-signatures that can be

transported along isomorphisms, we conveniently only need to prove or construct

for standard signatures and consider only standard judgements.

Proof of 4.3.3*2. The required constructions 𝐷(𝑀) and 𝜙𝑀 in the statement of

Lemma 4.3.3*2 can be transported along isomorphisms 𝑆 � 𝑆′of LF-signatures,

so we can assume 𝑆 is standard. Then we construct 𝐷(𝑀), the components of

𝜙𝑀 , and show the naturality of 𝜙𝑀 by a simultaneous induction on the structure

of standard signatures 𝑆, standard judgements 𝐴 in 𝑆, and terms 𝑆 ⊢ 𝑎 : 𝐴.

Part 1. We first construct 𝐷 for every signature 𝑆.

Case 1.1. If 𝑆 is the empty signature, J𝑆K is the terminal presheaf, and thus

there is a unique choice for 𝐷(𝑀) : 1→ J𝑆K.

Case 1.2. If 𝑆 = (𝑇, 𝑎 : 𝐴) for some 𝑇 ⊢ 𝐴 : J, we have an inclusion functor

𝑖 : Jdg𝑇 → Jdg 𝑆 that sends every judgement (𝑇 ⊢ 𝐵 : J) ∈ Jdg𝑇 to its weakening

(𝑆 ⊢ 𝐵 : J) ∈ Jdg 𝑆. By composing this functor with 𝑀 : Jdg 𝑆 → 𝒞 we

have a functorial model 𝑀 ◦ 𝑖 : Jdg𝑇 → 𝒞 of 𝑇, which further gives rise to a

diagrammatic model 𝐷(𝑀 ◦ 𝑖) of 𝑇 by induction. Our goal is to construct a

morphism 𝐷(𝑀) : 1→ J𝑆K making the left triangle below commute:

J𝑆K = J𝑇K.J𝐴K �̃�𝒞

1 J𝑇K 𝑈𝒞

𝑝𝑆 𝑝

𝐷(𝑀◦ 𝑖) J𝐴K

(4.6)

In the category Jdg 𝑆, we have a morphism

(𝑇, 𝑎 : 𝐴, 1 ⊢ 𝑎 : 𝐴) : (𝑆 ⊢ 1 : J) → (𝑆 ⊢ 𝐴 : J) (4.7)

which is mapped by 𝑀 : Jdg 𝑆→ 𝒞 to a morphism

𝑀(𝑎) : 1𝒞 � 𝑀(𝑆 ⊢ 1 : J) → 𝑀(𝑆 ⊢ 𝐴 : J)

in 𝒞 � [𝑈𝒞]1. By the inductive hypothesis, we have a natural isomorphism

𝜙𝑀◦ 𝑖 : 𝐹(𝐷(𝑀 ◦ 𝑖)) � 𝑀 ◦ 𝑖 ,

so 𝑀(𝑖(𝑇 ⊢ 𝐴 : J)), which is exactly 𝑀(𝑆 ⊢ 𝐴 : J), is isomorphic to the pullback of

131



𝑝 : �̃�𝒞 → 𝑈𝒞 along J𝐴K · 𝐷(𝑀 ◦ 𝑖), giving rise to pullback squares as below:

𝑀(𝑆 ⊢ 𝐴 : J) J𝑆K = J𝑇K.J𝐴K �̃�𝒞

𝑀(𝑆 ⊢ 1 : J) � 1 J𝑇K 𝑈𝒞

𝑝𝑝𝑆

𝑔

𝐷(𝑀◦ 𝑖) J𝐴K

𝑀(𝑎) (4.8)

We let the desired diagrammatic model 𝐷(𝑀) be 𝑔 ·𝑀(𝑎) : 1→ J𝑆K.

Case 1.3. If 𝑆 = (𝑇, 𝐵 : 𝐴 → J) for some 𝑇 ⊢ 𝐴 : J, the projection morphism

𝑝𝑆 : J𝑇, 𝐵 : 𝐴→ JK→ J𝑆K is the exponential object in the slice category Pr𝒞/J𝑇K
from 𝑝𝑇.𝐴 : J𝑇K.J𝐴K → J𝑇K to 𝜋1 : J𝑇K × 𝑈𝒞 → J𝑇K. We would like to define

𝐷(𝑀) : 1→ J𝑇, 𝐵 : 𝐴→ JK making the left triangle below commute,

J𝑇, 𝐵 : 𝐴→ JK J𝑇K ×𝑈𝒞 J𝑇K.J𝐴K �̃�𝒞

1 J𝑇K 𝑈𝒞

𝑝𝑆 𝜋1 𝑝𝑇.𝐴 𝑝
𝐷(𝑀)

𝐷(𝑀◦ 𝑖) J𝐴K

where 𝑖 : Jdg𝑇 → Jdg 𝑆 is the weakening functor, and 𝐷(𝑀 ◦ 𝑖) is the diagram-

matic model of the smaller context 𝑇 obtained from the inductive hypothesis. By

the universal property of J𝑇, 𝐵 : 𝐴→ JK as the exponential, we need to construct

a morphism of 𝐷(𝑀 ◦ 𝑖) × 𝑝𝑇.𝐴 → 𝜋1 in the slice category over J𝑇K. The product

𝐷(𝑀 ◦ 𝑖) × 𝑝𝑇.𝐴 is the pullback of 𝑝𝑇.𝐴 along 𝐷(𝑀 ◦ 𝑖), which is isomorphic to

the object 𝑀(𝑖(𝑇 ⊢ 𝐴 : J)) via 𝜙𝑀◦ 𝑖 : 𝐹(𝐷(𝑀 ◦ 𝑖)) � 𝑀 ◦ 𝑖:

𝑀(𝑖(𝑇 ⊢ 𝐴 : J)) J𝑆K = J𝑇K.J𝐴K �̃�𝒞

1 J𝑇K 𝑈𝒞

𝑝𝑝𝑇.𝐴

𝐷(𝑀◦ 𝑖) J𝐴K

Now our goal is to construct a morphism 𝑀(𝑖(𝑇 ⊢ 𝐴 : J)) → 𝑈𝒞.

Back in the category Jdg 𝑆, we have the judgement 𝑆 ⊢ Σ𝐴𝐵 : J, and the

projection 𝜋Σ𝐴𝐵
1

: Σ𝐴𝐵→ 𝐴; henceforth we omit the context 𝑆 ⊢ on objects. The

projection map is sent by 𝑀 : Jdg 𝑆 → 𝒞 � [𝑈𝒞]1 to a morphism in 𝒞. Since

the universe 𝑝 : �̃�𝒞 → 𝑈𝒞 (weakly) classifies all 𝒞-morphisms, the morphism

𝑀𝜋Σ𝐴𝐵
1

gives us some ⌈𝐵⌉ : 𝑀(𝐴) → 𝑈𝒞 and a pullback square:

𝑀(Σ 𝐴 𝐵) �̃�𝒞

𝑀(𝐴) 𝑈𝒞

𝑀𝜋Σ𝐴𝐵
1

𝑝

⌈𝐵⌉

(4.9)

The morphism ⌈𝐵⌉ fulfils our goal 𝑀(𝑖(𝑇 ⊢ 𝐴 : J)) = 𝑀(𝐴) → 𝑈𝒞.

132



Part 2. Now we define the component of 𝜙𝑀 : 𝐹𝐷𝑀 � 𝑀 at every (standard)

judgement in a (standard) signature 𝑆.

Case 2.1. For the judgement 𝑆 ⊢ 𝐵 𝑎 : J where 𝑆 = (𝑇, 𝐵 : 𝐴→ J, 𝑅) for some

𝑇 and 𝑅, 𝑇 ⊢ 𝐴 : J, and 𝑆 ⊢ 𝑎 : 𝐴, we have a pullback diagram in Jdg 𝑆:

𝐵 𝑎 Σ 𝐴 𝐵

1 𝐴

𝜋Σ𝐴𝐵
1

𝑎

Since 𝑀 is an LCCC functor, it preserves pullbacks and the terminal object, so

we have a pullback square in 𝒞:

𝑀(𝐵 𝑎) 𝑀(Σ 𝐴 𝐵)

1 𝑀(𝐴)

𝑀𝜋Σ𝐴𝐵
1

𝑀𝑎

On the other hand, in Case 1.3 above, we have defined the 𝐵-component of the

diagrammatic model 𝐷(𝑀) to be the code ⌈𝐵⌉ of the morphism 𝑀𝜋Σ𝐴𝐵
1

as in

the diagram (4.9). Hence, unfolding the definition of 𝐹, 𝐹𝐷𝑀(𝐵 𝑎) will be the

pullback of 𝑝 : �̃�𝒞 → 𝑈𝒞 along the following morphism:

1 (𝐹𝐷𝑀)(𝐴) 𝑀𝐴 𝑈𝒞

𝐹(𝐷(𝑀))(𝑎) (𝜙𝑀)𝐴 ⌈𝐵⌉

Using the naturality of (𝜙𝑀)𝐴, this morphism is the same as 1

𝑀(𝑎)
−−−→ 𝑀𝐴

⌈𝐵⌉
−−→ 𝑈𝒞.

Therefore both 𝑀(𝐴) and 𝐹𝐷𝑀(𝐴) are the pullback of 𝑝 along ⌈𝐵⌉ · 𝑀(𝑎), so

they are isomorphic in a canonical way.

Case 2.2. For a judgement 𝐴 that is some type former of J applied to (smaller)

standard judgements, 𝑀(𝐴) and 𝐷(𝐹(𝑀))(𝐴) are both LCC-functors so they

preserve these type formers. By the universal properties of these type formers,

𝑀(𝐴) and 𝐷(𝐹(𝑀))(𝐴) are isomorphic in a canonical way.

Part 3. We also need to show that the family of morphisms

𝜙𝑀(𝐴) : 𝐹𝐷𝑀(𝐴) � 𝑀(𝐴)

is natural in 𝐴 ∈ Jdg 𝑆. Because Jdg 𝑆 has exponentials, which are preserved by

𝑀 and 𝐹𝐷𝑀, it is sufficient to show that for every 𝑆 ⊢ 𝐴 : J and 𝑆 ⊢ 𝑎 : 𝐴, there

is a commutative triangle:

1 𝐹𝐷𝑀(𝐴)

𝑀(𝐴)

𝐹𝐷𝑀(𝑎)

𝑀(𝑎) (𝜙𝑀)𝐴

133



If 𝑎 is a variable, this follows from the definition of 𝐷(𝑇, 𝑎 : 𝐴) in Case 1.2

above. If 𝑎 is other term formers, it follows from the fact that 𝑀 and 𝐹𝐷𝑀 as

LCC-functors both preserve these term formers. □

4.4 Equivalence of Functorial and Diagrammatic Models

4.4*1. We have now mappings 𝐹 (Definition 4.3.2*6) from diagrammatic models

to functorial models, and vice versa 𝐷 (Lemma 4.3.3*2). Moreover, there is

an isomorphism 𝐹(𝐷(𝑀)) � 𝑀 for every functorial model 𝑀 : Jdg 𝑆 → 𝒞.

Naturally, we would expect 𝐷(𝐹(𝑚)) � 𝑚 for every diagrammatic model 𝑚 as

well, and then diagrammatic and functorial models will be in bĳection up to

isomorphisms. But we do not have a notion of isomorphisms of diagrammatic

models yet, so we will define it in this section, which turns out to be more

interesting a task than it sounds.

4.4*2 Example. Let us still begin with some small examples for intuition. Con-

sider the signature (𝐴 : J) of one judgement and nothing else. Diagrammatic

models of it in an LCCC 𝒞 are morphisms 𝑚 : 1→ 𝑈𝒞 in Pr𝒞, which give rise

to objects 𝐴 in 𝒞 by Theorem 4.3.1*11 in a surjective way (but different 𝑚 may

give rise to the same object in 𝒞). An isomorphism between two models 𝑚1

and 𝑚2 in this case ought to be an isomorphism 𝑖 : 𝐴1 → 𝐴2 in 𝒞 between the

𝒞-objects 𝐴1 and 𝐴2 induced by 𝑚1 and 𝑚2 respectively.

Now suppose the signature is extended to (𝐴 : J, 𝑓 : (𝐴→ 𝐴) → 𝐴). Then

every diagrammatic model gives rise to an object 𝐴 together with a morphism

𝑓 : (𝐴 ⇒ 𝐴) → 𝐴 in 𝒞, where 𝐴 ⇒ 𝐴 denotes the exponential. Now an

isomorphism between two diagrammatic models should be a 𝒞-isomorphism

𝑖 : 𝐴1→ 𝐴2 that commutes with 𝑓 :

𝐴1⇒ 𝐴1 𝐴1

𝐴2⇒ 𝐴2 𝐴2

𝑓1

𝑖−1⇒𝑖 𝑖

𝑓2

The fact that we have dependent functions in LF signatures is why we only

consider isomorphisms rather than homomorphisms of diagrammatic models.

Suppose that the signature is further extended with a family of judgements

𝐵 : 𝐴→ J indexed by 𝐴. A diagrammatic model now further induces an 𝒞-object

𝐵 with a morphism 𝑔 : 𝐵→ 𝐴. An isomorphism of diagrammatic models should

134



now further include a 𝒞-isomorphism 𝑗 : 𝐵1→ 𝐵2 that commutes with 𝑖:

𝐵1 𝐵2

𝐴1 𝐴2

𝑗

𝑔1 𝑔2

𝑖

Finally, if a signature is extended with a declaration of an equation, the notion

of isomorphisms between diagrammatic models should remain unchanged, since

in LCCCs there is not any higher-dimensional coherence between equalities.

4.4*3. Diagrammatic models in an LCCC 𝒞 are defined by interpreting an LF-

signature 𝑆 as a presheaf J𝑆K ∈ Pr𝒞 (Definition 4.3.2*2). In the internal language

of the presheaf topos Pr𝒞, a presheaf is a ‘set’. Now that we are interested in

isomorphisms of models, sets are no longer sufficient, and instead, we would

like to use groupoids as our interpretation. More precisely, we plan to interpret

every LF-signature 𝑆 as an internal groupoid in Pr𝒞:

J𝑆K� ×J𝑆K J𝑆K� J𝑆K� J𝑆K

J𝑆K × J𝑆K

comp

inv

⟨𝑠,𝑡⟩
id

whose object part is exactly the presheaf J𝑆K in the earlier interpretation (4.3.2*1).

Then, global elements 𝑖 : 1→ J𝑆K� of the morphism part of the groupoid will be

defined as isomorphisms between diagrammatic models 𝑠 · 𝑖 and 𝑡 · 𝑖 : 1→ J𝑆K.

4.4*4. One way to carry out the plan above is to follow Hofmann and Streicher

[1998]’s celebrated groupoid model of Martin-Löf type theory internally in the

language of the presheaf topos Pr𝒞, rather than in the ambient set theory.

In outline, in the language of Pr𝒞, there is a groupoid 𝑈�
𝒞

whose objects

have the type 𝑈𝒞 and the morphisms between 𝐴, 𝐵 : 𝑈𝒞 have the type of

isomorphisms �̃�𝒞(𝐴) � �̃�𝒞(𝐵), where �̃�𝒞 is the decoding type family for the

universe 𝑝 : �̃�𝒞 → 𝑈𝒞. This groupoid provides the interpretation for the

universe J. For every 𝐴 : 𝑈𝒞, the type �̃�𝒞(𝐴) can be regarded as a discrete
groupoid, so 𝑈�

𝒞
still models Π, Σ, and extensional equalities. Π and Σ types

outside J in the LF are interpreted in the same way as Hofmann and Streicher

[1998]. The result of this construction would then be an internal LF-CwF in Pr𝒞,

whose externalisation over the terminal object 1 ∈ Pr𝒞 will then the (ordinary)

LF-CwF that interprets an LF-signature 𝑆 as a groupoid of diagrammatic models.

4.4*5. While the approach outlined above is feasible, there is a more direct

135



approach that we will follow instead. First, we notice that in virtually all (many-

sorted) logical frameworks the notions of homomorphisms/isomorphisms of

models of a theory 𝑆 can be expressed as another theory that contains (1) two

copies of the declarations of 𝑆 and (2) new declarations for the homomor-

phisms/isomorphisms between the basic sorts of the two copies of 𝑆, together

with (3) equations asserting the homomorphic properties. This is also the case

for LccLF. Take the signature 𝑆 = (𝐴 : J, 𝑓 : (𝐴→ 𝐴) → 𝐴) for example; in the

LF we have the following signature 𝑆� of isomorphisms of 𝑆-models:

𝐴1 : J 𝑓1 : (𝐴1→ 𝐴1) → 𝐴1 𝐴2 : J 𝑓2 : (𝐴2→ 𝐴2) → 𝐴2

𝑖 : 𝐴1 � 𝐴2 _ : (𝑖.fwd · 𝑓1) = (𝜆𝑔. 𝑓2 (𝑖.fwd · 𝑔 · 𝑖.bwd))

where 𝐴1 � 𝐴2 is the judgement of isomorphisms defined in 4.1*7 and 𝑓 · 𝑔
means function composition 𝜆𝑥. 𝑓 (𝑔 𝑥). In the category LfSig of LF-signatures,

there are two morphisms 𝑠, 𝑡 : 𝑆� → 𝑆 that project out (𝐴1, 𝑓1) and (𝐴2, 𝑓2)
respectively. Similarly, we have morphisms inv, id, comp in LfSig for the inverse,

identity, composition of 𝑆-isomorphisms, assembling to an internal groupoid:

𝑆� ×𝑆 𝑆� 𝑆� 𝑆

𝑆 × 𝑆

comp

inv

⟨𝑠,𝑡⟩
id

where 𝑆� ×𝑆 𝑆� is the signature of three copies of 𝑆 and two isomorphisms in

between. The interpretation of this internal groupoid by J−K : LfSig→ Pr𝒞 for

every LCCC 𝒞 is precisely the internal groupoid that we wanted in 4.4*3.

Motivated by the discussion above, we would like to define an internal

groupoid ⟨𝑆, 𝑆�⟩ for every LF-signature 𝑆, which can be done inductively

together with some related conditions on judgements and terms in a signature.

4.4*6 Lemma. The syntax of LccLF satisfies the following statements:

1. Every LF-signature 𝑆 determines a judgement of 𝑆-isomorphisms

𝑀1 : 𝑆, 𝑀2 : 𝑆 ⊢ 𝑆� : J

in which we reuse the name 𝑆 for the iterative Σ-type of the fields of 𝑆.

Moreover, there are terms inv, id, comp of the following types and they

satisfy (definitionally in the LF) the axioms of groupoids:

𝑀1, 𝑀2 : 𝑆 ⊢ inv𝑆 : 𝑆�[𝑀1, 𝑀2] → 𝑆�[𝑀2, 𝑀1]
𝑀1 : 𝑆 ⊢ id𝑆 : 𝑆�[𝑀1, 𝑀1]

𝑀1, 𝑀2, 𝑀3 : 𝑆 ⊢ comp𝑆 : 𝑆�[𝑀1, 𝑀2] → 𝑆�[𝑀2, 𝑀3] → 𝑆�[𝑀1, 𝑀3]

136



where square brackets mean substitution.

2. Every judgement 𝑆 ⊢ 𝐴 : J over a signature 𝑆 determines a term coe𝐴 for

coercing along 𝑆-isomorphisms

𝑀1, 𝑀2 : 𝑆 ⊢ coe𝐴 : 𝑆�[𝑀1, 𝑀2] → 𝐴[𝑀1] → 𝐴[𝑀2]

such that coe𝐴 is functorial, i.e., it preserves id𝑆 and comp𝑆 of 𝑆�. Conceptu-

ally, this amounts to say that every judgement in 𝑆 determines a J-valued

presheaf over the groupoid 𝑆� in the LF.

3. Every term 𝑆 ⊢ 𝑎 : 𝐴 of a judgement 𝑆 ⊢ 𝐴 : J over a signature 𝑆 determines

a term coh𝑎 showing the coherence of coercion:

𝑀1, 𝑀2 : 𝑆 ⊢ coh𝑎 : (𝑖 : 𝑆�[𝑀1, 𝑀2]) → coe𝐴 𝑖 𝑎[𝑀1] = 𝑎[𝑀2]

Conceptually, this amounts to say that every term 𝑎 determines a natural

transformation from the constant J-presheaf to 1 to the presheaf 𝐴.

Proof. Following 4.3.3*3, it is sufficient to show these statements only for standard

signatures 𝑆 and standard judgements, since the judgements or terms required

by these statements can be transported along isomorphisms of LF-signatures. We

show these statements simultaneously by induction on the structure of standard

signatures, standard judgements, and terms.

Part 1. We start with defining a groupoid 𝑆� for every signature 𝑆, with the

inductive hypothesis that all the claims above about signatures, judgements and

terms are already shown for structurally smaller cases.

Case 1.1. If 𝑆 is the empty signature, we let 𝑆� be the unit type 1 together

with the trivial groupoid structure.

Case 1.2. If 𝑆 = (𝑇, 𝑎 : 𝐴) for some 𝑇 ⊢ 𝐴 : J, in the context of 𝑀1, 𝑀2 : 𝑆, we

will write 𝑀𝑖 .𝑇 and 𝑀𝑖 .𝑎 for the first and second projections of 𝑀𝑖 : 𝑆, and we

let 𝑀1, 𝑀2 : 𝑆 ⊢ 𝑆� : J be the judgement

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
coe𝐴[𝑀1.𝑇, 𝑀2.𝑇] 𝑖 𝑀1.𝑎 = 𝑀2.𝑎

)
.

The groupoid structure on this 𝑆� is defined by that of𝑇� and the assumption that

coe𝐴 preserves the structure id𝑇 and comp𝑇 of 𝑇�. Conceptually, this definition of

𝑆� is the category of elements for the presheaf determined by 𝑇 ⊢ 𝐴 : J.

Case 1.3. If 𝑆 = (𝑇, 𝐵 : 𝐴→ J) for some 𝑇 ⊢ 𝐴 : J, in the context of 𝑀1, 𝑀2 : 𝑆,

we will write 𝐴1, 𝐴2 : J for 𝐴[𝑀1] and 𝐴[𝑀2] respectively and similarly 𝐵1 and

𝐵2 for 𝐵[𝑀1] and 𝐵[𝑀2] respectively. We define 𝑀1, 𝑀2 : 𝑆 ⊢ 𝑆� : J to be

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
(𝑎1 : 𝐴1) → (𝐵1 𝑎1 � 𝐵2 (coe𝐴 𝑖 𝑎1))

)
The groupoid structure on this 𝑆� is defined using that of 𝑇� and the evident

groupoid structure on isomorphisms of judgements in J.

137



Part 2. Now we construct coe𝐴 for every possibility of standard judgements.

Case 2.1. If the judgement is 𝑆 ⊢ 𝐵 𝑎 : J for some variable 𝐵 : 𝐴 → J in the

context 𝑆 and 𝑆 ⊢ 𝑎 : 𝐴, we need to define the coercion:

𝑀1, 𝑀2 : 𝑆 ⊢ coe𝐵 𝑎 : 𝑆� → 𝐵1 𝑎1→ 𝐵2 𝑎2

where 𝑎𝑖 and 𝐵𝑖 are 𝑎[𝑀𝑖] and 𝐵[𝑀𝑖] as usual. Let 𝑆 = (𝑇, 𝐵 : 𝐴→ J, 𝑆′). In the

context of 𝑀1, 𝑀2 : 𝑆, given any 𝑖 : 𝑆�, by the definition of (𝑇, 𝐵 : 𝐴→ J)� in 1.3,

we can project out from 𝑖 : 𝑆� to an element

𝑝𝑖 : Σ(𝑗 : 𝑇�). (𝑎1 : 𝐴1) → (𝐵1 𝑎1 � 𝐵2 (coe𝐴 𝑗 𝑎1))

Now given any 𝑏1 : 𝐵1 𝑎1, using (𝜋2 𝑝𝑖 𝑎1).fwd, we get an element of type

𝐵2 (coe𝐴 (𝜋1 𝑝𝑖) 𝑎1). Use the coherence coh𝑎 𝑖 : coe𝐴 (𝜋1 𝑝𝑖) 𝑎1 = 𝑎2, we get an

element of 𝐵2 𝑎2 as needed.

Case 2.2. The case of unit judgement is simple. There is a unique choice of

𝑀1, 𝑀2 : 𝑆 ⊢ coe1 : 𝑆�[𝑀1, 𝑀2] → 1→ 1

which is functorial because 1 has a unique element.

Case 2.3. For the case 𝑆 ⊢ Σ 𝐴 𝐵 : J for some 𝑆 ⊢ 𝐴 : J and 𝑆.𝐴 ⊢ 𝐵 : J, we

need to define a term that coerce elements of Σ-types along isomorphisms:

𝑀1, 𝑀2 : 𝑆 ⊢ coeΣ𝐴𝐵 : 𝑆�[𝑀1, 𝑀2] → Σ 𝐴1 𝐵1→ Σ 𝐴2 𝐵2

where 𝐴𝑖 and 𝐵𝑖 stand for 𝐴[𝑀𝑖] and (𝑀1, 𝑀2 : 𝑆, 𝑎𝑖 : 𝐴𝑖 ⊢ 𝐵[𝑀𝑖 , 𝑎𝑖]) respectively.

By the inductive hypotheses, we can use terms

𝑀1, 𝑀2 : 𝑆 ⊢ coe𝐴 : 𝑆�[𝑀1, 𝑀2] → 𝐴1→ 𝐴2

𝑀′
1
, 𝑀′

2
: 𝑆.𝐴 ⊢ coe𝐵 : (𝑆.𝐴)�[𝑀′

1
, 𝑀′

2
] → 𝐵[𝑀′

1
] → 𝐵[𝑀′

2
]

We can use coe𝐴 to coerce the first component of Σ𝐴𝐵:

coeΣ𝐴𝐵 𝑖 (𝑎1, 𝑏1) = (coe𝐴 𝑖 𝑎1, ?0 : 𝐵[𝑀2, coe𝐴 𝑖 𝑎1] )

Now to use coe𝐵 to fill out the hole ?0 , we recall that the judgement (𝑆.𝐴)� of

(𝑆.𝐴)-isomorphisms is defined earlier in 1.2 to be

𝑀′
1
, 𝑀′

2
: 𝑆.𝐴 ⊢ Σ(𝑖 : 𝑆�[𝑀′

1
.𝑆, 𝑀′

2
.𝑆]).

(
coe𝐴 𝑖 (𝜋2 𝑀

′
1
) = 𝜋2 𝑀

′
2

)
: J

Thus we fill out the hole ?0 by putting

?0 = coe𝐵[(𝑀1, 𝑎1), (𝑀2, coe𝐴 𝑖 𝑎1)] (𝑖 , refl) 𝑏1

and the resulting coercion term is

coeΣ𝐴𝐵 𝑖 (𝑎1, 𝑏1) = (coe𝐴 𝑖 𝑎1, coe𝐵[(𝑀1, 𝑎1), (𝑀2, coe𝐴 𝑖 𝑎1)] (𝑖 , refl) 𝑏1).

138



whose functoriality follows from that of coe𝐴 and coe𝐵.

Case 2.4. The case of Π 𝐴 𝐵 is similar to the one of Σ 𝐴 𝐵 above, except that

we need to use the backward direction of an isomorphism to coerce 𝐴2 to 𝐴1 in

order to coerce a function 𝑓 : (𝑎1 : 𝐴1) → 𝐵1 to a function (𝑎2 : 𝐴2) → 𝐵2:

coeΠ𝐴𝐵 𝑖 𝑓 = 𝜆(𝑎2 : 𝐴2). coe𝐵[𝜎] (𝑖 , refl) ( 𝑓 (coe𝐴 (inv𝑆 𝑖) 𝑎2))

where the substitution 𝜎 is [(𝑀1, coe𝐴 (inv𝑆 𝑖) 𝑎2), (𝑀2, 𝑎2)]. This definition is

well typed because coe𝐴 is functorial, so

coe𝐴 𝑖 (coe𝐴 (inv𝑆 𝑖) 𝑎2) = 𝑎2

and thus (𝑖 , refl) is indeed an element of (𝑆.𝐴)�[𝜎].
Case 2.5. For 𝑆 ⊢ 𝑎 = 𝑏 : J, where 𝑆 ⊢ 𝐴 : J and 𝑆 ⊢ 𝑎, 𝑏 : 𝐴, we need

𝑀1, 𝑀2 : 𝑆 ⊢ coe𝑎=𝑏 : 𝑆�[𝑀1, 𝑀2] → (𝑎1 = 𝑏1) → (𝑎2 = 𝑏2)

where 𝑎𝑖 and 𝑏𝑖 stand for 𝑎[𝑀𝑖] and 𝑏[𝑀𝑖] as usual. Given 𝑖 : 𝑆�[𝑀1, 𝑀2] and

𝑎1 = 𝑏1, we have coe𝐴 𝑖 𝑎1 = coe𝐴 𝑖 𝑏1, and the inductive hypotheses give us

𝑀1, 𝑀2 : 𝑆 ⊢ coh𝑎 𝑖 : (coe𝐴 𝑖 𝑎1) = 𝑎2

𝑀1, 𝑀2 : 𝑆 ⊢ coh𝑏 𝑖 : (coe𝐴 𝑖 𝑏1) = 𝑏2

Hence we have 𝑎2 = 𝑏2 as required.

Part 3. Finally, we need to verify that every term 𝑆 ⊢ 𝑎 : 𝐴 for any signature 𝑆

and judgement 𝑆 ⊢ 𝐴 : J satisfies the coherence condition:

𝑀1, 𝑀2 : 𝑆 ⊢ coh𝑎 : (𝑖 : 𝑆�[𝑀1, 𝑀2]) → coe𝐴 𝑖 𝑎[𝑀1] = 𝑎[𝑀2]

We omit the details here because it is relatively routine verification: for the case

where 𝑎 is a variable in the 𝑆, the coherence is guaranteed by the definition of

(𝑇, 𝑎 : 𝐴)� earlier in 1.2; the case for other term formers follow from the inductive

hypotheses of subterms and the 𝛽𝜂-equalities of the connectives. □

4.4*7 Remark. The constructions ⟨𝑆� , coe, coh⟩ in the preceding proof are essen-

tially the same idea as observational equality [Altenkirch et al. 2007, 2019], but at

one homotopy level higher. Altenkirch et al. [2007] constructed a universe of

sets (with extensional principles such as function extensionality and uniqueness

of identity proofs) in intensional type theory with proof-irrelevant propositions,

while here we constructed groupoids from sets. But the idea of defining equalities

or isomorphisms structurally for each type former remains the same.

4.4*8. Given an signature 𝑆, again, we will reuse 𝑆 as the name of the iterative

Σ-type of the fields of 𝑆, and denote the signature (𝑀1 : 𝑆, 𝑀2 : 𝑆, 𝑖 : 𝑆�) by ∫ 𝑆�.

139



In the category LfSig of LF-contexts, there are two projections morphisms

𝑀1, 𝑀2 : ∫ 𝑆� −−−→ 𝑆

which are interpreted by J−K (4.3.2*1) in the presheaf category Pr𝒞 for every

LCCC 𝒞 as two morphisms J𝑀1K, J𝑀2K : J∫ 𝑆�K→ J𝑆K.

4.4*9 Definition. Given a signature 𝑆 and an LCCC 𝒞, an isomorphism of dia-

grammatic models 𝑚1, 𝑚2 : 1→ J𝑆K in 𝒞 is a morphism 𝑖 : 1→ J∫ 𝑆�K in Pr𝒞

such that 𝑚1 = J𝑀1K · 𝑖 and 𝑚2 = J𝑀2K · 𝑖:

J∫ 𝑆�K

1 J𝑆K

J𝑆K

J𝑀1K
J𝑀2K

𝑖

𝑚1

𝑚2

The groupoid of diagrammatic models and isomorphisms, induced by the

internal groupoid structure on 𝑆�, is denoted as 𝑆-Mod(𝒞).

4.4*10 Theorem. For every LCCC 𝒞 and signature 𝑆, the mappings 𝐹 and 𝐷 between
diagrammtic and functorial models from 4.3.2∗6 and 4.3.3∗2 extend to an equivalence:

𝐹 : 𝑆-Mod(𝒞) � LCCC�(Jdg 𝑆,𝒞) : 𝐷

where LCCC�(Jdg 𝑆,𝒞) is the groupoid of (1) functors Jdg 𝑆→ 𝒞 that preserve locally
cartesian closed structures and (2) natural isomorphisms.

Proof sketch. So far 𝐹 and 𝐷 are merely functions between diagrammtic and

functorial models, so we first need to extend them to functors

𝑆-Mod(𝒞) LCCC�(Jdg 𝑆,𝒞)

𝐹

𝐷

and then show that they form a pair of equivalence.

Part 1. Let us start with extending 𝐹 to a functor. Let 𝑚1, 𝑚2 : 1→ J𝑆K be two

diagrammatic models and 𝜃 : 1→ J∫ 𝑆�K be an isomorphism between them. By

Definition 4.3.2*6, 𝐹(𝑚𝑖) : Jdg 𝑆→ 𝒞 is defined to be the composite

Jdg 𝑆 [𝑈𝒞]J𝑆K [𝑈𝒞]1 𝒞,
𝐺 𝑚∗

𝑖 �

where 𝐺 maps every 𝑆 ⊢ 𝐴 : J to its interpretation J𝐴K : J𝑆K→ 𝑈𝒞, viewed as

an object of the fiber category [𝑈𝒞]J𝑆K. To define 𝐹(𝜃), it is sufficient to define

a natural isomorphism 𝑚∗
1
𝐺 � 𝑚∗

2
𝐺; by the definition of diagrammatic models,

140



𝑚𝑖 = J𝑀𝑖K · 𝜃, so it is furthermore sufficient to define a natural isomorphism

J𝑀1K∗𝐺 � J𝑀2K∗𝐺 : Jdg 𝑆→ [𝑈𝒞]J∫ 𝑆�K. The situation is as follows:

J∫ 𝑆�K

J𝑆K

1 J𝑆K 𝑈𝒞

J𝑀2K

J𝐴K=𝐺𝐴

𝜃

𝑚2

𝑚1 J𝐴K=𝐺𝐴

J𝑀1K

To define the required natural transformation at every judgement 𝑆 ⊢ 𝐴 : J,

we use the coerce morphism of the judgement 𝐴 from Lemma 4.4*6:

𝑀1, 𝑀2 : 𝑆 ⊢ coe𝐴 : 𝑆�[𝑀1, 𝑀2] → 𝐴[𝑀1] → 𝐴[𝑀2],

or more precisely, its uncurry morphism:

𝑀1, 𝑀2 : 𝑆, 𝑖 : 𝑆�[𝑀1, 𝑀2] ⊢ coe𝐴 : 𝐴[𝑀1] → 𝐴[𝑀2].

The interpretation of this morphism in Pr𝒞 is a morphism

Jcoe𝐴K : J𝑀1K∗J𝐴K→ J𝑀2K∗J𝐴K

in the fiber category [𝑈𝒞]J∫ 𝑆�K that we are looking for. The invertibility of this

map follows from the invertibility inv𝑆 of 𝑆� in Lemma 4.4*6.

Naturality of the family of morphisms defined above comes from the coherence

terms in Lemma 4.4*6: given a morphism 𝑓 : 𝐴→ 𝐵 in Jdg 𝑆, it induces a term

𝑆 ⊢ 𝜆 𝑓 : 𝐴→ 𝐵 in the LF. Now using the coherence coh𝜆 𝑓 from Lemma 4.4*6, we

have a commutative diagram in the category Jdg(∫ 𝑆�):

𝐴[𝑀1] 𝐴[𝑀2]

𝐵[𝑀1] 𝐵[𝑀2]

coe𝐴

𝑓 [𝑀1] 𝑓 [𝑀2]

coe𝐵

whose interpretation in [𝑈𝒞]J∫ 𝑆�K is exactly the needed naturality square.

Part 2. Now to extend 𝐷 to a functor LCCC�(Jdg 𝑆,𝒞) → 𝑆-Mod(𝒞), given

two LCC-functors 𝑁1, 𝑁2 : Jdg 𝑆→ 𝒞 and a natural isomorphism 𝜎 : 𝑁1 � 𝑁2,

we would like to define𝐷(𝜎) : 1→ J∫ 𝑆�K in Pr𝒞 that lies over𝐷(𝑁1) and𝐷(𝑁2).
Following the structure of the proofs of Lemma 4.3.3*2 and Lemma 4.4*6, we

define 𝐷(𝜎) by induction on the structure of standard signatures 𝑆, and maintain

the additional invariant that the coercion ∫ 𝑆� ⊢ coe𝐴 : 𝐴[𝑀1] → 𝐴[𝑀2] for every

judgement 𝐴 is mapped by the functor 𝐹(𝐷(𝜎)) : Jdg(∫ 𝑆�) → 𝒞 to exactly the

component of the natural isomorphism 𝜎𝐴 : 𝑁1𝐴 → 𝑁2𝐴 at 𝐴, modulo the

141



isomorphisms 𝑁𝑖𝐴 � 𝐹(𝐷(𝑁𝑖)) in Lemma 4.3.3*2. There is no need to impose

any invariant for the coherence terms coh𝑎 in this proof, since in LCCCs two

morphisms can be equal in at most one way. This is a rather tedious inductive

proof so we only provide a sketch here.

Case 2.1. The case for the empty signature is trivial, as 𝐹(𝜎) is unique.

Case 2.2. For 𝑆 = (𝑇, 𝑎 : 𝐴)where 𝑇 ⊢ 𝐴 : J, according to Case 1.2 of the proof

of Lemma 4.4*6, we need a global element of the interpretation of the type

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
coe𝐴[𝑀1.𝑇, 𝑀2.𝑇] 𝑖 𝑀1.𝑎 = 𝑀2.𝑎

)
.

The first component is obtained by induction for the signature 𝑇, and the

second component is obtained from the invariant that coercion morphisms are

interpreted as the components of the natural isomorphism.

Case 2.3. For 𝑆 = (𝑇, 𝐵 : 𝐴→ J) where 𝑇 ⊢ 𝐴 : J, by Case 1.3 of the proof of

Lemma 4.4*6, we need a global element of the interpretation of the type

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
(𝑎1 : 𝐴1) → (𝐵1 𝑎1 � 𝐵2 (coe𝐴 𝑖 𝑎1))

)
. (4.10)

The first component is still obtained by induction, and the second component is

obtained from the component of 𝜎 : 𝑁1→ 𝑁2 at the judgement Σ 𝐴 𝐵.

We also need to check that all judgements in a signature 𝑆 maintain our

invariant that the coercion map coe𝐴 is interpreted as the component 𝜎𝐴. This is

again shown by induction on the structure of (standard) judgements, mimicking

the structure of the definition of coe𝐴.

Case 2.a. The case for 𝑆 ⊢ 𝐵 𝑎 : J for some variable (𝐵 : 𝐴 → J) ∈ 𝑆 follows

from the fact that coercion for this case is defined in Case 2.1 of the proof of

Lemma 4.4*6 to be invoking the forward direction of the second component of

(4.10), which we have defined to be a component of the natural isomorphism 𝜎.

Case 2.b. The case for the unit type is trivial. The cases for Σ and Γ types

uses the fact that 𝑁1 and 𝑁2 preserve LCCC structures and 𝜎 is natural, so its

components at Σ-types and Π-types behave the same as how the coercion maps

of Σ-types and Π-types are defined in the proof of Lemma 4.4*6.

Case 2.c. The case for equality types is also trivial, because the interpretation

of extensional equality types in LCCCs have at most one element.

Part 3. Next we show that 𝐹 and 𝐷 form a pair of equivalence of groupoids.

First recall that in Lemma 4.3.3*2, we have already a family of isomorphisms

𝑀 � 𝐹(𝐷(𝑀)) for all 𝑀 : Jdg 𝑆→ 𝒞. If we examine the proof of Lemma 4.3.3*2,

we can notice that every component of the isomorphism 𝑀 � 𝐹(𝐷(𝑀)) is defined

using the unique morphism into some construct with a universal property. Thus

the family of isomorphisms 𝑀 � 𝐹(𝐷(𝑀)) is necessarily natural in 𝑀.

It remains to construct a family of isomorphisms 𝑚 � 𝐷(𝐹(𝑚)), natural in

𝑚 ∈ 𝑆-Mod(𝒞), for all signatures 𝑆. Again, this is constructed by induction on the

142



structure of standard signatures 𝑆, with the additional invariant that the natural

isomorphism 𝐹(𝐷(𝐹(𝑚))) � 𝐹(𝑚) constructed in Lemma 4.3.3*2 coincides with

the interpretation of coercion morphisms coe𝐴 in 𝒞 for every judgement 𝑆 ⊢ 𝐴 : J.

We will only provide a sketch here.

Case 3.1. For the empty signature, 𝑚 � 𝐷(𝐹(𝑚)) trivially holds because there

is a unique diagrammatic model and there is a unique isomorphism.

Case 3.2. For the signature 𝑆 = (𝑇, 𝑎 : 𝐴) where 𝑇 ⊢ 𝐴 : J, by Case 1.2 of

Lemma 4.4*6, (𝑀1, 𝑀2 : 𝑆 ⊢ ∫ 𝑆� : J) is the judgement

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
coe𝐴[𝑀1.𝑇, 𝑀2.𝑇] 𝑖 𝑀1.𝑎 = 𝑀2.𝑎

)
.

We need to construct a global element of J∫ 𝑆�K that lies over𝑚 and𝐷(𝐹(𝑚)). The

first component (𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]) can be obtained by the inductive hypothesis

for the signature 𝑇. The second component coe𝐴[𝑀1.𝑇, 𝑀2.𝑇] 𝑖 𝑀1.𝑎 = 𝑀2.𝑎

follows from the additional invariant that the interpretation of coe𝐴 coincides

with the isomorphism 𝐹(𝐷(𝐹(𝑚)))(𝐴) → 𝐹(𝑚)(𝐴) in Lemma 4.3.3*2, which was

used to define the (𝑎 : 𝐴) component of 𝐷(𝐹(𝑚)) in Case 1.2 of Lemma 4.3.3*2.

Case 3.3. For the signature 𝑆 = (𝑇, 𝐵 : 𝐴→ J)where 𝑇 ⊢ 𝐴 : J, by Case 1.3 of

Lemma 4.4*6, (𝑀1, 𝑀2 : 𝑆 ⊢ ∫ 𝑆� : J) is the judgement

Σ(𝑖 : 𝑇�[𝑀1.𝑇, 𝑀2.𝑇]).
(
(𝑎1 : 𝐴1) → (𝐵1 𝑎1 � 𝐵2 (coe𝐴 𝑖 𝑎1))

)
The first component is still obtained by induction. To construct the second

component, we recall that Case 1.3 of the proof of Lemma 4.3.3*2 defines the

component 𝐵 : 𝐴→ J of the diagrammatic model 𝐷(𝐹(𝑚)) to be a code of

𝐹(𝑚)(𝜋1) : 𝐹(𝑚)(Σ 𝐴 𝐵) → 𝐹(𝑚)(𝐴) (4.11)

in the universe 𝑝 : �̃�𝒞 → 𝑈𝒞. By the definition of 𝐹(𝑚), the 𝐵 component of 𝑚 is

the classifying map of a morphism isomorphic to (4.11) in Pr𝒞/𝐹(𝑚)(𝐴), so we

have the required (𝑎1 : 𝐴1) → 𝐵1 𝑎1 � 𝐵2 (coe𝐴 𝑖 𝑎1). □

4.5 Discussion

4.5*1. In this chapter we have developed of a logical framework LccLF and its

categorical semantics in locally cartesian closed categories. Our development

follows the tradition of categorical logic pioneered by Lawvere [1963b]: a syntactic

presentation 𝑆 of a theory generates a classifying category 𝐶 with certain structures,

and structure-preserving functors 𝐶 → 𝐷 are equivalent to models of 𝑆 in 𝐷.

4.5*2. The development in this chapter is presented in the traditional set-theoretic

language, but we did not rely on anything specific to material set theories or the

axiom of choice, as long as concepts such as LCCCs are all defined as categories

with chosen structures rather than just mere existence of structures. Therefore the

143



development in this chapter is valid internally in any elementary topos with an

NNO and universes. This in particular includes the effective topos Eff [Hyland

1982; Oosten 2008], which will be useful when we study type theories with

impredicative polymorphisms and effects in future chapters.

4.5*3. Unlike in untyped or simply typed settings [Crole 1994; Jacobs 1999], the

definition of diagrammatic models of LccLF is significantly harder than that

of functorial models. But our effort of building the bridge between these two

sides will pay off in the upcoming chapters: functorial semantics unlocks the

opportunity for using abstract categorical tools, while diagrammatic semantics

allows us to use concrete type-theoretic internal languages of categories to define

models of type theories. Such a synthesis of the abstract and the concrete greatly

simplifies our task of defining type theories for higher-order computational

effects and proving their meta-theoretic properties in the upcoming chapters.

4.5*4. The development of LccLF in this chapter is by no means the end of the

story. The following are some possible directions of future work.

1. Signatures of LccLF in this chapters are finitary in two aspects: firstly,

signatures of LccLF can only contain finitely many declarations; secondly,

every operation has finitely many operands. It is worthwhile to relax

both restrictions, so that, for example, type theories with countably many

universes or infinitary products can be accommodated.

2. We have shown models of every signature 𝑆 are equivalent to LCC-functors

out of Jdg 𝑆, which is called a semantic categorical algebraic theory corre-

spondence by Fiore and Mahmoud [2014], but we did not show the syntactic
correspondence: the category of LF signatures is equivalent to the category

of LCCCs – of course we need to first define morphisms of LF signatures

before showing such an equivalence holds.

144



Chapter 5

A Polymorphic Language with Higher-Order Effects

5*1. Using the logical framework LccLF that we have developed in Chapter 4, in

this chapter we present an extension to higher-order polymorphic 𝜆-calculus, also

known as System Fω [Girard 1972, 1986], with fine-grain call-by-value computations

with (monadic and equation-less) higher-order algebraic effects and handlers.

We refer to the extended type theory as System Fω
ha

.

System Fω
ha

is a quite simple extension of Fω, but expressive type-and-effect

systems can be recovered by further extending the kind sub-language of Fω
ha

with

standard connectives. Therefore Fω
ha

is an ideal core type theory for programming

languages with impredicative polymorphism and higher-order effects.

5*2. The plan of this chapter is as follows. In Section 5.1, we define the language

Fω
ha

in three steps. First we define System Fω as a signature in LccLF. Then

we define some standard concepts related to computational effects such as

(raw) functors and monads in Fω. Finally we add fine-grain call-by-value

computation judgements, parameterised by a (raw) higher-order endofunctor 𝐻

that is the signature of the effectful operations. Each computation judgement

is equipped with 𝐻-operations and an evaluation/handling construct that

interprets a computation by a (raw) monad equipped with 𝐻-operations.

5*3. In Section 5.2, we give a denotational semantics to Fω
ha

by extending the

standard realizability model of Fω to Fω
ha

, which establishes the consistency of

Fω
ha

in the sense that the two Boolean terms tt and ff are not judgementally equal.

The main technical difficulty is to reconcile a mismatch between computation

judgements and user-defined monads: the former satisfies monadic laws but the

latter does not. Moreover, the realizability model essentially interprets a program

𝑡 of Fω
ha

as an element J𝑡K of an untyped computation model A, e.g. untyped

𝜆-calculus or Turing machines. Therefore the realizability model implicitly

provides a way to run programs of Fω
ha

without an operational semantics.

5*4. We then study the meta-theoretic properties of Fω
ha

. First in Section 5.3,

we give a brief tutorial to Sterling’s [2021] synthetic Tait computability (STC), a

145



type/category-theoretic reincarnation of Tait’s [1967] computability method (also

known as logical relations or the reducibility method). We first explain how defining

logical relations and establishing the so-called ‘fundamental lemma’ can be

viewed as constructing a model of the programming language in a certain

(presheaf) topos from Artin gluing. Then a type theory TTstc is introduced for

conveniently manipulating objects in this topos, and defining a logical relation

for a programming language and proving the fundamental lemma is reduced

to defining a model of the language in TTstc. This can be summarised as the

slogan ‘logical relations as types’ [Sterling and Harper 2021].

In Section 5.4, we use STC to prove the (closed term) canonicity of Fω
ha

, which

states that every (closed) Boolean term 𝑡 in Fω
ha

is judgementally equal to one

of the canonical Boolean values: tt and ff . The most interesting part of this

proof is the logical predicate for computations, which uses a form of ⊤⊤-lifting
[Katsumata 2005; Lindley and Stark 2005] to circumvent the mismatch between

(lawful) computations and (lawless) user-defined raw monads mentioned in 5*3.

In Section 5.5, we note an additional benefit of using an axiomatised language

(namely, TTstc) to do our logical relation proof: by re-interpreting our (unary)

logical predicate model for canonicity in a slightly different glued topos, we

obtain binary parametricity for closed Fω
ha

-terms for free.

5*5. Finally, in Section 5.6 we extend Fω
ha

with general recursion and give it a

denotational model using ideas from synthetic domain theory.

5.1 The Signature of System Fω
ha

5.1*1. We present the signature of Fω
ha

in two steps: in this section we first define

Girard [1972, 1986]’s System Fω in LccLF, and in the next section we bring in

computations. The complete signature for Fω
ha

is collected in Appendix A.1.

5.1.1 The Signature of System Fω

5.1.1*1 (Kinds). Kinds of Fω are structurally the same as types of STLC from

Example 4.1*6, so Fω has the following declarations for kinds:

ki : J el : ki→ J ty : ki _⇒𝑘_ : ki→ ki→ ki (5.1)

where we have a judgement ki for kinds, a family of judgements el for elements

of kinds, a base kind ty : ki classifying types, and function kinds k1⇒𝑘 k2.

Elements of the base kind ty : ki includes a unit type unit, a (weak) Boolean

type bool, function types A⇒𝑡 B, and impredicative polymorphic function types

146



All k A where 𝑘 can be of any kind:

unit : el ty bool : el ty _⇒𝑡_ : el ty→ el ty→ el ty
All : (k : ki) → (el k→ el ty) → el ty

Elements of function kinds are specified via an isomorphism to LF-functions as

we did in Example 4.1*6 for STLC function types:

⇒k-iso : {A, B : ki} → el (A⇒𝑘 B) � (el A→ el B) (5.2)

5.1.1*2 Notation. For brevity, in the future we will sometimes elide the use of the

forward and backward direction of an isomorphism that specifies a judgement,

as if the isomorphism is a strict equality. For example, given C : el (A⇒𝑘 B) and

A : el ty, we may write C A : el ty to mean⇒k-iso.fwd 𝐶 𝐴.

5.1.1*3 (Types). For terms of types, there is a judgement tm : el ty→ J. Terms of

(polymorphic) function types and the unit type are still specified by HOAS:

tm : el ty→ J unit-iso : tm unit � 1

⇒t-iso : {A, B : el ty} → tm (A⇒𝑡 B) � (tm A→ tm B) (5.3)

All-iso : {k : _} {A : _} → tm (All k A) � ((𝛼 : el k) → tm (A 𝛼))

For the weak Boolean type, we only include two terms tt and ff :

tt : tm bool ff : tm bool

This completes the signature of System Fω. We have set it up in a minimal way

for simplicity when proving meta-theoretic properties of Fω
ha

later, but more useful

types/kinds, such as a strong Boolean type with the correct universal property,

products and lists, can be added easily and can be found in Appendix A.2.

5.1.1*4 Example. The Church encoding of lists in Fω can be defined as follows:

CList : el (ty⇒𝑘 ty)
CList = 𝜆(𝐴 : el ty). All ty (𝜆(𝛼 : el ty). 𝛼⇒𝑡 (𝐴⇒𝑡 𝛼⇒𝑡 𝛼) ⇒𝑡 𝛼))

where we have omitted the application of⇒k-iso.bwd following 5.1.1*2. The term

for empty lists, polymorphic in the element type, is then

CNil : tm (All ty (𝜆(A : el ty). CList A))
CNil = 𝜆(A : el ty). 𝜆(𝛼 : el ty). 𝜆(nil : tm 𝛼). 𝜆cons. nil

147



5.1.2 Derived Concepts in System Fω

5.1.2*1. System Fω
ha

roughly adds to Fω an initial monad 𝑀 equipped with a

natural transformation 𝐻 𝑀 → 𝑀 for every higher-order endofunctor

H : (ty⇒𝑘 ty) ⇒𝑘 (ty⇒𝑘 ty)

over Fω-functors ty⇒𝑘 ty. In the following, let us define these derived concepts in

Fω, such as functors, monads, natural transformations, which will be ingredients

for the judgements for computations in Section 5.1.3.

5.1.2*2. A (raw) Fω-functor is a type constructor F0 : ty⇒𝑘 ty equipped with a

term F1 acting on Fω-functions, similar to the situation in Haskell:

tyco : ki
tyco = (ty⇒𝑘 ty)
fmap-ty : (F : el tyco) → el ty
fmap-ty F = All ty (𝜆𝛼. All ty (𝜆𝛽. (𝛼⇒𝑡 𝛽) ⇒𝑡 (F 𝛼⇒𝑡 F 𝛽)))
record RawFunctor : J where

F0 : el tyco
F1 : tm ( fmap-ty F0)

The judgement RawFunctor is called raw because 𝐹0 and 𝐹1 are not required to

satisfy the laws of functors.

5.1.2*3. There are two other ways to remedy the absence of equality types:

1. We may include an axiom or axiom schema of relational parametricity [Plotkin

and Abadi 1993; Reynolds 1983] or some weaker form of it, such as dinat-

urality, in our language as judgemental equalities. Then all raw functors

would satisfy the functor laws judgementally following parametricity.

2. Although Fω does not have equality types, we do have equality types in

LccLF; for example, we have the following judgement in LccLF:

record Functor : J where

include RawFunctor
_ : {A : el ty} → F1 A A id = id
_ : {A, B,C, f , g} → F1 B C g ◦ F1 A B f = F1 A C (g ◦ f )

Using this judgement of functors in Fω
ha

amounts to requiring functors to

satisfy the its laws judgementally.

However, approach (1) is not strong enough to eliminate all needs of equality

types in Fω
ha

: even with parametricity, raw monads do not necessarily satisfy the

monad laws, let alone arbitrary equational theories on effects.

148



On the other hand, approach (2) is overly strong in the sense that it would

make judgemental equalities of Fω
ha

undecidable. Consequently, type checking

preterms of Fω
ha

would be undecidable too. Since we intend Fω
ha

to be a core type

theory for programming with higher-order effects, we do want to type check

preterms rather than derivations.

For these reasons, we choose to work with lawless functors, monads, and so

on in Fω
ha

, which is a faithful model of current functional programming languages

such as Haskell and OCaml anyway.

5.1.2*4. We also need (raw) monads RawMonad later in Fω
ha

, whose definition is

the same as its counterpart in Haskell:

record RawMonad : J where

M0 : el tyco
ret : tm (All ty (𝜆𝛼. 𝛼⇒𝑡 M0 𝛼))
bind : tm (All ty (𝜆𝛼. All ty (𝜆𝛽. M0 𝛼⇒𝑡 (𝛼⇒𝑡 M0 𝛽) ⇒𝑡 M0 𝛽)))

5.1.2*5. Finally, we will need (raw) higher-order functors RawHFunctor, which

consists of (1) a higher-order type constructors 𝐻0 mapping type constructors to

type constructors, (2) a function hfmap mapping an fmap for a type constructor F
to an fmap for 𝐻0 𝐹, and (3) a function hmap mapping a transformation 𝐹→ 𝐺 to

another 𝐻 𝐹→ 𝐻 𝐺:

htyco : ki
htyco = tyco⇒𝑘 tyco
trans : (F,G : el tyco) → el ty
trans F G = All ty (𝜆𝛼. F 𝛼⇒𝑡 G 𝛼)
record RawHFunctor : J where

H0 : el htyco
hfmap : (F : RawFunctor) → tm ( fmap-ty (H0 (F .F0)))
hmap : (F,G : RawFunctor) → tm (trans (F .F0) (G .F0))

→ tm (trans (H0 (F .F0)) (H0 (G .F0)))

5.1.2*6 Notation. We will typically suppress the field accessors 𝐹0, 𝑀0 and 𝐻0

for readability, so given F : RawFunctor and X : el ty, we write 𝐹 𝑋 for 𝐹.𝐹0 𝑋.

5.1.3 Computation Types for Higher-Order Algebraic Effects

5.1.3*1. Now we introduce computations to Fω to obtain Fω
ha

. We follow the

fine-grain call-by-value (FGCBV) approach [Lassen 1998; Levy et al. 2003]. For all

149



H : RawHFunctor and A : el ty, there are judgements co H A for computations of

A-values with effectful operations specified by H:

co : (H : RawHFunctor) → (A : el ty) → J

The judgement has the following two rules for pure computations and sequential

composition of computations respectively:

val : {H,A} → tm A→ co H A
let-in : {H,A, B} → co H A→ (tm A→ co H B) → co H B

The interaction of val and let-in is axiomatised by the following declarations,

which are essentially the monad laws:

val-let : {H,A, B} → (a : tm A) → (k : tm A→ co H B)
→ let-in (val a) k = k a

let-val : {H,A} → (m : co H A) → let-in m val = m (5.4)

let-assoc : {H,A, B,C} → (m1 : co H A)
→ (m2 : tm A→ co H B) → (m3 : tm B→ co H C)
→ let-in (let-in m1 m2) m3 = let-in m1 (𝜆a. let-in (m2 a) m3)

5.1.3*2. We also introduce a new type former th H A for thunks of computations

of 𝐴-values with effects of 𝐻, whose terms are isomorphic to computations:

th : RawHFunctor→ el ty→ el ty
th-iso : {H,A} → tm (th H A) � co H A

The two directions of the isomorphism th-iso will be called ⇑ and ⇓ respectively:

⇑ : tm (th H A) → co H A ⇓ : co H A→ tm (th H A)

Thunks can be packed into a monad:

th-mnd : RawHFunctor→ RawMonad
th-mnd H .M0 = th H
th-mnd H .ret = 𝜆A x. ⇓ (val x)
th-mnd H .bind = 𝜆A B m k. ⇓ (let-in (⇑ m) (𝜆a. ⇑ (k a)))

Following from the equations (5.4), th-mnd satisfies the monad laws too.

Levy et al. [2003] presented the FGCBV calculus using effectful functions:

_⇒[_]_ : el ty→ RawHFunctor→ el ty→ el ty
ef -iso : {A,H, B} → tm (A⇒[H]B) � (tm A→ co H B)

But since we already have pure functions in the language, it is sufficient to have

the thunk type, and define effectful functions as (A⇒[H]B) := (A⇒𝑡 th H B).

150



5.1.3*3 (Operations). Effectful operations that computations can perform are

introduced by the following declaration:

op : {H,A, B} → tm (H (th H) A) → (tm A→ co H B) → co H B

The first argument o : tm (H (th H) A) of op is the input to an operation call, such

as some parameters or computations that the operation call acts on. The second

argument k : tm A→ co H B of op is the ‘continuation’ of the computation after

this operation call, where the argument tm A of k is the result of the operation call.

The result op o k is understood as the computation that first makes an operation

call o, which returns an A-value, and then continues as k.

The interaction of operation calls and sequential composition of computations

is the following, which is sometimes called algebraicity [Plotkin and Power 2001b]:

let-op : {H,A, B,C} → (p : tm (H (th H) A))
→ (k : tm A→ co H B) → (k′ : tm B→ co H C)
→ let-in (op p k) k′ = op p (𝜆a. let-in (k a) k′)

(5.5)

5.1.3*4 (Evaluation). Now we axiomatise that computations co H A can be

evaluated, or handled, by any monads supporting the operations from H. We

define the following structure for monads supporting operations from H:

record MonadAlg (H : RawHFunctor) : J, where

include RawMonad as M
malg : tm (trans (H M0)M0)

where by ‘include RawMonad as M’, we mean that MonadAlg has all the fields

of the record RawMonad from 5.1.2*4 – namely, M0, ret, and bind. Moreover, for

every m : MonadAlg H, there is a projection 𝑚.𝑀 : RawMonad.

An example of such a monad is th-mnd from 5.1.3*2:

th-alg : (H : RawHFunctor) →MonadAlg H
th-alg H .M = th-mnd H
th-alg H .malg = 𝜆𝛼 o. ⇓ (op o val)

We then add to Fω
ha

the following declaration that evaluates a computation

with effect H with any monad that supports the effect:

eval : {H } → (m : MonadAlg H) → (A : el ty) → co H A→ tm (m A)

5.1.3*5. The last piece of the signature of Fω
ha

is the computation rules for eval,
which are similar to the small-step operational semantics of the handlers in

conventional algebraic effects [Plotkin and Pretnar 2009, 2013]:

1. When the computation is a value, it is handled by the ret of the monad,

eval-val : {H,A} → (m : MonadAlg H) → (a : tm A)
→ eval m A (val a) = m .ret A a

(5.6)

151



2. When the computation is an operation call, it is handled by the correspond-

ing operation on the monad, with all subterms recursively evaluated:

eval-op : {H,A, B} → (m : MonadAlg H)
→ (p : tm (H (th H) A)) → (k : tm A→ co H B)
→ let bind = m .bind A B

malg = m .malg A
T = fct-of -mnd (th-mnd H)
M = fct-of -mnd (m .M)

in eval m B (op p k)
= bind (malg (H .hmap T M (𝜆𝛼 c. eval m 𝛼 (⇑c)) A p))

(𝜆a. eval m B (k a))

(5.7)

where fct-of -mnd is the canonical functor structure of a monad:

fct-of -mnd : RawMonad→ RawFunctor
fct-of -mnd m .F0 = m .M0
fct-of -mnd m .F1 𝛼 𝛽 f ma = m .bind 𝛼 𝛽 ma (𝜆a. m .ret _ ( f a))

This completes the signature of Fω
ha

. For easy reference, the full signature of Fω
ha

is collected in Appendix A.1.

5.1.4 Some Remarks on the Choice of the Rules

5.1.4*1. In view of the undecidability of the equational theory of System T with

a natural number type with judgemental 𝜂-rule [Okada and Scott 2000], we do

not include in Fω
ha

the 𝜂-rule for eval asserting that all f : co H A→ tm (m .M0 A)
satisfying the properties similar to eval-val and eval-op are judgementally equal

to eval. Otherwise we would not have normalisation for (open terms of) Fω
ha

.

5.1.4*2. We do not include in Fω
ha

the following equation asserting that eval also

commutes with let-in:

eval-let : {H,A, B} → (m : MonadAlg H)
→ (c : co H A) → (f : tm A→ co H B)
→ eval m B (let-in c f ) = m .bind A B (eval m A c) (𝜆a. eval m B ( f a))

This is because we have chosen to work with raw monads that may not valid the

monad laws, whereas computations co H A are axiomatised to always satisfy these

laws (5.4). Consequently, we can freely re-associate let-bindings in computations

but not in raw monads, so having eval-let would result in inconsistency.

Although eval-let is left out, later we will prove the canonicity of Fω
ha

– evaluating

closed elements of computations never get stuck. This is intuitively because in

the empty context, every computation is always equal to a computation without

let-in because of the equations let-val, let-assoc and let-op.

152



5.1.4*3. We did not declare in System Fω
ha

any judgements for modular handlers or

effect systems [Bauer and Pretnar 2014; Kammar and Plotkin 2012; Lucassen and

Gifford 1988] that track the effect operations that a computation may perform,

because both of them can be derived concepts in Fω
ha

.

Firstly, the judgement for effect families is the following record in Fω
ha

:

record Fam : J where

eff : ki
sig : el eff → RawHFunctor
add : el eff → el eff → el eff

The elements of the kind eff : ki are effect signatures in this family, each of them

determining a higher-order functor via sig. Additionally, there is a way add to

combine two effects in a family.

Then we have the following definitions for monads and computations for an

effect e in a family F, which can be viewed as a generic effect system parameterised

by an effect family F:

MonadEff : (F : Fam) → (e : el (F .eff )) → J
MonadEff F e = MonadAlg (F .sig e)
co[_∋_] : (F : Fam) → (e : el (F .eff )) → el ty→ J
co[F ∋ e] = co (F .sig e)

A modular handler processing the effect e in a family F and outputting the

effect o is the following structure:

record Hdl (F : Fam) (e o : el (F .eff )) : J where

alg : (𝜇 : el (F .eff )) →MonadEff F (F .add o 𝜇)
→MonadEff F (F .add e 𝜇)

res : el (ty⇒𝑘 ty)
run : (𝜇 : el (F .eff )) → (Mo : MonadEff F (F .add o 𝜇))
→ tm (trans (alg 𝜇 Mo) (𝜆A. Mo (res A)))

Modular handlers as such can be applied to computations co[F ∋ (F .add e 𝜇)] A,

for all ‘ambient’ effects 𝜇, removing the effect e and generating the effect o,

yielding computations co[F ∋ (F .add o 𝜇)] (h .res A):

handle : {F, e, o, 𝜇,A} → (h : Hdl F e o) → co[F ∋ (F .add e 𝜇)] A
→ co[F ∋ (F .add o 𝜇)] (h .res A)

handle h c = ⇑ (h .run 𝜇 T A c′) where

T : MonadEff F (F .add o 𝜇)
T = th-alg (F .sig (F .add o 𝜇))
c′ : tm (h .alg 𝜇 T A)
c′ = eval (h .alg 𝜇 (th-alg (F .sig (F .add o 𝜇)))) _ c

153



5.1.4*4 Example. An effect system algFam : Fam of algebraic operations that is

comparable to row-polymorphism-based effect systems of algebraic effects [Leĳen

2014; Lindley and Cheney 2012] can be defined provided that we extend Fω with

the following standard connectives:

* type-level and kind-level products (×𝑡 and ×𝑘),
* the empty type and type-level coproducts (+),

* kind-level lists listk :: ki → ki with elimination to modules in the sense of

ML-family languages – a signature is a kind k : ki with a type t : el k→ el ty
that may depend on an element of k; a module of the signature (k, t) is a pair

of an element 𝛼 : el k and a term e : tm (t 𝛼) [Harper 2016].

We define algFam .eff = listk (ty ×𝑘 ty), i.e. an effect is a list of pairs of types.

Every element (P,A) of such a list is understood as an algebraic operation of

parameter type P and arity type A, and induces a (constant) higher-order functor:

𝜆F. 𝜆X. P ×𝑡 (A⇒𝑡 X)

The field sig of algFam then takes the coproduct of the higher-order functor above

for each element (P,A) in its argument of kind listk (ty ×𝑘 ty) – this is why we

need elimination of kind-level lists to modules. The add field of algFam combines

two effects by list appending.

The complete definition of this example, together with the needed extra type

connectives, can be found in Appendix A.2.

5.1.4*5 Example. Similar to the last example, we can define a family scpFam : Fam
of scoped operations with scpFam .eff still being listk (ty ×𝑘 ty), but each element

P,A of the list is to be interpreted as the higher-order functor for a scoped

operation with a parameter of type P and A-many scopes:

𝜆F. 𝜆X. P ×𝑡 (A⇒𝑡 F X) (5.8)

The component sig of scpFam also takes the coproduct of the higher-order functor

of the element of its argument, and add is still list appending.

5.2 Realizability Model of Fω
ha

5.2*1. In this section, we establish the consistency of Fω
ha

by a realizability model,

which is the standard way to model type theories with impredicative polymor-

phism [Asperti and Martini 1992; Bainbridge et al. 1990; Crole 1994; Jacobs

1999]. Moreover, the realizability model provides a way to compute Fω
ha

programs

without a structural operational semantics.

154



5.2*2. We will construct a model of Fω
ha

in the locally cartesian closed category

Asm of assemblies over an arbitrary partial combinatory algebraA. The following

are standard results in realizability theory [Jacobs 1999; Oosten 2008]:

1. The category Asm has a universe 𝜋𝑃 : �̃� → 𝑃 of modest sets, also known

as partial equivalence relations (PERs), which is closed under finite product and

coproduct types, dependent pairs, extensional equality types, inductive types.

Moreover, the universe 𝑃 is impredicative in the sense that it is closed under

dependent products Π 𝐴 𝐵 for arbitrary assemblies 𝐴 and families of modest

sets 𝐵, or in more standard phrasing, the internal category determined by the

universe 𝑃 is complete [Hyland 1988].

2. Any Grothendieck universe𝑈 of sets in the ambient set theory gives rise

to a universe 𝜋𝑉 : �̃� → 𝑉 of𝑈-small assemblies in Asm: the underlying set |𝑉 | of

the assembly 𝑉 contains all assemblies 𝐴 such that |𝐴| ∈ 𝑈 , and the existence

predicate of the assembly 𝑉 is the codiscrete one:

𝑟 |=𝑉 𝐴 for all 𝑟 ∈ A, 𝐴 ∈ |𝑉 |.

The assembly �̃� has pointed𝑈-small assemblies as elements:

|�̃� | = {(𝐴, 𝑎) | 𝐴 ∈ |𝑉 |, 𝑎 ∈ |𝐴|};

with realizers 𝑟 |=�̃� (𝐴, 𝑎) iff 𝑟 |=𝐴 𝑎. The morphism 𝜋𝑉 : �̃� → 𝑉 is the evident

projection. The universe 𝑉 is also closed under finite (co)product types, depen-

dent functions, dependent pairs, extensional equality types, inductive types, and

moreover, the universe 𝑃 of modest sets. However, 𝑉 is not impredicative (other-

wise it would be inconsistent as Coquand [1986] shows that one impredicative

universe cannot contain another).

In this section we assume two Grothendieck universes𝑈1 ∈ 𝑈2 in the ambient

set theory, so in the internal language of Asm, we have a hierarchy of three

cumulative universes 𝑃 : 𝑉1 : 𝑉2 with 𝑃 impredicative and 𝑉𝑖 predicative.

The setup of the internal language is close to Luo [1994]’s extended calculus
of constructions, except that we only need two, rather than countably many,

predicative universes 𝑉𝑖 , and we use extensional rather than intensional equality

types, since we are not concerned with mechanical type checking here.

5.2*3. According to Section 4.3, a model of an LF-signature 𝑆 in an LCCC 𝒞 is a

global element 1→ J𝑆K of the interpretation of 𝑆 in Pr𝒞 with J interpreted by

the universe𝑈𝒞 that classifies 𝒞-morphism, or in the internal language of Pr𝒞,

a closed element 𝑚 : J𝑆K of the record type containing all the declaration 𝑆 with

J replaced by𝑈𝒞. More specially, if the category 𝒞 already has a universe𝑈 that

supports the type connectives of J, a𝑈-small model of 𝑆 in 𝒞 can be given by a

closed element 𝑚 : J𝑆K𝑈 of the record type in the language of 𝒞 that contains the

declarations of 𝑆 with J replaced by𝑈 .

155



5.2*4. In the following, we construct a𝑉2-small model 𝑀 : JFω
haK𝑉2

in the internal

language of Asm. Kinds are interpreted as the predicative universe 𝑉1:

𝑀.ki : 𝑉2 𝑀.el : 𝑀.ki→ 𝑉2

𝑀.ki = 𝑉1 𝑀.el 𝑘 = 𝑘

Function kinds 𝑀._⇒𝑘_ : 𝑀.ki → 𝑀.ki → 𝑀.ki are interpreted by function

types in 𝑉1, and 𝑀.⇒k-iso is the identity isomorphism.

5.2*5. The base kind ty : ki is interpreted as the impredicative universe 𝑃:

𝑀.ty : 𝑀.ki 𝑀.tm : 𝑀.el 𝑀.ty→ 𝑉2

𝑀.ty = 𝑃 𝑀.tm 𝐴 = 𝐴

The unit, Boolean, function types of ty in Fω
ha

are interpreted as the corresponding

type formers in the universe 𝑃. The impredicative polymorphic function type

All is interpreted as dependent function type:

𝑀.All : (𝑘 : ki) → (𝑀.el 𝑘 → 𝑀.el 𝑀.ty) → 𝑀.ty
𝑀.All 𝑘 𝐴 = Π 𝑘 𝐴

This is well typed because 𝑀.ty, i.e. 𝑃, is an impredicative universe.

5.2*6. The meaning of derived concepts, such as 𝑀.RawFunctor, from Sec-

tion 5.1.2 is fixed by other declarations, so we do not need to model them.

5.2*7. The model of the computation judgement co 𝐻 𝐴 is less obvious because

of the mismatch between computations and raw monads in Fω
ha

: computations

satisfy the monadic laws strictly (let-val, val-let, let-assoc from 5.1.3*2), while raw

monads do not. Consequently, we cannot model co H as the initial raw monad
equipped with 𝐻-operations because it then would not satisfy the monadic laws.

Conversely, we cannot model it as the initial monad equipped with 𝐻-operations

either because then it cannot be evaluated into raw monads.

5.2*8 Remark. Following the formula 𝜇𝑋. 𝐼 + 𝐴 □ 𝑋 + Σ𝑋 of free Σ-monoid

over 𝐴 in 2.4*6, the author’s first attempt to resolve the dilemma was to model

computations as the initial pointed raw functor with 𝐻-operations, which can be

equipped with a law-abiding monad structure, and moreover may be evaluated

into every raw monad 𝑀 with 𝐻-operations, since 𝑀 is a pointed functor as

well. Unfortunately, it turns out that this approach validates the equations on

computations only when 𝐻.hmap preserves composition of transformations for

every raw higher-order functor 𝐻, but it is not the case in our model.

One possible way to resolve this is to shift our model category from Asm to a

category where impredicative polymorphism is always parametric, such as the

156



category of reflexive graphs by Atkey et al. [2014], then every H : M.RawHFunctor
will always be lawful higher-order functors.

5.2*9. There is a more lightweight solution that allows us to stay in Asm:

we model computations by a combination of impredicative encoding and

continuation-passing transformation:

𝑀.co : 𝑀.RawHFunctor→ 𝑀.el 𝑀.ty→ 𝑃

𝑀.co 𝐻 𝐴 = (𝑇 : 𝑀.MonadAlg H) → (𝐵 : 𝑃) → (𝐴→ 𝑇 𝐵) → 𝑇 𝐵

Thunking th H A can be modelled as the identity, because in the model 𝑀,

computations and values live in the same universe 𝑃:

𝑀.th : 𝑀.RawHFunctor→ 𝑀.el 𝑀.ty→ 𝑀.el 𝑀.ty
𝑀.th 𝐻 𝐴 = 𝑀.co 𝐻 𝐴

5.2*10. The computation formers and eval are defined as follows:

𝑀.val : {𝐻, 𝐴} → 𝐴→ 𝑀.co 𝐻 𝐴

𝑀.val 𝑎 = 𝜆𝑇 𝐵 (𝑟 : 𝐴→ 𝑇 𝐵). 𝑟 𝑎

𝑀.let-in : {𝐻, 𝐴, 𝐵} → 𝑀.co 𝐻 𝐴→ (𝐴→ 𝑀.co 𝐻 𝐵) → 𝑀.co 𝐻 𝐵

𝑀.let-in {𝐴, 𝐵} 𝑐 𝑘 = 𝜆𝑇 𝐶 (𝑟 : 𝐵→ 𝑇 𝐶). 𝑐 𝑇 𝐶 (𝜆𝑎. 𝑘 𝑎 𝑇 𝐶 𝑟)

We need to check that they satisfy the monadic laws of computations (5.4):

* For val-let, given any 𝑎 : 𝑀.tm A and 𝑘 : 𝑀.tm A→ 𝑀.co H B,

let-in (val a) k
= {by definition of 𝑀.let-in}
𝜆𝑇 𝐶 𝑟. val a T C (𝜆a. k a T C r)

= {by definition of 𝑀.val}
𝜆𝑇 𝐶 𝑟. k a T C r

= {𝜂-rule for functions}
k a

* The case for let-val is very similar. Given any 𝑐 : 𝑀.co H A,

let-in c val
= {by definition of 𝑀.let-in}
𝜆𝑇 𝐶 𝑟. c T C (𝜆a. val a T C r)

= {by definition of 𝑀.val}
𝜆𝑇 𝐶 𝑟. c T C (𝜆a. r a)

= {𝜂-rule for functions}

157



𝑐

* For let-assoc, given any 𝑐1, 𝑐2, and 𝑐3, we have

let-in (let-in c1 c2) c3

= 𝜆T C r. (let-in c1 c2) T C (𝜆b. c3 b T C r)
= 𝜆T C r. c1 T C (𝜆a. c2 a T C (𝜆b. c3 b T C r))
= 𝜆T C r. c1 T C (𝜆a. let-in (c2 a) c3)
= let-in c1 (𝜆a. let-in (c2 a) c3)

5.2*11. The model of evaluation directly follows from the definition of 𝑀.co:

𝑀.eval : {𝐻} → (𝑇 : 𝑀.MonadAlg 𝐻) → (𝐴 : 𝑃) → 𝑀.co 𝐻 𝐴→ 𝑇 𝐴

𝑀.eval {𝐻} 𝑇 𝐴 𝑐 = 𝑐 𝑇 𝐴 (𝑇.ret)

We check that the equation eval-val (5.6) is satisfied: for all 𝐻 : 𝑀.RawHFunctor,
𝐴 : 𝑀.el 𝑀.ty, 𝑇 : 𝑀.MonadAlg H and 𝑎 : 𝐴,

𝑀.eval 𝑇 𝐴 (𝑀.val 𝑎)
= {by definition of 𝑀.eval}
𝑀.val 𝑎 𝑇 𝐴 𝑇.ret

= {by definition of 𝑀.val}
(𝜆𝑇 𝐵 𝑟. 𝑟 𝑎) 𝑇 𝐴 𝑇.ret

= 𝑇.ret 𝑎

5.2*12. The model of operations is defined as follows:

𝑀.op : {𝐻, 𝐴, 𝐵} → 𝐻 (th H) 𝐴→ (𝐴→ 𝑀.co 𝐻 𝐵) → 𝑀.co 𝐻 𝐵

𝑀.op 𝑜 𝑘 = 𝜆𝑇 𝐶 𝑟.

𝑇.bind 𝐴 𝐶

(𝑇.malg 𝐴 (𝐻.hmap (th H) 𝑇 (𝑀.eval 𝑇) 𝐴 𝑜))
(𝜆𝑎. 𝑘 𝑎 𝑇 𝐶 𝑟)

It remains to check that the equations let-op (5.5) and eval-op (5.7) are satisfied.

For let-op, given arbitrary 𝑜 : H (th H) A, k : A→ co H B, k′ : B→ co H C,

let-in (op o k) k′

= {by definition of 𝑀.let-in}
𝜆𝑇 𝐶 𝑟. (op o k) T C (𝜆𝑏. k′ 𝑏 𝑇 𝐶 𝑟)

=

{
by definition of 𝑀.op and let o′ be

𝑇.malg _ (𝐻.hmap _ _ (𝑀.eval 𝑇) _ 𝑜)

}
(5.9)

𝑇.bind _ _ o′ (𝜆𝑎. 𝑘 𝑎 𝑇 _ (𝜆𝑏. k′ b T _ r))

158



= {by definition of 𝑀.let-in (k a) k′}
op o (𝜆a. let-in (k a) k′)

For eval-op, given any 𝑇 : MonadAlg H, 𝑜 : H (th H) A and k : A→ co H B,

eval T (op o k)
= {by definition of 𝑀.eval}
(op o k) T _ 𝑇.ret

= {by definition of 𝑀.op and let o′ be the same as in (5.9)}
𝑇.bind _ _ o′ (𝜆𝑎. k a T _ 𝑇.ret)

= {by definition of 𝑀.eval 𝑇 _ k a}
𝑇.bind _ _ o′ (𝜆𝑎. eval T _ (k a))

This completes our definition of the model 𝑀 : JFω
haK𝑉2

in Asm. An immediate

consequence is the consistency of System Fω
ha

.

5.2*13 Theorem. The equational theory of System Fω
ha is consistent, in the sense that

the closed terms tt and ff : bool are not judgementally equal.

Proof. Models of the logical framework respect judgemental equalities strictly,

and the interpretation of tt and ff in the realizability model 𝑀 are different, so

they cannot be judgementally equal. □

5.2*14. Another consequence of the realizability model is that it provides a

way to compute terms of Fω
ha

: terms and computations of Fω
ha

are interpreted as

morphisms in the category Asm of assemblies, which are realized by elements of

the underlying partial combinatory algebra (PCA)A. If we chooseA to be the

PCA of Turning machines or the PCA of untyped 𝜆-calculus, we can compute an

Fω
ha

term by computing the realizer of the interpretation. (This also requires the

process of interpreting Fω
ha

into Asm to be constructive, which is indeed the case

since the theory of the logical framework LccLF is constructively valid.)

For example, let Fω
ha ⊢ 𝑝 : tm bool be any closed Fω

ha
-term of the Boolean type,

its interpretation in Asm is a morphism J𝑝K : 1 → 1 + 1, which is realized by

some total Turing machine. By executing this machine, we get a Boolean answer.

5.2*15. We will see that the realizability model is adequate with respect to the

equational theory of Fω
ha

: if the interpretation J𝑝K of a closed Boolean term

𝑝 : tm bool in the realizability model is true (resp. false), then 𝑝 = tt (resp. 𝑝 = ff )

in the equational theory of Fω
ha

. Adequacy of a denotational model is usually

proved by a logical relation model relating the syntax and the semantics [Plotkin

1977]. However, a consequence of not having general recursion in Fω
ha

is that the

adequacy of the realizability model directly follows from (1) the fact that the

159



denotation of tt and ff in the realizability model is adequate and (2) the canonicity
of Fω

ha
: for every closed Fω

ha
-term 𝑝 : tm bool, either 𝑝 = tt or 𝑝 = ff .

5.3 Logical Relations, Categorically and Synthetically

5.3*1. Proving canonicity of Fω
ha

is the subject of the rest of this chapter. Although

the statement of canonicity only concerns about the base type bool, terms of bool
may be obtained from applications of functions or evaluations of computations.

Therefore it is necessary to prove something stronger for all types and kinds.

5.3*2. The common proof strategy for such meta-theoretic properties of type

theories is logical relations [Plotkin 1973, 1980], also known as the computability
method or the reducibility method in the literature [Girard 1972; Martin-Löf 1975a,b;

Statman 1985; Tait 1967].

We will use a type-theoretic approach to logical relations called synthetic Tait
computability (STC) due to Sterling [2021] to do our proof. In this section, we

first briefly overview the technique of logical relations in Section 5.3.1 and then

introduce the language of STC in Section 5.3.2 and 5.3.3.

5.3.1 A Brief Overview of Logical Relations

5.3.1*1. Given a model 𝑀 : Jdg 𝑆→ 𝒞 of a theory 𝑆, suppose that we would like

to show that the interpretation 𝑀𝑡 of every closed deduction 𝑡 : 1→ 𝑋 ∈ Jdg 𝑆 of

some judgement 𝑋 satisfies certain property. The proof strategy of unary logical
relations (i.e. logical predicates) on the model 𝑀 proceeds as follows:

1. For every judgement 𝐴 ∈ Jdg 𝑆, a predicate 𝑃𝐴 ⊆ 𝒞(1, 𝑀𝐴) on global

elements of 𝑀𝐴 is defined by induction on the structure of the judgement

𝐴, so that 𝑃1 on the unit judgement is constantly true and that the predicate

𝑃𝑋 implies the desired property.

2. Then the interpretation 𝑀𝑡 of every morphism 𝑡 : 𝐴→ 𝐵 ∈ Jdg 𝑆 is shown

to preserve the predicates, 𝑎 ∈ 𝑃𝐴 implies (𝑀𝑡 · 𝑎) ∈ 𝑃𝐵, by induction on

the structure of 𝑡. This is usually called ‘the fundamental lemma’.

3. Consequently, the interpretation 𝑀𝑡 of every closed term 𝑡 : 1→ X satisfies

𝑃X (and thus the desired property), since ∗ : 1→ 1 always satisfies 𝑃1.

The special case of 𝑀 = Id : Jdg 𝑆→ Jdg 𝑆 is called syntactic logical relations.

5.3.1*2. Generalisations of this proof strategy abound in the literature:

* The unary logical predicates 𝑃𝐴 can be obviously generalised to be 𝑛-ary

relations, so that they can be used for proving relational properties such as

160



parametricity [Reynolds 1983]. Moreover they can relate different models,

useful for proving properties such as adequacy of a denotational model

respect to operational semantics [Plotkin 1977].

* The predicates 𝑃𝐴 may be generalised to be a family of predicates 𝑃𝑛
𝐴

indexed by natural numbers 𝑛 to handle recursive types and general store,

known as step-indexed logical relations [Ahmed 2006].

* The predicates 𝑃𝐴 may be generalised to be proof-relevant, so that 𝑃𝐴 becomes

a family of sets indexed by deductions of 𝐴 [Altenkirch et al. 1995; Coquand

2023; Fiore 2022]. Such proof-relevant logical predicates handle universes in

dependent type theories smoothly and allow an algorithm to be extracted

from the logical-relation proof if the proof is done constructively.

* The predicates 𝑃𝐴 may be generalised to be a family of predicates 𝑃Γ⊢𝐴 on

open deductions 𝒞(𝑀Γ, 𝑀𝐴), indexed by a category or poset of contexts Γ,

known as Kripke logical relations [Jung and Tiuryn 1993]. This is essential for

proving meta-theoretic properties concerning about open terms rather than

just closed terms, for example, normalisation of open terms and definability

of a morphism in the semantic model by an open term.

5.3.1*3. Logical relations on a model 𝑀 : Jdg 𝑆→ 𝒞, and all the generalisations

mentioned above, can be elegantly and fruitfully understood as constructing a

model 𝑀∗ : Jdg 𝑆 → ℰ ↓ 𝐹 of the object theory 𝑆 in the comma category ℰ ↓ 𝐹
for some functor 𝐹 : 𝒞 → ℰ from the category 𝒞 to another category ℰ, such

that there is a commutative triangle for 𝜋 the projection functor ℰ ↓ 𝐹 → 𝒞

[Altenkirch et al. 1995; Fiore 2022; Freyd 1978; Sterling and Spitters 2018]:

Jdg 𝑆 ℰ ↓ 𝐹

𝒞

𝑀∗

𝑀
𝜋

5.3.1*4 Definition. Given a functor 𝐹 : 𝒞→ℰ, the comma category 𝒞 ↓ℰ has

as objects ⟨𝐴 ∈ 𝒞, 𝑃 ∈ ℰ, 𝑝 : 𝑃 → 𝐹𝐴⟩. Morphisms from ⟨𝐴, 𝑃, 𝑝⟩ to ⟨𝐴′, 𝑃′, 𝑝′⟩
are pairs ⟨𝑔 : 𝐴→ 𝐴′, ℎ : 𝑃 → 𝑃′⟩ making the following square commute:

𝑃 𝑃′

𝐹𝐴 𝐹𝐴′

𝑝

ℎ

𝐹𝑔

𝑝′

The categoryℰ ↓ 𝐹 is also called the Artin gluing of 𝒞 andℰ along the functor 𝐹,

especially when 𝐹 is a left-exact functor between two toposes 𝒞 andℰ.

161



5.3.1*5 Example. For instance, to prove some meta-theoretic property about

closed terms of a theory 𝑆 (such as canonicity), we let the category 𝒞 be the

category of judgements Jdg 𝑆, the model 𝑀 be Id : Jdg 𝑆→ Jdg 𝑆, the categoryℰ

be the category of sets, and the functor 𝐹 : 𝒞→ℰ be the global section functor

Γ := Hom(1,−) : Jdg 𝑆→ Set.

The glued category Set ↓ Γ then has as objects tuples

⟨𝐴 ∈ Jdg 𝑆, 𝑃 ∈ Set, 𝑝 : 𝑃 → Γ𝐴⟩,

which can be viewed as (proof-relevant) predicates on closed deductions of

judgements𝐴: for closed deduction 𝑥 ∈ Γ𝐴 of the judgement𝐴, the set 𝑝−1(𝑥) ⊆ 𝑃
is viewed as the set of evidence that 𝑥 satisfies this logical predicate. Defining a

model 𝑀∗ : Jdg 𝑆→ Set ↓ Γ making the following triangle commute

Jdg 𝑆 Set ↓ Γ

Jdg 𝑆

𝑀∗

Id

𝜋

amounts to (1) defining a syntactic logical relation and (2) proving the ‘funda-

mental lemma’ (every term satisfies the logical relation of its judgement).

5.3.1*6. When the object theory 𝑆 is complex, the gluing perspective provides

very useful guidance on logical-relation proofs, as it reduces a proof to construct-

ing a model in a certain category. However, manually manipulating the objects

in the glued category can sometimes still be cumbersome.

Synthetic Tait computability (STC) [Sterling 2021], also known as logical relation
as types [Sterling and Harper 2021], aims precisely to abstract away manually

manipulating the glued category. The ideas of STC are that

1. instead of gluing the category 𝒞 with the topos ℰ, we glue the presheaf

topos Pr𝒞 withℰ, so the resulting glued category 𝒢 is always a topos;

2. as a topos𝒢 has expressive internal languages based on dependent type the-

ories [Maietti 2005] or higher-order logic [Lambek and Scott 1986]. Sterling

moreover designed a handful of type connectives for 𝒢 for manipulating

objects 𝒢 as logical predicates conveniently.

Hence, constructing models in𝒢 can be done entirely in a type-theoretic language,

reducing a logical-relation proof to a programming exercise.

162



5.3.2 Basic Categorical Properties of the Glued Topos

5.3.2*1. Before we delve into STC, let us first familiarise ourselves with some

basic properties of the glued topos for logical predicates. The purpose of this

subsection is mainly to develop some intuition about the glued topos by seeing

how it works concretely, so the details are somewhat irrelevant for future sections.

5.3.2*2 Notation. In this subsection we work in general with a small category

𝒮, and denote the glued category of Pr𝒮 along the global section functor

Γ : Pr𝒮→ Set by 𝒢. When it causes no confusion, we will sometimes refer to an

object ⟨𝐴, 𝑆, 𝑝⟩ ∈ 𝒢 by 𝑝 : 𝑆→ Γ𝐴. Later in our canonicity proof, 𝒮 is going to

be instantiated as the category of judgement Jdg Fω
ha

for System Fω
ha

.

5.3.2*3. A general result in topos theory is that the Artin gluing of two ele-

mentary/presheaf/Grothendieck toposes along a left-exact functor is still an

elementary/presheaf/Grothendieck topos. In particular, 𝒢 is equivalent to the

presheaf topos over 𝒮⊤, the category that adjoins a new terminal object ⊤ to 𝒮.

5.3.2*4 Lemma. There is an equivalence 𝐹 : 𝒢 � Pr𝒮⊤ : 𝐹−1
between the glued

category and the presheaf category over 𝒮⊤.

Proof. Explicitly, 𝐹 maps every (𝑝 : 𝑃 → Γ𝐴) ∈ 𝒢 to the presheaf 𝐹𝑝 : 𝒮
op

⊤ → Set

whose action on the objects of 𝒮⊤ is

(𝐹𝑝) ⊤ = 𝑃, (𝐹𝑝) 𝑋 = 𝐴𝑋 for all 𝑋 ∈ 𝒮,

and its action on the morphisms ! : 𝑋 → ⊤ to the adjoined terminal ⊤ is

(𝐹𝑝) (! : 𝑋 → ⊤) = (𝜆𝑒. (𝑝 𝑒)𝑋 ∗) : 𝑃 → 𝐴𝑋

where 𝑝 𝑒 is a natural transformation 1→ 𝐴 ∈ Pr𝒮, so (𝑝 𝑒)𝑋 ∗ is an element of

𝐴𝑋; the action of 𝐹𝑝 on the other morphisms 𝑎 : 𝑋 → 𝑌 ∈ 𝒮⊤ is

(𝐹𝑝) (𝑎 : 𝑋 → 𝑌) = 𝐴𝑎 : 𝐴𝑌 → 𝐴𝑋.

The definition of 𝐹𝑝 preserves identity trivially and preserves composition

because of the naturality of 𝑝 𝑒 : 1→ 𝐴 ∈ Pr𝒮.

For the other direction, 𝐹−1
maps a functor 𝐻 : 𝒮

op

⊤ → Set to the object

⟨𝐻 ◦ 𝑖 : 𝒮
op→ Set, 𝐻 ⊤ ∈ Set, ℎ : 𝐻 ⊤ → Γ(𝐻 ◦ 𝑖)⟩,

where 𝑖 : 𝒮
op → 𝒮

op

⊤ is the inclusion functor, ℎ is the function sending every

𝑒 ∈ 𝐻 ⊤ to the natural transformation ℎ(𝑒) : 1→ 𝐻 ◦ 𝑖 satisfying

ℎ(𝑒)𝑋 = (𝜆∗. (𝐻 !) 𝑒) : {∗} → 𝐻𝑋,

whose naturality follows from the functoriality of 𝐻.

163



The natural isomorphisms 𝜂 : Id � 𝐹𝐹−1
and 𝜖 : 𝐹−1𝐹 � Id are simply the

identities, so this equivalence is in fact a strict isomorphism of categories. □

5.3.2*5. The topos Pr𝒮 is equivalent to the slice category 𝒢/𝔬𝔟 over

𝔬𝔟 := ⟨1 ∈ Pr𝒮, 0 ∈ Set, ! : 0→ Γ1⟩ ∈ 𝒢.

The terminal object of 𝒢 is id : 1Set→ Γ1Pr𝒮, so 𝔬𝔟 is a subterminal object:

0 1

Γ1Pr𝒮 Γ1Pr𝒮

!

! id
Γid

Therefore Pr𝒮 is the open subtopos of 𝒢 determined by the subterminal 𝔬𝔟. The

geometric embedding (𝑖∗ ⊣ 𝑖∗) : Pr𝒮→ 𝒢 is concretely given by

𝑖∗(𝑝 : 𝑆→ Γ𝐴) = 𝐴 ∈ Pr𝒮, 𝑖∗𝐴 = (id : Γ𝐴→ Γ𝐴) ∈ 𝒢.

5.3.2*6. The closed subtopos of 𝒢 determined by 𝔬𝔟 is precisely the topos Set,

which embeds into 𝒢 by the following geometric morphism (𝑗∗ ⊣ 𝑗∗) : Set→ 𝒢:

𝑗∗(𝑝 : 𝑆→ Γ𝐴) = 𝑆 ∈ Set, 𝑗∗𝑆 = (! : 𝑆→ Γ1) ∈ 𝒢.

5.3.2*7. In the context of synthetic Tait computability, the open subtopos Pr𝒮 is

called the object space, since 𝒮 is the category of judgements of the object theory.

On the other hand, the closed subtopos Set is called the meta space, since it is

where the meta-theoretic properties live.

5.3.2*8. The idempotent monad 𝑖∗𝑖∗ arising from the geometric embedding

𝑖 : Pr𝒮→ 𝒢 will be denoted by # : 𝒢→ 𝒢 and called the open modality:

#(𝑝 : 𝑃 → Γ𝐴) = (id : Γ𝐴→ Γ𝐴).

Intuitively, # erases the meta-theoretic information 𝑃 from a logical predicate.

Moreover, the open modality # is precisely the exponential functor (−)𝔬𝔟 by 𝔬𝔟.

5.3.2*9. The idempotent monad 𝑗∗ 𝑗∗ arising from the geometric embedding

𝑗 : Set→ 𝒢 will be denote by  : 𝒢→ 𝒢 and called the closed modality:

 (𝑝 : 𝑃 → Γ𝐴) = (! : 𝑃 → Γ1).

Intuitively, erases the object-theory-level information𝐴 from a logical predicate.

The closed modality is also related to the subterminal 𝔬𝔟: for every object 𝑝 ∈ 𝒢,

164



the object  𝑝 is the following pushout in 𝒢:

𝔬𝔟 × 𝑝 𝑝

𝔬𝔟  𝑝

𝜋2

𝜋1

5.3.2*10. An object 𝑝 ∈ 𝒢 is called #-modal if 𝜂◦ : 𝑝 → # 𝑝 is an isomorphism,

and correspondingly  -modal if 𝜂• : 𝑝 →  𝑝 is an isomorphism. The full

subcategory of 𝒢 spanned by #-modal (resp.  -modal) objects are equivalent to

Pr𝒮 (resp. Set). Therefore, in the language of 𝒢, we can talk about things from

the object space and meta space by talking about #-modal and  -modal objects.

5.3.2*11. Every presheaf topos Pr𝒞 has a subobject classifier Ω, which can be

logically viewed as a universe of propositions. Concretely, the subobject classifier

Ω maps every object 𝐴 ∈ 𝒞 to the set of sieves on 𝐴:

Ω(𝐴) = {𝑆 ⊆ Obj (𝒞/𝐴) | ∀( 𝑓 : 𝐵→ 𝐴) ∈ 𝑆,∀(𝑔 : 𝐶 → 𝐵), ( 𝑓 · 𝑔) ∈ 𝑆}, (5.10)

and on morphisms 𝑓 : 𝐵→ 𝐴, Ω maps 𝑓 to

(𝑆 ∈ Ω(𝐴)) ↦→ {𝑔 : 𝐶 → 𝐵 | ( 𝑓 · 𝑔) ∈ 𝑆} ∈ Ω(𝐵).

The global truth morphism 𝑡 : 1→ Ω is 𝑡𝐴 = (𝜆∗. Obj (𝒞/𝐴)).
If we intuitively view a morphism 𝑓 : 𝐵 → 𝐴 as the world 𝐵 evolves to the

world 𝐴 via 𝑓 , then the intuition for every 𝑆 ∈ Ω(𝐴) is a truth value in world

𝐴 that tells us not just ‘true or false’ but more informatively when it is true:

( 𝑓 : 𝐵→ 𝐴) ∈ 𝑆 means that 𝑆 is true in all worlds before the world 𝐵, including

𝐵 itself, which evolves to 𝐴 via 𝑓 .

5.3.2*12. Transporting the formula (5.10) along the equivalence in Lemma 5.3.2*4,

the glued category 𝒢 has a subobject classifier

Ω𝒢 := ⟨ΩPr𝒮 ∈ Pr𝒮, (ΓΩPr𝒮) + 1Set ∈ Set, [id, (𝜆∗. 𝑡ΩPr𝒮
)]⟩

with the truth morphism being ⟨𝑡ΩPr𝒮
: 1Pr𝒮 → ΩPr𝒮 , 𝜆∗. inr ∗⟩ : 1𝒢 → Ω𝒢.

5.3.2*13. Finally, we recall that every Grothendieck universe 𝑈 in Set can be

lifted to presheaf categories [Hofmann and Streicher 1999]. Let 𝜋 : �̃� → 𝑉

be the lifting of 𝑈 to Pr𝒮 as given in 4.3.1*3. Let also Obj𝑈(𝒢) be the set of

𝑈-small 𝒢-objects ⟨𝐴, 𝑃, 𝑝⟩, by which we mean that the image of the functor

𝐴 : 𝑆op → Set and the set 𝑃 are in 𝑈 . Transporting along the equivalence of

Lemma 5.3.2*4, the lifting of𝑈 to 𝒢 is a universe 𝜏 : �̃� →𝑊 in 𝒢 where

𝑊 := ⟨𝑉 ∈ Pr𝒮, Obj𝑈(𝒢) ∈ Set, (𝜆⟨𝐴, 𝑃, 𝑝⟩. ⌈𝐴⌉)⟩

165



and ⌈𝐴⌉ : 1→ 𝑉 is the code of the𝑈-small presheaf 𝐴. The object �̃� is slightly

more complex and we shall omit it here for simplicity.

5.3.2*14. The open and closed modalities # and  can be both internalised as

endomorphisms #̂,  ̂ : 𝑊 →𝑊 on the universe𝑊 in 𝒢. Explicitly,

#̂ = ⟨id : 𝑉 → 𝑉, (𝜆𝐺. #𝐺)⟩

 ̂ = ⟨𝑉 !−→ 1

⌈1⌉
−−→ 𝑉, (𝜆𝐺.  𝐺)⟩,

where ⌈1⌉ : 1→ 𝑉 is the code of the terminal object 1 ∈ Pr𝒮 in the universe 𝑉 .

5.3.3 The Type Theory of STC

5.3.3*1. Let 𝑆 be a signature in LccLF. The idea of synthetic Tait computability

is to use a type theory to do constructions in the glued topos 𝒢 of Pr (Jdg 𝑆) and

Set along the global section functor; we will refer to this type theory by TTstc.

The type theory TTstc is a dependent type theory with the following type

formers that can be interpreted in 𝒢:

1. the structure of an elementary topos Ω (5.3.3*3),

2. a tower of predicative universes (5.3.3*14),

3. a proposition 𝔬𝔟 : Ω and an 𝔬𝔟-partial model of 𝑆 (5.3.3*16), and

4. strict glue types (5.3.3*21).

We will present these type formers one-by-one in this subsection.

5.3.3*2 Notation. Although we can formally define TTstc as a signature in

LccLF, our purpose is not to study TTstc but to use it, so we will present TTstc in

the style of inference rules, which some readers may find more familiar.

All the judgements of TTstc are stable under substitution, so the inference

rules of TTstc all have an ambient context ‘Γ ⊢’. We shall omit the ambient

context Γ in the inference rules below, only tracking the change of context. For

example, the formation rule for Π-types would be written as

𝐴 type (𝑎 : 𝐴) ⊢ 𝐵 type

Π 𝐴 𝐵 type

5.3.3*3 Axiom (TTstc-Topos). TTstc has the following type formers:

1. unit type 1, empty type 0, coproduct types 𝐴 + 𝐵, Π-types (𝑎 : 𝐴) → 𝐵,

Σ-types Σ(𝑎 : 𝐴). 𝐵, extensional identity types 𝑎 = 𝑏;

166



2. a universe Ω such that (1) it classifies all propositions, in the sense that if a type

𝐴 satisfies (𝑎, 𝑏 : 𝐴) → (𝑎 = 𝑏), then there is ⌈𝐴⌉ : Ω with an isomorphism

⌈𝐴⌉ � 𝐴; (2) it is univalent: if 𝐴, 𝐵 : Ω and 𝐴 � 𝐵, then 𝐴 = 𝐵; and (3) it is

proof irrelevant: if 𝐴 : Ω and 𝑝, 𝑞 : 𝐴, then 𝑝 = 𝑞.

5.3.3*4. Semantically, the type formers in Axiom 5.3.3*3 correspond to the

structure of elementary toposes: the first item above corresponds to the structure

of a locally cartesian closed category with pullback-stable finite coproducts. The

second item corresponds to a subobject classifier Ω with the true proposition

being ⌈1⌉ : Ω. Incidentally, it is well known that pullbacks can be constructed

from other axioms of elementary toposes, but the construction is somewhat

complex so we just include pullbacks in the definition of TTstc.

5.3.3*5. A handful of very useful type formers can be derived from the structure

of elementary toposes. Let us have a look at these derived type formers first

before the next part of the definition of TTstc.

5.3.3*6 (Subtypes). For a type 𝐴 and a function 𝑃 : 𝐴→ Ω, we define

{𝑥 : 𝐴 | 𝑃(𝑥)} := Σ(𝑎 : 𝐴) 𝑃(𝑎).

Since Ω is a proof-irrelevant universe of propositions, we will informally treat

{𝑥 : 𝐴 | 𝑃(𝑥)} as a subtype of 𝐴, eliding the unique proof of the proposition 𝑃(𝑥)
and the pairing/projections:

𝑎 : 𝐴 _ : 𝑃(𝑎)
𝑎 : {𝑥 : 𝐴 | 𝑃(𝑥)}

𝑎 : {𝑥 : 𝐴 | 𝑃(𝑥)}
𝑎 : 𝐴

𝑎 : {𝑥 : 𝐴 | 𝑃(𝑥)}
_ : 𝑃(𝑎)

Of course, when using this notation, it is our job to ensure that we only use 𝑎 : 𝐴

as an element of {𝑥 : 𝐴 | 𝑃(𝑥)} when an element of 𝑃(𝑎) is available.

5.3.3*7 (Extension types). For a type 𝐴, a proposition 𝜙 : Ω, and let 𝑎 be a partial
element of 𝐴 that is defined only when 𝜙 holds, i.e. 𝑎 : 𝜙→ 𝐴, we will write

{𝐴 | 𝜙 ↩→ 𝑎} := {𝑥 : 𝐴 | (𝑝 : 𝜙) → 𝑥 = 𝑎(𝑝)}

for the type of 𝐴-elements that are strictly equal to 𝑎 when 𝜙 holds. If we have

a partial element of 𝐴 given as an implicit function 𝑎 : {𝜙} → 𝐴, we also write

{𝐴 | 𝜙 ↩→ 𝑎} for {𝑥 : 𝐴 | {𝜙} → (𝑥 = 𝑎)}.

5.3.3*8 (Universal quantification). For an arbitrary type 𝐴 and type family

𝐵 : 𝐴 → Ω in the universe Ω, the dependent function type (𝑥 : 𝐴) → 𝐵 𝑥 can

also be shown to be a proposition, i.e. ( 𝑓 , 𝑔 : (𝑥 : 𝐴) → 𝐵 𝑥) → 𝑓 = 𝑔. Therefore

there is a type ⌈(𝑥 : 𝐴) → 𝐵 𝑥⌉ : Ω isomorphic to (𝑥 : 𝐴) → 𝐵 𝑥.

167



We will write ∀(𝑥 : 𝐴). 𝐵 𝑥 as a synonym for ⌈(𝑥 : 𝐴) → 𝐵 𝑥⌉, and we will

elide the isomorphism between ∀(𝑥 : 𝐴). 𝐵 𝑥 and (𝑥 : 𝐴) → 𝐵 𝑥. In fact, it is

always possible to set up the interpretation of TTstc in any glued topos in a way

that these two types are strictly equal.

5.3.3*9 (Propositional truncation). For an arbitrary type 𝐴, its propositional
truncation |𝐴| : Ω is defined to be ∀(𝐵 : Ω). (𝐴→ 𝐵) → 𝐵. Let 𝜂𝐴 : 𝐴→ |𝐴| be

𝜂𝐴 (𝑎 : 𝐴) (𝐵 : Ω) (𝑘 : 𝐴→ 𝐵) = 𝑘 𝑎.

We will also write |𝑎 | for 𝜂𝐴 𝑎. The universal property for 𝜂𝐴 : 𝐴→ |𝐴| is that

for all 𝐵 : Ω, every 𝑓 : 𝐴→ 𝐵 uniquely factors via 𝜂𝐴:

𝐴 |𝐴|

𝐵

𝜂𝐴

𝑓
rec|𝐴| 𝑓

where the function rec|𝐴| 𝑓 := 𝜆𝑝. 𝑝 𝐵 𝑓 . The statement of this universal

property can be slightly generalised by allowing 𝐵 to be any type that satisfies

(𝑥, 𝑦 : 𝐵) → 𝑥 = 𝑦, as there is an isomorphism 𝐵 � ⌈𝐵⌉ for some ⌈𝐵⌉ : Ω.

5.3.3*10 (Existential quantification). For any type 𝐴 and 𝐵 : 𝐴 → Ω, we will

write ∃(𝑥 : 𝐴). 𝐵 𝑥 for the propositional truncation |Σ(𝑥 : 𝐴). (𝐵 𝑥)|.
As an example, for any two types 𝐴 and 𝐵, the invertibility of a function

𝑓 : 𝐴→ 𝐵 can be expressed by the following:

is-iso : ( 𝑓 : 𝐴→ 𝐵) → Ω

is-iso 𝑓 = ∃(𝑔 : 𝐵→ 𝐴). inv f g

inv : ( 𝑓 : 𝐴→ 𝐵) → (𝑔 : 𝐵→ 𝐴) → Ω

inv 𝑓 𝑔 = ( 𝑓 · 𝑔 = id𝐵) ∧ (𝑔 · 𝑓 = id𝐴)

where 𝑓 · 𝑔 is function composition and id𝐴 : 𝐴→ 𝐴 is the identity function. A

nice, and somewhat surprising, property of elementary toposes is that we can

always construct the inverse from just invertibility:

inv-of : ( 𝑓 : 𝐴→ 𝐵) → is-iso f → Σ(𝑔 : 𝐵→ 𝐴). inv f g
inv-of 𝑓 𝑖 = rec|is-iso f | id 𝑖

This is well typed because Σ(𝑔 : 𝐵→ 𝐴). inv f g is in fact a proposition, in the

sense that for every 𝑥, 𝑦 : Σ(𝑔 : 𝐵→ 𝐴). inv f g, we have 𝑥 = 𝑦 since the inverse

of 𝑓 is unique. Therefore Σ(𝑔 : 𝐵→ 𝐴). inv f g is classified by the universe Ω, so

we can recover it from its propositional truncation. In contrast, we cannot directly

eliminate is-iso f to B→ A, because the latter is not a proposition, although it

seemingly has less data than the proposition Σ(𝑔 : 𝐵→ 𝐴). inv f g.

168



5.3.3*11 (Conjunction and disjunction). Similar to the situation of universal

quantification, for 𝐴 : Ω and 𝐵 : Ω, their conjunction 𝐴 ∧ 𝐵 : Ω is defined to be

the code ⌈𝐴 × 𝐵⌉ of their product in Ω. On the other hand, their disjunction

𝐴 ∨ 𝐵 is the propositional truncation |𝐴 + 𝐵| of their coproduct.

5.3.3*12 (Finite colimits). With the above logical apparatus, the concrete con-

struction of finite colimits colim𝑖𝐹𝑖 in Set as the quotient set of

∐
𝑖 𝐹𝑖 by the

minimal equivalence relation containing the relation 𝑅

𝑅 = {((𝑖 , 𝑥), (𝑗 , 𝑦)) | ∃ 𝑓 : 𝑖 → 𝑗. 𝐹 𝑓 (𝑥) = 𝑦}

can be directly carried out in TTstc. In particular, the quotient type 𝐴/𝑅 in TTstc

for a type 𝐴 and an equivalence relation 𝑅 : 𝐴→ 𝐴→ Ω is defined as

𝐴/𝑅 = {𝑃 : 𝐴→ Ω | ∃(𝑎 : 𝐴). ∀(𝑎′ : 𝐴). 𝑃(𝑎′) = 𝑅(𝑎, 𝑎′)}

with the ‘equivalence class’ function [_] : 𝐴→ 𝐴/𝑅 given by [𝑎] = 𝜆𝑎′. 𝑅(𝑎, 𝑎′).

5.3.3*13. Coming back to the axioms of TTstc, the next part is universes.

5.3.3*14 Axiom (TTstc-Universe). TTstc has a cumulative tower of predicative

universes𝑈0 : 𝑈1 : · · · : 𝑈𝑖 : · · · , for every natural number 𝑖. Each of the universe

is closed under the unit type, the empty types, Π types, Σ types, extensional

equality types, and inductive types (𝑊-types). Moreover, the universe of

propositions is classified by𝑈0, i.e. Ω : 𝑈0.

5.3.3*15. According to Chapter 4, a (diagrammatic) model of the signature 𝑆 is

an element of the record type J𝑆K that has the same fields as 𝑆 with all J replaced

by𝑈 . For example,𝑈-small models of Fω
ha

are elements of the type

record JFω
haK𝑈 where

ki :𝑈

el : ki→ 𝑈

ty : ki
_⇒𝑘_ : ki→ ki→ ki
tm : el ty→ mu
... -- all other declarations of System Fω

ha

On the other hand, the Yoneda embedding Y : Jdg 𝑆 → Pr (Jdg 𝑆) is a

(functorial) model of 𝑆 in Pr (Jdg 𝑆) � 𝒢/𝔬𝔟, where 𝔬𝔟 is the subterminal object

in 5.3.2*5 that renders Pr (Jdg 𝑆) as the open subtopos of 𝒢. This situation is

axiomatised in TTstc as follows.

5.3.3*16 Axiom (TTstc-Obj). TTstc has constants 𝔬𝔟 : Ω and 𝑀 : {𝔬𝔟} → J𝑆K𝑈0
.

169



5.3.3*17. The modalities #, : 𝒢 → 𝒢 that we saw in Section 5.3.2 can be

internally defined in TTstc. For every universe𝑈 in TTstc, we define

# : 𝑈 → 𝑈

# 𝐴 = ({𝔬𝔟} → 𝐴)

A type 𝐴 is called #-modal if the function 𝜂◦
𝐴

:= (𝜆𝑎. 𝜆{𝑧 : 𝔬𝔟}. 𝑎) : 𝐴→ #𝐴 is

an isomorphism, i.e. #-modal 𝐴 = is-iso 𝜂◦
𝐴

for is-iso defined in 5.3.3*10.

One useful observation is there is a function 𝛿 : #𝑈 → 𝑈 for the universe𝑈 ,

sending every 𝔬𝔟-partial type 𝑋 : {𝔬𝔟} → 𝑈 to {𝔬𝔟} → 𝑋; here the application of

𝑋 to the proof of 𝔬𝔟 is implicit, so the type is {𝑧 : 𝔬𝔟} → 𝑋 {𝑧} more explicitly.

This is not an algebra for # as a monad though, since when 𝑋 is not #-modal,

𝛿(𝜂◦
𝑈
𝑋) = {𝔬𝔟} → 𝑋 is not isomorphic, let alone equal, to 𝑋.

5.3.3*18. The closed modality  𝐴 is defined as a pushout internal to TTstc:

𝔬𝔟 × 𝐴 𝐴

𝔬𝔟  𝐴

𝜋2

𝜋1

pt

𝜂•
𝐴

(5.11)

or in terms of a quotient inductive type [Altenkirch et al. 2018; Fiore et al. 2022]:

record  A : U where

𝜂•
𝐴

: A→  A
pt : {𝔬𝔟} →  A
eq : {𝔬𝔟} → (a : A) → 𝜂•

𝐴
a = pt

The type  𝐴 can be explicitly constructed using quotient and coproduct types,

in the same way as constructing pushouts in Set, which we shall not belabour

here. To eliminate from the type  𝐴, we use the following syntax:

𝐵 :  𝐴→ 𝑈𝑖 𝑎 : 𝐴 ⊢ 𝑏 : 𝐵 (𝜂•𝐴 𝑎)
_ : 𝔬𝔟 ⊢ 𝑏′ : 𝜂•𝐴 pt _ : 𝔬𝔟, 𝑎 : 𝐴 ⊢ 𝑏 = 𝑏′ 𝑐 :  𝐴

case c of {𝜂•𝐴 a ↦→ b; pt ↦→ b′} : B c
(5.12)

satisfying the usual 𝛽 and 𝜂-rules.

A type 𝐴 is called  -modal if the function 𝜂•
𝐴

: 𝐴→  𝐴 is an isomorphism

 -modal 𝐴 := is-iso 𝜂•𝐴.

In this case, we will write 𝜖•
𝐴

:  𝐴→ 𝐴 for the inverse of 𝜂•
𝐴

: 𝐴→  𝐴.

5.3.3*19 Lemma. A type 𝐴 is  -modal iff #𝐴 is isomorphic to the unit type 1.

Proof. Assuming  -modal 𝐴, we can define 𝑓 : 1→ #𝐴 by

𝑓 ∗ = 𝜆{𝑧 : 𝔬𝔟}. 𝜖•𝐴 (pt 𝑧),

170



where pt : 𝔬𝔟→  𝐴 is the bottom arrow in the pushout (5.11). We need to show

that 𝑓 is the inverse of (𝜆𝑎. ∗) : #𝐴→ 1. For all 𝑎 : #𝐴, we need to show that

𝑎 = (𝜆{𝑧 : 𝔬𝔟}. 𝜖•𝐴 (pt 𝑧)).

Given 𝑧 : 𝔬𝔟, pt 𝑧 = 𝜂•
𝐴
(𝑎 {𝑧}) by the property of the pushout. Hence we have

𝜖•
𝐴
(pt 𝑧) = 𝜖•

𝐴
(𝜂•
𝐴
(𝑎 {𝑧})), which is also equal to 𝑎 {𝑧} because 𝜖•

𝐴
is the inverse

of 𝜂•
𝐴

. The other direction is trivial since ∗ is the unique element of 1.

Now assuming #𝐴 � 1, let 𝑎 be the unique element of #𝐴. We define

𝜖•
𝐴

:  𝐴→ 𝐴

𝜖•
𝐴
𝑐 = case c of {𝜂•

𝐴
a′ ↦→ a′; pt ↦→ a}

The side condition (_ : 𝔬𝔟, 𝑎′ : 𝐴 ⊢ 𝑎 = 𝑎′) for making this case split (5.12) is

satisfied because 𝐴 � 1 under 𝔬𝔟. The functions 𝜖•
𝐴

and 𝜂•
𝐴

are inverses following

from the universal property of the pushout  𝐴. □

5.3.3*20. Recall that objects in the glued topos𝒢 are tuples ⟨𝐴, 𝐵, 𝑝⟩. Presheaves

𝐴 ∈ Pr Jdg 𝑆 can be internally expressed in TTstc as #-modal types, or equiva-

lently, 𝔬𝔟-partial types 𝐴 : {𝔬𝔟} → 𝑈 in a universe𝑈 . The set 𝐵 and the function

𝑝 : 𝐵 → Γ𝐴 can be internally expressed in TTstc as  -modal type families

𝐵 : ({𝔬𝔟} → 𝐴) → 𝑈 . The next axiom of TTstc says that given such 𝐴 and 𝐵, we

can glue them together to form a new type that is strictly equal to 𝐴 under 𝔬𝔟.

5.3.3*21 Axiom (TTstc-Glue). The type theory TTstc has strict glue types:

𝐴 : #𝑈 𝐵 : ({𝔬𝔟} → 𝐴) → {𝑋 : 𝑈 |  -modal 𝑋}
(𝑎 : 𝐴)⋉ 𝐵 𝑎 : {𝑈 | 𝔬𝔟 ↩→ 𝐴}

The elements of the glue type (𝑎 : 𝐴)⋉ 𝐵 𝑎 are specified by an isomorphism to

those of the Σ-type Σ ({𝜙} → 𝐴) 𝐵:

glue : { Σ(𝑎 : {𝔬𝔟} → 𝐴). 𝐵 𝑎 � (𝑎 : 𝐴)⋉ 𝐵 𝑎 | 𝔬𝔟 ↩→ 𝜋1}.

which restricts to 𝜋1 : Σ({𝔬𝔟} → 𝐴) 𝐵→ 𝐴 under the proposition 𝔬𝔟.

5.3.3*22. We define the following notation for 𝑎 : {𝔬𝔟} → 𝐴 and 𝑏 : 𝐵 𝑎 for

constructing elements of the strict glue type:

[𝔬𝔟 ↩→ 𝑎 | 𝑏] := glue (𝑎, 𝑏) : (𝑎 : 𝐴)⋉ 𝐵 𝑎.

Given an element 𝑔 : (𝑎 : 𝐴)⋉ 𝐵 𝑎, when 𝔬𝔟 holds, (𝑎 : 𝐴)⋉ 𝐵 𝑎 is equal to the

type 𝐴, so we can directly use 𝑔 as an element of 𝐴 when 𝔬𝔟 holds. To access the

second component of a glued element conveniently, we define

unglue : (𝑔 : (𝑎 : 𝐴)⋉ 𝐵 𝑎) → 𝐵 (𝜆{_ : 𝔬𝔟}. 𝑔)
unglue 𝑔 = 𝜋2 (glue−1 𝑔)

171



We will also use a pattern-matching syntax to define functions out of glue types.

For example, the following definition

𝑓 : (𝑔 : (𝑎 : 𝐴)⋉ 𝐵 𝑎) → 𝐶 𝑔

𝑓 [𝔬𝔟 ↩→ 𝑎 | 𝑏] = 𝑒
(5.13)

is understood as the definition 𝑓 𝑔 = 𝑒[(𝜆{_ : 𝔬𝔟}. 𝑔)/𝑎, (unglue 𝑔)/𝑏].

5.3.3*23. We can not only glue but also tear types apart. Given any type 𝐴 : 𝑈 ,

we can tear it to an object-space fragment 𝐴◦ and a meta-space fragment 𝐴•:

𝐴◦ : #𝑈 𝐴• : ({𝔬𝔟} → 𝐴) → 𝑈•

𝐴◦ = 𝜂◦𝑈 𝐴 𝐴• = 𝜆𝑜. {𝐴 | 𝔬𝔟 ↩→ 𝑜}

where𝑈• := {𝐴 : 𝑈 |  -modal 𝐴} is the subuniverse of  -modal types. The type

{𝐴 | 𝔬𝔟 ↩→ 𝑎} is  -modal because it is a singleton under 𝔬𝔟 (Lemma 5.3.3*19).

If we glue these two fragments together, we get a type isomorphic to 𝐴:

fwd : 𝐴→ (𝑜 : 𝐴◦)⋉ 𝐴• 𝑜 bwd : ((𝑜 : 𝐴◦)⋉ 𝐴• 𝑜) → 𝐴

fwd 𝑎 = [𝔬𝔟 ↩→ 𝜆{_ : 𝔬𝔟}. 𝑎 | 𝑎] bwd [𝔬𝔟 ↩→ 𝑜 | 𝑐] = 𝑐

These two functions are indeed mutual inverses: for all 𝑎 : 𝐴,

bwd ( fwd a ) = bwd [𝔬𝔟 ↩→ 𝜆{_ : 𝔬𝔟}. 𝑎 | 𝑎] = 𝑎;

for all [𝔬𝔟 ↩→ 𝑜 | 𝑐], by definition fwd (bwd [𝔬𝔟 ↩→ 𝑜 | 𝑐]) = [𝔬𝔟 ↩→ 𝑐 | 𝑐], but 𝑐

has type 𝐴• := {𝑐 | 𝔬𝔟 ↩→ 𝑜}, so [𝔬𝔟 ↩→ 𝑐 | 𝑐] = [𝔬𝔟 ↩→ 𝑜 | 𝑐].

5.3.3*24. Since every type of TTstc is isomorphic to a glue type, we can charac-

terise function types of TTstc more extrinsically, which explicitise the idea that a

map between logical predicates sends (proofs for) related input to (proofs for)

related output. For all universe𝑈 , there is an isomorphism ⋉-fun-iso:(
(𝑎 : 𝐴)⋉ 𝑃 𝑎

)
→

(
(𝑏 : 𝐵)⋉𝑄 𝑏

)
�

( 𝑓 : 𝐴→ 𝐵)⋉
(
(𝑎 : {𝔬𝔟} → 𝐴) → 𝑃 𝑎 → 𝑄 ( 𝑓 𝑎)

)
for all 𝐴, 𝐵 : #𝑈 , 𝑃 : ({𝔬𝔟} → 𝐴) → 𝑈•, and 𝑄 : ({𝔬𝔟} → 𝐵) → 𝑈•, where𝑈• is

the subuniverse {𝐴 : 𝑈 |  -modal 𝐴} of  -modal types. The two directions are

fwd 𝑔 = [𝔬𝔟 ↩→ 𝜆𝑎. 𝑔 𝑎 | 𝜆𝑎 𝑝. unglue (𝑔 [𝔬𝔟 ↩→ 𝑎 | 𝑝])]

bwd [𝔬𝔟 ↩→ 𝑓 | ℎ] [𝔬𝔟 ↩→ 𝑎 | 𝑝] = [𝔬𝔟 ↩→ 𝑓 𝑎 | ℎ 𝑎 𝑝]

It is routine calculation to check that these two directions are mutual inverses.

5.3.3*25. We have finished the definition of the type theory TTstc, parameterised

172



by an LF-signature 𝑆. The type theory TTstc can be interpreted in the glued

presheaf topos𝒢, i.e. the Artin gluing of Pr (Jdg 𝑆) and Set along the global section

functor Pr (Jdg 𝑆) → Set. We will not belabour the details of the interpretation

here; we refer the reader to classic materials [Hofmann 1997; Jacobs 1999] on

interpreting dependent type theories in presheaf categories and also to Gratzer

[2023] for the semantics of the strict glue types.

In fact, the interpretation of TTstc can be done more generally. Let 𝒞 be a

small LCC category, 𝑀 : Jdg 𝑆→ 𝒞 be a model of 𝑆 in 𝒞, 𝒜 be a small category,

and 𝜌 : 𝒜→ 𝒞 be a functor. The Artin gluing of Pr𝒞 and Pr𝒜 along the functor

𝜌∗ : Pr𝒞→ Pr𝒜

𝜌∗(𝑋) = HomPr𝒞(𝜌−, 𝑋)

is also a presheaf topos and models TTstc. This more general setup allows us to

use TTstc to prove meta-theoretic properties pertaining to open terms of 𝑆, such

as normalisation of 𝑆 and definability of 𝒞-morphisms by 𝑆-deductions.

5.4 Canonicity of System Fω
ha

5.4*1. With the language of STC in our hand, we come back to the proof of

canonicity of Fω
ha

: every closed term of type bool is equal to either tt or ff (but not

both). The plan of the proof is to define in TTstc a model of Fω
ha

𝑀∗ : {JFω
haK𝑈2

| 𝔬𝔟 ↩→ 𝑀} (5.14)

such that (1) it restricts to the syntactic model 𝑀 : {𝔬𝔟} → JFω
haK𝑈0

from Ax-

iom 5.3.3*16, and that (2) canonicity is encoded in 𝑀∗.bool.
Since TTstc can be interpreted in the glued topos𝒢 of Pr (Jdg Fω

ha) and Set, the

definition of𝑀∗ gives a diagrammatic model of Fω
ha

in𝒢. Then by Theorem 4.4*10,

we have an LCC-functor 𝑀∗ : Jdg Fω
ha→ 𝒢. Since 𝑀∗ restricts to M under 𝔬𝔟, we

have a commutative triangle (up to some natural isomorphism):

Jdg Fω
ha

𝒢

Pr (Jdg Fω
ha)

𝑖∗
Y

𝑀∗

�
(5.15)

Canonicity then follows from this diagram and the definition of 𝑀∗.bool.

5.4*2 Remark. As a minor point, the reason why we have only an isomorphism

(5.15) rather than a strict equality – even though 𝑀∗ is strictly equal to M under

𝔬𝔟 – is that the interpretation of 𝑀 may not be exactly the Yoneda embedding.

Although it is possible to carefully set up the interpretation of TTstc to make it

true, there is no need to do so. Conversely, it is also possible to weaken our goal

173



(5.14) to be a model that is just isomorphic to M under 𝔬𝔟, but keeping track of

this isomorphism in the proof is a complication rather than a simplification.

5.4*3. We define the model 𝑀∗ of System Fω
ha

piece by piece in the following

sections. The reader may refer to Appendix A.1 for the full signature of Fω
ha

.

5.4*4 Notation. In the rest of this section, for every declaration dec in the

signature of Fω
ha

, we will write dec∗ for 𝑀∗.dec and just dec for 𝑀.dec. For example,

ki∗ : {𝑈2 | 𝔬𝔟 ↩→ ki} means 𝑀∗.ki : {𝑈2 | 𝔬𝔟 ↩→ ki}.

5.4.1 Kinding

5.4.1*1. The logical predicate model of the judgement of kinds (5.1) is

ki∗ : {𝑈2 | 𝔬𝔟 ↩→ ki}
ki∗ = (𝛼 : ki)⋉ {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} (5.16)

This uses the glue type (5.3.3*21) correctly because the generic model 𝑀 (5.3.3*16)

has type {𝔬𝔟} → JFω
haK𝑈0

, so the type of ki, or more explicitly 𝜆{𝑧 : 𝔬𝔟}. (𝑀 {𝑧}).ki,
is {𝔬𝔟} → 𝑈0, i.e. #𝑈0. The type {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} is  -modal because when

𝔬𝔟 holds, all elements of {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} are equal to el 𝛼, so the type

{𝑈1 | 𝔬𝔟 ↩→ el 𝛼} has exactly one element so isomorphic to the unit 1. By

Lemma 5.3.3*19, the type {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} is  -modal.

More intuitively, the definition (5.16) is the proof-relevant logical predicate for

kinds. A proof for a kind 𝛼 : ki satisfying the predicate is a type 𝐴 : 𝑈1 that

restrict to el 𝛼 in the object space. Such a type 𝐴 is a ‘candidate’ for the logical

predicate for the kind 𝛼. This is the same idea as reducibility candidates in Girard

[1986]’s proof of strong normalisation of System F.

5.4.1*2. In accordance, the corresponding 𝑀∗.el is as follows:

el∗ : {ki∗→ 𝑈1 | 𝔬𝔟 ↩→ el}
el∗ 𝑔 = unglue 𝑔

(5.17)

Let us more carefully examine how this definition type checks: the argument

𝑔 has type ki∗ = (𝛼 : ki) ⋉ {𝑈1 | 𝔬𝔟 ↩→ el 𝛼}. Therefore unglue 𝑔 has type

{𝑈1 | 𝔬𝔟 ↩→ el 𝑔} (note that under 𝔬𝔟, the type of 𝑔 is strictly equal to the type ki,
thus it makes sense to write el 𝑔 in a context where 𝔬𝔟 holds). Thus el∗ is indeed

a function ki∗→ 𝑈1 that strictly restricts to el under 𝔬𝔟.

5.4.1*3. For kind-level functions, we need to define

_⇒𝑘_
∗

: {ki∗→ ki∗→ ki∗ | 𝔬𝔟 ↩→ _⇒𝑘_}

174



Let us derive the definition step-by-step. Our goal is to fill the hole ?0 in

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗𝑘 [𝔬𝔟 ↩→ 𝛽 | 𝐵] = ?0 : {ki∗ | 𝔬𝔟 ↩→ 𝛼⇒𝑘 𝛽} ,

where the variables in context have the following types

𝛼, 𝛽 : {𝔬𝔟} → ki 𝐴 : {𝑈1 | 𝔬𝔟 ↩→ el 𝛼} 𝐵 : {𝑈1 | 𝔬𝔟 ↩→ el 𝛽}. (5.18)

Since ki∗ is a glue type (5.16), we can use the term former of glue types:

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗𝑘 [𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ ?1 | ?2 ]

Since ?0 must restrict to 𝛼⇒𝑘 𝛽 under 𝔬𝔟, ?1 has to be 𝛼⇒𝑘 𝛽:

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗𝑘 [𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼⇒𝑘 𝛽 | ?2 ]

The hole ?2 now has type {𝑈1 | 𝔬𝔟 ↩→ el (𝛼⇒𝑘 𝛽)}; in other words, ?2 is a type

in 𝑈1 such that it restricts to el (𝛼⇒𝑘 𝛽)when 𝔬𝔟 holds. We again use the glue

type to satisfy the restriction:

?2 := ( 𝑓 : el (𝛼⇒𝑘 𝛽))⋉ ?3 .

Conceptually, ?2 is the logical predicate for the function kind 𝛼⇒𝑘 𝛽. Readers

experienced with traditional logical relations might expect ?3 to be the propo-

sition asserting that 𝑓 sends input 𝑎 : el 𝛼 satisfying the logical predicate 𝐴 to

output 𝑓 𝑎 : el 𝛽 satisfying logical predicate 𝐵. However, here the predicates 𝐴

and 𝐵 are proof-relevant, so the correct definition of ?3 should be the type of

functions sending proofs for 𝑎 : el 𝛼 satisfying 𝐴 to proofs for 𝑓 𝑎 : el 𝛽 satisfying

𝐵. This can be concisely expressed in TTstc as

?3 := {𝐴→ 𝐵 | 𝔬𝔟 ↩→⇒k-iso.fwd 𝑓 }

where⇒k-iso is the isomorphism in Fω
ha

specifying function kinds:

⇒k-iso : el (𝛼⇒𝑘 𝛽) � (el 𝛼→ el 𝛽).

The function type 𝐴→ 𝐵 in TTstc is translated to exponentials in the glued topos

𝒢, which takes care of ‘sending related input to related output’ by construction.

For the record, we have completed our initial goal _⇒𝑘_
∗
:

_⇒𝑘_
∗

: {ki∗→ ki∗→ ki∗ | 𝔬𝔟 ↩→ _⇒𝑘_}
[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗

𝑘
[𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼⇒𝑘 𝛽 | 𝐹]

(5.19)

where 𝐹 is the logical predicate for the function kind 𝛼⇒𝑘 𝛽:

𝐹 := ( 𝑓 : el (𝛼⇒𝑘 𝛽))⋉ {𝐴→ 𝐵 | 𝔬𝔟 ↩→⇒k-iso.fwd 𝑓 }. (5.20)

175



5.4.1*4. We also need to exhibit the isomorphism⇒k-iso (5.2) for 𝑀∗:

⇒k-iso∗ : {𝛼∗, 𝛽∗ : ki∗} → {el∗ (𝛼∗⇒∗
𝑘
𝛽∗) � (el∗ 𝛼∗→ el∗ 𝛽∗) | 𝔬𝔟 ↩→⇒k-iso}.

Again by pattern matching the input 𝛼∗ and 𝛽∗ as [𝔬𝔟 ↩→ 𝛼 | 𝐴] and [𝔬𝔟 ↩→ 𝛽 | 𝐵]
as in (5.18), after expanding out the definition of el∗, what we need to construct is

an isomorphism 𝐹 � 𝐴→ 𝐵 that restricts to⇒k-iso under 𝔬𝔟, where 𝐹 is defined

as in (5.20). We let the two directions of this isomorphism be

fwd [𝔬𝔟 ↩→ 𝑓 | 𝑔] = 𝑔 bwd ℎ = [𝔬𝔟 ↩→⇒k-iso.bwd ℎ | ℎ]

where ℎ : 𝐴→ 𝐵, 𝑓 : {𝔬𝔟} → el (𝛼⇒𝑘 𝛽), and

𝑔 : {𝐴→ 𝐵 | 𝔬𝔟 ↩→⇒k-iso.fwd 𝑓 }.

These two functions are mutual inverses because

fwd (bwd ℎ) = fwd ([𝔬𝔟 ↩→⇒k-iso.bwd ℎ | ℎ]) = ℎ

and from the other direction,

bwd ( fwd [𝔬𝔟 ↩→ 𝑓 | 𝑔] ) = bwd 𝑔 = [𝔬𝔟 ↩→⇒k-iso.bwd 𝑔 | 𝑔];

now by the type of 𝑔, 𝑔 = (⇒k-iso.fwd 𝑓 ) under 𝔬𝔟, so the above further equals

[𝔬𝔟 ↩→⇒k-iso.bwd (⇒k-iso.fwd 𝑓 ) | 𝑔] = [𝔬𝔟 ↩→ 𝑓 | 𝑔].

5.4.1*5 (Realignment). The definition (5.20) of the logical predicate 𝐹 for function

kinds may look complicated at first, but it has a very intuitive explanation: 𝐹 is

basically the same as the type𝐴→ 𝐵, except that its component in the object space,

which is equal to el 𝛼→ el 𝛽, is swapped for el (𝛼⇒𝑘 𝛽) along the isomorphism

⇒k-iso, just like in the old days when a component of a personal computer can

be replaced by a compatible part. This will be a recurring construction in the

future, so for every universe𝑈 we define

realign : (𝐴 : 𝑈) → (𝐵 : {𝔬𝔟} → 𝑈) → ({𝔬𝔟} → 𝐵 � 𝐴) → {𝑈 | 𝔬𝔟 ↩→ 𝐵}
realign 𝐴 𝐵 𝜙 = (𝑏 : 𝐵)⋉ {𝐴 | 𝔬𝔟 ↩→ 𝜙.fwd 𝑏}

realign-iso : (𝐴 : 𝑈) → (𝐵 : {𝔬𝔟} → 𝑈) → (𝜙 : {𝔬𝔟} → 𝐵 � 𝐴)
→ {realign 𝐴 𝐵 𝜙 � 𝐴 | 𝔬𝔟 ↩→ 𝜙}

(realign-iso 𝐴 𝐵 𝜙).fwd [𝔬𝔟 ↩→ 𝑏 | 𝑎] = 𝑎

(realign-iso 𝐴 𝐵 𝜙).bwd 𝑎 = [𝔬𝔟 ↩→ 𝜙.bwd 𝑎 | 𝑎]

This construction is called realignment [Sterling 2021, §3.3] on the universe𝑈 .

In fact, realignment and strict glue types (Axiom 5.3.3*21) are inter-definable: if

we take realign and realign-iso as axioms, we can define strict glue types (𝑎 : 𝐴)⋉𝐵
by realigning the dependent pair type Σ(𝑎 : 𝐴). 𝐵.

176



Using realignment, the definition (5.19) can be succinctly expressed as

[𝔬𝔟 ↩→ 𝛼 | 𝐴] ⇒∗𝑘 [𝔬𝔟 ↩→ 𝛽 | 𝐵] = [𝔬𝔟 ↩→ 𝛼⇒𝑘 𝛽 | realign (𝐴→ 𝐵) ⇒k-iso]

and⇒k-iso∗ is simply realign-iso (𝐴→ 𝐵) ⇒k-iso.

5.4.2 Typing

5.4.2*1. We move on to the logical predicates for types and terms. Similar to

function kinds, ty∗ is ty glued together with some additional data:

ty∗ : {ki∗ | 𝔬𝔟 ↩→ ty}
ty∗ = [𝔬𝔟 ↩→ ty | ?0 : {𝑈1 | 𝔬𝔟 ↩→ el ty} ]

Since ?0 is a type in𝑈1 that is equal to el ty under 𝔬𝔟, it can be a glue type:

ty∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty)⋉ ?1 ] (5.21)

which means that an element of the kind ty in the logical predicate model 𝑀∗

is a syntactic type 𝐴 together with the data ?1 . It is natural to expect that the

data ?1 associated to a type 𝐴 is a (candidate of) logical predicate for the type 𝐴,

which is just any type that restricts to tm 𝐴 under 𝔬𝔟:

ty∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty)⋉ {𝑈0 | 𝔬𝔟 ↩→ tm 𝐴} ] (∗)

mimicking the kind structure (5.16) that we have seen earlier. However, this

definition will not work when we come to impredicative polymorphic types ∀𝛼.𝐴
later, because𝑈0 is not impredicative in the sense of being closed under Π-types

Π 𝐴 𝐵 for arbitrary types 𝐴 that are not necessarily in𝑈0.

5.4.2*2. In every topos, we do have an impredicative universe – the universe Ω of

propositions. Unfortunately, this universe is ‘too small’ for interpreting Fω
ha

-types.

If we have an element 𝐴∗ : {Ω | 𝔬𝔟 ↩→ tm 𝐴} for some object-space type 𝐴 : el ty,

when 𝔬𝔟 holds, 𝐴∗ is equal to tm 𝐴, but 𝐴∗ is in the universe Ω, so we have

{𝔬𝔟} → (𝑎, 𝑏 : tm 𝐴) → 𝑎 = 𝑏, which means that the object-space type 𝐴 has at

most one element, and this is clearly not true in general.

5.4.2*3. To find a way out, let us recall how traditional logical predicates/relations

of System F work in, for example, Girard [1989]’s normalisation proof. For every

type 𝐴 of System F, its logical predicate is a proof-irrelevant predicate on the

set of terms of 𝐴, or equivalently, a function from terms of 𝐴 to the set of

classical propositions. Moreover, the logical predicate 𝑃(𝑡) of the impredicative

polymorphic type ∀𝛼. 𝐴 is defined by ‘for all types 𝑋 and all candidate logical

predicates 𝑄 over terms of 𝑋, the term 𝑡 [𝑋] is related by the logical predicate

of 𝐴 with 𝛼 replaced by (𝑋, 𝑄)’. This works because classical propositions are

177



impredicative, so we can quantify over all 𝑋 and 𝑄.

5.4.2*4. Mimicking the traditional approach, we first define a universe of meta-
space propositions (which are just classical propositions {⊤,⊥} when TTstc is

interpreted in the Artin gluing of the syntactic category and the category of sets):

Ω• := {𝑝 : Ω |  -modal 𝑝}.

The universe Ω• inherits all the connectives that Ω has, including impredicative

quantification. For example, if 𝐴 is an arbitrary type and 𝐵 : 𝐴→ Ω•, the type

∀(𝑥 : 𝐴).𝐵 𝑥 is in Ω, and when 𝔬𝔟 holds, 𝐵 𝑥 � 1 because a type is  -modal iff it

is isomorphic to 1 under 𝔬𝔟 (Lemma 5.3.3*19), so ∀(𝑥 : 𝐴).𝐵 𝑥 = ∀(𝑥 : 𝐴).1 � 1.

5.4.2*5. Using Ω•, we fill out the hole ?1 in ty∗ (5.21) by

ty∗ : {ki∗ | 𝔬𝔟 ↩→ ty}
ty∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty)⋉ ({𝔬𝔟} → tm 𝐴) → Ω• ] (5.22)

That is to say, the candidate of a logical predicate for a type 𝐴 is given as a

meta-space predicate 𝑃 : ({𝔬𝔟} → tm 𝐴) → Ω•.

Then tm∗ glues terms tm 𝐴 of an object-space type 𝐴 with the predicate 𝑃:

tm∗ : {el∗ ty∗→ 𝑈0 | 𝔬𝔟 ↩→ tm}
tm∗ [𝔬𝔟 ↩→ 𝐴 | 𝑃] = (𝑡 : tm 𝐴)⋉ 𝑃 𝑡

(5.23)

That is to say, in the model 𝑀∗, a term of the semantic type [𝔬𝔟 ↩→ 𝐴 | 𝑃] : ty∗ is a

term 𝑡 of the syntactic type 𝐴 that satisfies the meta-space predicate 𝑃.

5.4.2*6 Notation. For every 𝐴∗ : el∗ ty∗, we define

pre 𝐴∗ : ({𝔬𝔟} → tm 𝐴) → Ω•

pre 𝐴∗ = unglue 𝐴∗

to remind us that ungluing a semantic type gives its underlying logical predicate.

Similarly, for every 𝑎∗ : tm∗ 𝐴∗, we define

prf 𝑎∗ : pre 𝐴∗ (𝜆{_ : 𝔬𝔟}. 𝑎∗)
prf 𝑎∗ = unglue 𝑎∗

to remind us that ungluing a semantic term is the proof that the underlying

syntactic term satisfies the corresponding logical predicate.

5.4.2*7 Remark. For every 𝐴∗ : el∗ ty∗, the type tm∗ 𝐴∗ satisfies the property that

for every 𝑎 : {𝔬𝔟} → 𝐴∗, there is at most one element 𝑎∗ : tm∗ 𝐴∗ that restricts

to 𝑎 under 𝔬𝔟, because the meta-space component of tm∗ 𝐴∗ is a (fiberwise)

meta-space proposition. Based on this observation, there is a more intrinsic

alternative definition of ty∗: for every universe 𝑈 of TTstc, we can define its

178



proof-irrelevant subuniverse𝑈 ir
to be

𝑈 ir
:= {𝐴 : 𝑈 | ∀(𝑎 : {𝔬𝔟} → 𝐴). (𝑥, 𝑦 : {𝐴 | 𝔬𝔟 ↩→ 𝑎}) → (𝑥 = 𝑦)}.

Then we can define ty∗ and tm∗ as simply

ty∗ = [𝔬𝔟 ↩→ ty | (𝐴 : el ty)⋉ {𝑈 ir

0
| 𝔬𝔟 ↩→ tm 𝐴} ]

tm∗ 𝐴∗ = unglue 𝐴∗

which directly mirrors the definition of ki∗ (5.16) and el∗ (5.17).

This alternative definition is in a suitable sense equivalent to the one above

(5.22, 5.23) because for every 𝐴 : {𝔬𝔟} → 𝑈 , we have an equivalence

{𝑈 ir

0
| 𝔬𝔟 ↩→ 𝐴} � (({𝔬𝔟} → 𝐴) → Ω•).

when treating them as categories (in fact, preorders) suitably. We choose to

work with ty∗ (5.22) in terms of Ω•-valued predicates because it is slightly more

convenient for logical predicates on computation judgements later.

5.4.3 Base Types

5.4.3*1. Since in the theory of Fω
ha

, the unit type is specified to be isomorphic

to meta-level unit type (5.3), we have no choice for the logical predicate for the

logical predicate of the unit type (of Fω
ha

) other than the always true predicate:

unit∗ : {el∗ ty∗ | 𝔬𝔟 ↩→ unit}
unit∗ = [𝔬𝔟 ↩→ unit | 𝜆(_ : {𝔬𝔟} → tm unit). 1]

Recall that tm∗ unit∗ computes to (𝑡 : tm unit)⋉ 1, we define

unit-iso∗ : tm∗ unit∗ � 1

unit-iso∗.fwd _ = ∗
unit-iso∗.bwd _ = [𝔬𝔟 ↩→ unit-iso.bwd | ∗]

This is an isomorphism because tm unit � 1 by unit-iso.

5.4.3*2. The other base type is the weak Boolean type bool. It is also the type that

canonicity is about, so its logical predicate is specific to canonicity:

bool∗ : {el∗ ty∗ | 𝔬𝔟 ↩→ bool}
bool∗ = [𝔬𝔟 ↩→ bool | 𝑃can]

𝑃can : ({𝔬𝔟} → tm bool) → Ω•

𝑃can 𝑏 =  ({𝔬𝔟} → (𝑏 = tt ∨ 𝑏 = ff ))

(5.24)

The closed modality  is needed here to erase the object-space component of the

proposition {𝔬𝔟} → (𝑏 = tt ∨ 𝑏 = ff ), turning it  -modal. We also need to define

179



the two terms of the weak Boolean types, i.e. showing that the two terms ff and

tt satisfy the logical predicate of bool:

tt∗ : {tm∗ bool∗ | 𝔬𝔟 ↩→ tt}
tt∗ = [𝔬𝔟 ↩→ tt | 𝜂• (inl refl)]

ff ∗ : {tm∗ bool∗ | 𝔬𝔟 ↩→ ff }
ff ∗ = [𝔬𝔟 ↩→ ff | 𝜂• (inr refl)]

In the construction of 𝑀∗, the only things that are specific to canonicity are 𝑃can,

tt∗ and ff ∗. They can be changed to anything else without affecting other parts of

𝑀∗ (although there seemingly are not many interesting choices of 𝑃can).

5.4.4 Function Types

5.4.4*1. A function 𝑡 : tm (A ⇒𝑡 B) is related by the logical predicate for the

function type A⇒𝑡 B if it maps all input 𝑎 satisfying the logical predicate for 𝐴

to output t a satisfying the logical predicate for 𝐵:

_⇒𝑡_
∗

: {el∗ ty∗→ el∗ ty∗→ el∗ ty∗ | 𝔬𝔟 ↩→ _⇒𝑡_}
[𝔬𝔟 ↩→ 𝐴 | 𝑃] ⇒∗𝑡 [𝔬𝔟 ↩→ 𝐵 | 𝑄] = [𝔬𝔟 ↩→ 𝐴⇒𝑡 𝐵 | 𝑃⇒𝑡 ]

𝑃⇒𝑡
:= 𝜆𝑡. ∀(𝑎 : {𝔬𝔟} → 𝐴). 𝑃 𝑎 → 𝑄 (𝜆{_ : 𝔬𝔟}. 𝑡 𝑎)

Note that in the expression t a, we have elided the isomorphism ⇒t-iso (5.3)

between tm (𝐴⇒𝑡 𝐵) and tm 𝐴→ tm 𝐵.

We also need to define an isomorphism, for all 𝐴∗, 𝐵∗ : el∗ ty∗,

⇒t-iso∗ : tm∗ (𝐴∗⇒∗𝑡 𝐵∗) � (tm∗ 𝐴∗) → (tm∗ 𝐵∗).

Letting 𝐴∗ = [𝔬𝔟 ↩→ 𝐴 | 𝑃] and 𝐵∗ = [𝔬𝔟 ↩→ 𝐵 | 𝑄], we compute as follows:

tm∗ ([𝔬𝔟 ↩→ 𝐴 | 𝑃] ⇒∗𝑡 [𝔬𝔟 ↩→ 𝐵 | 𝑄])
= (𝑡 : tm (𝐴⇒𝑡 𝐵))⋉ (𝑎 : {𝔬𝔟} → tm 𝐴) → 𝑃 𝑎 → 𝑄 (𝑡 𝑎)
� {by⇒t-iso (5.3)}
(𝑡 : tm 𝐴→ tm 𝐵)⋉ (𝑎 : {𝔬𝔟} → tm 𝐴) → 𝑃 𝑎 → 𝑄 (𝑡 𝑎)
� {by ⋉-fun-iso from 5.3.3*24}(
(𝑎 : tm 𝐴)⋉ 𝑃 𝑎

)
→

(
(𝑏 : tm 𝐵)⋉𝑄 𝑏

)
= (tm∗ [𝔬𝔟 ↩→ 𝐴 | 𝑃]) → (tm∗ [𝔬𝔟 ↩→ 𝐵 | 𝑄])

5.4.4*2. The logical predicate for polymorphic functions is

All∗ : {(𝑘∗ : ki∗) → (el∗ 𝑘∗→ el∗ ty∗) → el∗ ty∗ | 𝔬𝔟 ↩→ All}
All∗ 𝑘∗ 𝐹 = [𝔬𝔟 ↩→ All 𝑘∗ 𝐹 | 𝜆𝑡. ∀(𝛼∗ : el∗ 𝑘∗). pre (𝐹 𝛼∗) (𝜆{_ : 𝔬𝔟}. (𝑡 𝛼∗))]

Let us check the type of this definition step-by-step. The object-space component

180



All 𝑘∗ 𝐹 is well typed because under 𝔬𝔟, ki∗ equals ki, so 𝑘∗ : ki under 𝔬𝔟, and

similarly 𝐹 : el k→ el ty under 𝔬𝔟, thus All 𝑘∗ 𝐹 : el ty as expected.

The meta-space component 𝜆𝑡. · · · should be an Ω•-valued predicate on

𝑡 : {𝔬𝔟} → tm (All 𝑘∗ 𝐹). We have 𝐹 𝛼∗ : el∗ ty∗; this type computes to

(𝐴 : el ty)⋉ ({𝔬𝔟} → tm 𝐴) → Ω•

by definitions (5.17, 5.22). Thus pre (𝐹 𝛼∗) has type ({𝔬𝔟} → tm (𝐹 𝛼∗)) → Ω•.

On the other hand, 𝑡 has type {𝔬𝔟} → tm (All 𝑘∗ 𝐹), which is isomorphic to

{𝔬𝔟} → (𝛼∗ : el 𝑘∗) → tm (𝐹 𝛼∗) via All-iso (5.3), which we elided in the definition

above. The implicit function 𝜆{_ : 𝔬𝔟}. (𝑡 𝛼∗) then has type {𝔬𝔟} → tm (𝐹 𝛼∗), and

therefore it can be supplied as an argument to pre (𝐹 𝛼∗), yielding a proposition

in Ω•. The quantification ∀(𝛼∗ : el∗ 𝑘∗) is allowed because Ω• is closed under

impredicative universal quantification.

We also need to define an isomorphism for 𝑘∗ : ki∗ and 𝐹 : el∗ 𝑘∗→ el∗ ty∗

All-iso∗ : tm∗ (All∗ 𝑘∗ 𝐹) � ((𝛼∗ : el∗ 𝑘∗) → tm∗ (𝐹 𝛼∗)).

This is very similar to⇒t-iso∗ in 5.4.4*1, and we give a direct definition here:

fwd [𝔬𝔟 ↩→ 𝑡 | 𝑝] = 𝜆𝛼∗. [𝔬𝔟 ↩→ 𝑝 𝛼∗ | All-iso.fwd 𝑡 𝛼∗]

bwd ℎ = [𝔬𝔟 ↩→ All-iso.bwd ℎ | 𝜆𝛼∗. prf (ℎ 𝛼∗)]

5.4.4*3. By this point we have completed the definition of the logical predicates

for the Fω-fragment of Fω
ha

, so the derived concepts in Section 5.1.2 such as raw

functors can be interpreted in 𝑀∗ as well. For example, we have

tyco∗ : ki∗

tyco∗ = ty∗⇒∗
𝑘

ty∗

fmap-ty∗ : (F : el∗ tyco∗) → el∗ ty∗

fmap-ty∗ F = All∗ ty∗ (𝜆𝛼. All∗ ty∗ (𝜆𝛽. (𝛼⇒∗𝑡 𝛽) ⇒∗𝑡 (F 𝛼⇒∗𝑡 F 𝛽)))
record RawFunctor∗ :𝑈1 where

F0 : el∗ tyco∗

F1 : tm∗ fmap-ty∗ F0

which is simply the same as the definition of RawFunctor in Section 5.1.2 except

that all the judgements of Fω such as ki and ty are replaced by their corresponding

interpretation in 𝑀∗. Interpretations of other derived concepts in Section 5.1.2

such as RawMonad∗ and RawHFunctor∗ can be obtained in this way as well.

5.4.5 Computation Judgements

5.4.5*1. What remains is the logical predicates for computation judgements of

Fω
ha

. Recall that given H : RawHFunctor and A : el ty, the judgements co H A in

181



Fω
ha

roughly axiomatise a monad equipped with H-operations – more precisely,

co H A axiomatises the Kleisli category of this monad since co H A is not an

Fω
ha

-type but a separate judgement.

5.4.5*2 (First attempt). Since our logical predicates live in an impredicative

universe, a natural idea is to define the logical predicate for co by an impredicative

encoding of the initial monad equipped with H-operations:

co∗ : {HFunctor∗→ el∗ ty∗→ 𝑈0 | 𝔬𝔟 ↩→ co}
co∗ 𝐻∗ 𝐴∗ = (𝑐 : co 𝐻∗ 𝐴∗)⋉ 𝑃co 𝑐

𝑃co : {𝐻∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻∗ 𝐴∗) → Ω•

𝑃co 𝑐 = ∀(𝑚 : MonadAlg∗ 𝐻∗). pre (𝑚.𝑀0 𝐴
∗) (eval 𝑚 𝐴∗ 𝑐)

(5.25)

The function 𝑃co type-checks as follows: the type of 𝑚.𝑀0 is el∗ tyco∗, and

el∗ tyco∗

= {by definition}
el∗ (ty∗⇒∗𝑘 ty∗)
� {by the axiom (5.2)}

el∗ ty∗→ el∗ ty∗

Therefore the type of 𝑚.𝑀0 𝐴
∗

is el∗ ty∗, which is the glue type

(𝐴 : el ty)⋉ ({𝔬𝔟} → tm 𝐴) → Ω•

by (5.17, 5.22). Then pre (𝑚.𝑀0 𝐴
∗) has type ({𝔬𝔟} → tm (𝑚.𝑀0 𝐴

∗)) → Ω•, i.e. it

is a meta-space predicate on terms of type {𝔬𝔟} → 𝑚.𝑀0 𝐴
∗
. The term eval 𝑚 𝐴∗ 𝑐,

which in fact is the implicit function 𝜆{_ : 𝔬𝔟}. eval 𝑚 𝐴∗ 𝑐, has precisely the type

{𝔬𝔟} → tm (𝑚.𝑀0 𝐴
∗). Finally, since Ω• is closed under universal quantification

∀(𝑚 : MonadAlg∗ 𝐻∗), 𝑃co 𝑐 has type Ω•, i.e. {Ω | 𝔬𝔟 ↩→ 1}.

5.4.5*3 Remark. Usually, the impredicative encoding of a datatype needs to be

‘refined’ by some additional equalities to have the correct universal property

Awodey et al. [2018]. For example, the impredicative encoding of the coproduct

type 𝐴 + 𝐵 in an impredicative universe𝑈 is

𝐴 + 𝐵 =
∑(𝛼 : (𝑋 : 𝑈) → (𝐴→ 𝑋) → (𝐵→ 𝑋) → 𝑋) 𝑁 𝛼

𝑁 𝛼 = (𝑋,𝑌 : 𝑈) → ( 𝑓 : 𝑋 → 𝑌) → (ℎ : 𝐴→ 𝑋) → (𝑘 : 𝐵→ 𝑋)
→ 𝑓 (𝛼 𝑋 ℎ 𝑘) = 𝛼 𝑌 ( 𝑓 ◦ ℎ)( 𝑓 ◦ 𝑘)

Without imposing 𝑁 on 𝛼, the impredicative encoding would not satisfy the

𝜂-rule of the coproduct type. However, our logical predicates land in a universe

propositions, where two elements of the same type are automatically equal, so

this refinement is unnecessary.

182



5.4.5*4. However, as we commented in 5.1.4*2, evaluating the sequential com-

position let-in c f is not compositional because of the discrepancy between

computations co and raw monads: co satisfies the monadic laws while raw

monads do not. For this reason, with the above definition of 𝑃co, we will have

problems with showing the term constructor let-in satisfies its logical predicate:

let-in∗ : {{𝐻∗, 𝐴∗, 𝐵∗} → co∗ 𝐻∗ 𝐴∗→ (tm∗ 𝐴∗→ co∗ 𝐻∗ 𝐵∗)
→ co∗ 𝐻∗ 𝐵∗ | 𝔬𝔟 ↩→ let-in}

let-in∗ 𝑐 𝑓 = [𝔬𝔟 ↩→ let-in 𝑐 𝑓 | 𝜆𝑚. ?1 ]

where the hole ?1 has type 𝑃co (let-in 𝑐 𝑓 ), that is, by the definition of 𝑃co above,

∀(𝑚 : MonadAlg∗ 𝐻∗). pre (𝑚.M0 𝐵
∗) (eval 𝑚 𝐵∗ (let-in 𝑐 𝑓 )).

Since we do not have the equation eval-let in 5.1.4*2 to simplify the computation

eval 𝑚 𝐵∗ (let-in 𝑐 𝑓 ), we have no way to fill in the hole ?1 using 𝑐 and 𝑓 .

5.4.5*5. To fix this problem, we strengthen 𝑃co 𝑐 above to take into account all

possible continuations after the computation c, which is essentially the idea of

⊤⊤-lifting [Katsumata 2005; Katsumata et al. 2018; Lindley and Stark 2005]. We

first define a type of continuations accepting 𝐴∗-values:

record Con (𝐻∗ : RawHFunctor∗) (𝐴∗ : el∗ ty∗) : 𝑈1 where

𝑚∗ : MonadAlg∗ 𝐻∗

𝑅∗ : el∗ ty∗

𝑘 : {𝔬𝔟} → 𝐴∗→ co 𝐻∗ 𝑅∗

𝑘∗ : {tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝑅
∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)}

and the strengthened definition of 𝑃co is

𝑃co : {𝐻∗, 𝐴∗} → ({𝔬𝔟} → co 𝐻∗ 𝐴∗) → Ω•

𝑃co 𝑐 = ∀(𝐾 : Con 𝐻∗ 𝐴∗). pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}.
eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in 𝑐 𝐾.k))

(5.26)

Compared to the earlier version of 𝑃co (5.25), the new version asserts that the

computation 𝑐 extended with an arbitrary ‘good’ continuation 𝑘 and evaluated

into a raw monad results in a value satisfying its logical predicate. Here a

continuation 𝑘 is ‘good’ if 𝑘 followed by eval sends input satisfying its logical

predicate to output satisfying its logical predicate, which is succinctly expressed

by a function 𝑘∗ : tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝑅
∗), c.f. 5.3.3*24.

5.4.5*6 Remark. The new definition of 𝑃co is similar to the model of computations

in the realizability model (5.2*9), except that here we only consider Kleisli

morphisms 𝑘∗ : 𝐴∗→ 𝑚∗.𝑀0 𝑅
∗

whose object-space component factors through

some 𝑘 : {𝔬𝔟} → 𝐴∗ → co 𝐻∗ 𝑅∗. The author currently does not know if there

183



could be a conceptual explanation of such a modified codensity transformation.

5.4.5*7. The logical predicate for thunks is the same as that for computations,

modulo the isomorphism th-iso : {H,A} → tm (th H A) � co H A from 5.1.3*2:

th∗ : {RawHFunctor∗→ el∗ ty∗→ el∗ ty∗ | 𝔬𝔟 ↩→ T}
th∗ 𝐻∗ 𝐴∗ = [𝔬𝔟 ↩→ T 𝐻∗ 𝐴 | 𝜆𝑡. 𝑃co (𝜆{_ : 𝔬𝔟}. ⇑ 𝑡)]

where ⇑ is the forward direction of the isomorphism th-iso. The isomorphism

th-iso∗ : tm∗ (T 𝐻∗ 𝐴∗) � co∗ 𝐻∗ 𝐴∗ is also straightforward:

fwd [𝔬𝔟 ↩→ 𝑡 | 𝑝] = [𝔬𝔟 ↩→ ⇑ 𝑡 | 𝑝], bwd [𝔬𝔟 ↩→ 𝑐 | 𝑝] = [𝔬𝔟 ↩→ ⇓ 𝑐 | 𝑝].

5.4.6 Computation Terms

5.4.6*1. Finally, we need to prove that the constructors val, let-in, op and the

eliminator eval of computations satisfy the logical predicates. We start with val:

val∗ : {{𝐻∗, 𝐴∗} → tm∗ 𝐴∗→ co∗ 𝐻∗ 𝐴∗ | 𝔬𝔟 ↩→ val}
val∗ {𝐻∗} {𝐴∗} 𝑎 = [𝔬𝔟 ↩→ val 𝑎 | ?1 ]

where the hole ?1 has type 𝑃co (val 𝑎), that is, by definition (5.26),

∀(𝐾 : Con 𝐻∗ 𝐴∗). pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗)
(𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (val 𝑎) 𝐾.k))

= {by axiom let-val (5.4)}
∀(𝐾 : Con 𝐻∗ 𝐴∗). pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗)
(𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (𝐾.k 𝑎))

We put ?1 = 𝜆𝐾. prf (𝐾.𝑘∗ 𝑎), which is well typed because 𝐾.𝑘∗ has type

𝑘∗ : {tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝑅
∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)} (5.27)

so 𝐾.𝑘∗ 𝑎 has type tm∗ (𝐾.𝑚∗.𝑀0 𝐾.𝑅
∗), and prf (𝐾.𝑘∗ 𝑎) has type

pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅
∗) (𝜆{_ : 𝔬𝔟}. (𝐾.𝑘∗ 𝑎))

= {by the restriction of 𝑘∗ under 𝔬𝔟 in (5.27)}
pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅

∗) (𝜆{_ : 𝔬𝔟}. 𝜆𝑎. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (𝐾.𝑘 𝑎))

which is the desired type of ?1 .

5.4.6*2. The case for let-in is similar:

let-in∗ : {{𝐻∗, 𝐴∗, 𝐵∗} → co∗ 𝐻∗ 𝐴∗→ (co∗ 𝐻∗ 𝐴∗→ co∗ 𝐻∗ 𝐵∗)
→ co∗ 𝐻∗ 𝐵 | 𝔬𝔟 ↩→ let-in}

let-in∗ 𝑐 𝑓 = [𝔬𝔟 ↩→ let-in 𝑐 𝑓 | 𝜆(𝐾 : Con 𝐻∗ 𝐴∗). unglue 𝑐 𝐾′]

184



where each field of 𝐾′ : Con 𝐻∗ 𝐵∗ is defined as follows:

𝐾′.𝑚∗ = 𝐾.𝑚∗

𝐾′.𝑅∗ = 𝐾.𝑅∗

𝐾′.𝑘 = 𝜆{_ : 𝔬𝔟} 𝑎. let-in ( 𝑓 𝑎) 𝐾.𝑘
𝐾′.𝑘∗ = 𝜆𝑎. [𝔬𝔟 ↩→ eval 𝐾′.𝑚∗ 𝐾′.𝑅∗ (let-in ( 𝑓 𝑎) 𝐾.k) | unglue ( 𝑓 𝑎) 𝐾]

The last line type checks because 𝑓 𝑎 : co∗ 𝐻∗ 𝐵∗, so unglue ( 𝑓 𝑎) : 𝑃co ( 𝑓 𝑎), so by

definition (5.26), the type of unglue ( 𝑓 𝑎) 𝐾 is

pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in ( 𝑓 𝑎) 𝐾.k))

which is indeed the type of proofs that the syntactic component of 𝐾′.𝑘∗ satisfies

the logical predicate of the type 𝑘.𝑚∗.𝑀0 𝐾.𝑅
∗
.

5.4.6*3. The case for op is slightly more involved, so let us first show that eval
satisfies the corresponding logical predicate:

eval∗ : {{𝐻∗} → (𝑚∗ : MonadAlg∗ 𝐻∗) → (𝐴∗ : _)
→ co∗ 𝐻∗ 𝐴∗→ tm∗ (𝑚∗.𝑀0 𝐴

∗) | 𝔬𝔟 ↩→ eval}
eval∗ 𝑚∗ 𝐴∗ 𝑐∗ = [𝔬𝔟 ↩→ eval 𝑚∗ 𝐴∗ 𝑐 | unglue 𝑐∗ 𝐾]

where the continuation 𝐾 : Con 𝐻∗ 𝐴∗ is defined by

𝐾.𝑚∗ = 𝑚∗ 𝐾.𝑅∗ = 𝐴∗

𝐾.𝑘 = 𝜆{_ : 𝔬𝔟}. val 𝐾.𝑘∗ = 𝑚∗.ret

The definition of 𝐾.𝑘∗ is well typed because the expected type of 𝐾.𝑘∗ is

{tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝑅
∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (𝑘 𝑎)}

= {by the definition of 𝐾.𝑘 above}
{tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝐴

∗) | 𝔬𝔟 ↩→ 𝜆𝑎. eval 𝑚∗ 𝑅∗ (val 𝑎)}
= {by axiom eval-val (5.6)}
{tm∗ 𝐴∗→ tm∗ (𝑚∗.M0 𝐴

∗) | 𝔬𝔟 ↩→ 𝜆𝑎. 𝑚∗.ret 𝑅∗ 𝑎}

5.4.6*4. Coming back to op, we start with some obvious steps and a hole:

op∗ : {{𝐻∗, 𝐴∗, 𝐵∗} → tm∗ (𝐻∗.𝐻0 (T∗ 𝐻∗) 𝐴∗)
→ (tm∗ 𝐴∗→ co∗ 𝐻∗ 𝐵∗) → co∗ 𝐻∗ 𝐵∗ | 𝔬𝔟 ↩→ op}

op∗ 𝑜 𝑘 = [𝔬𝔟 ↩→ op 𝑜 𝑘 | 𝜆(𝐾 : Con 𝐻∗ 𝐵∗). ?1 ]

185



where the hole ?1 has type

pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (let-in (op 𝑜 𝑘) 𝐾.𝑘))
= {by axiom let-op (5.5)}

pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. eval 𝐾.𝑚∗ 𝐾.𝑅∗ (op 𝑜 (𝜆𝑎. let-in (𝑘 𝑎) 𝐾.𝑘)))
= {by axiom eval-op (5.7)}

pre (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗) (𝜆{_ : 𝔬𝔟}. 𝐾.𝑚∗.bind 𝑜′ (𝜆𝑎. eval _ _ (let-in (𝑘 𝑎) 𝐾.𝑘)))

where 𝑜′ : tm∗ (𝐾.𝑚∗.𝑀0 𝐴
∗) is the result of evaluating the operand 𝑜 inside the

higher-order functor 𝐻 and then applying the operation on the monad 𝐾.𝑚∗:

𝑜′ := 𝐾.𝑚∗.malg _ (𝐻∗.hmap _ _ 𝑒 _ 𝑜),

and 𝑒 : tm∗ (trans∗ (𝑀∗.T 𝐻∗) 𝐾.𝑚∗.𝑀0) is eval∗ specialised to 𝐾.𝑚∗:

𝑒 𝐴∗ 𝑐 = eval∗ 𝐾.𝑚∗ 𝐴∗ (⇑ 𝑐).

Now coming back to the hole ?1 , using 𝑘 we can define

𝑓 : (𝑎 : tm∗ 𝐴∗) → tm∗ (𝐾.𝑚∗.𝑀0 𝐾.𝑅∗)
𝑓 = [𝔬𝔟 ↩→ eval _ _ (let-in (𝑘 𝑎) 𝐾.𝑘) | unglue (𝑘 𝑎) 𝐾]

and finally we can put ?1 = prf (𝐾.𝑚∗.bind 𝑜′ 𝑓 ).

5.4.6*5. The last bit of our construction of the glued model 𝑀∗ is showing that it

satisfies the equational axioms of Fω
ha

pertaining to computations, but this is easy

because our interpretation of computations and terms in 𝑀∗ is proof irrelevant.
For every universe𝑈 of TTstc, there is a subuniverse

𝑈 ir = {𝐴 : 𝑈 | ∀(𝑎 : {𝔬𝔟} → 𝐴). (𝑥, 𝑦 : {𝐴 | 𝔬𝔟 ↩→ 𝑎}) → 𝑥 = 𝑦}

which classifies proof-irrelevant logical predicates in𝑈 , in the sense that partial

elements 𝑎 : {𝔬𝔟} → 𝐴 of a type 𝐴 : 𝑈 ir
have unique total extensions (if exist).

5.4.6*6 Lemma. For all 𝐴∗ : el∗ ty∗ and 𝐻∗ : RawHFunctor∗, the types

tm∗ 𝐴∗ : 𝑈0 and co∗ 𝐻∗ 𝐴∗ : 𝑈0

are classified by the subuniverse𝑈 ir

0
.

Proof. Let 𝐴∗ be [𝔬𝔟 ↩→ 𝐴 | 𝑃] where 𝐴 : {𝔬𝔟} → el ty is an object-space type and

𝑃 : ({𝔬𝔟} → tm 𝐴) → Ω• is a meta-space predicate. By definition (5.23), tm∗ 𝐴∗

is the glue type (𝑎 : tm 𝐴) ⋉ 𝑃 𝑎. Thus a partial element 𝑎 of tm∗ 𝐴∗ is exactly

an element 𝑎 : {𝔬𝔟} → tm 𝐴. Given two elements 𝑥, 𝑦 : {tm∗ 𝐴∗ | 𝔬𝔟 ↩→ 𝑎},
unglue 𝑥 = unglue 𝑦 since they are elements of the propositional type 𝑃 𝑎, so

𝑥 = [𝔬𝔟 ↩→ 𝑎 | unglue 𝑥] = [𝔬𝔟 ↩→ 𝑎 | unglue 𝑦] = 𝑦. The case for co∗ is similar. □

186



5.4.6*7 Corollary. The glued model 𝑀∗ satisfies the equational axioms val-let,
let-val, let-assoc (5.4), let-op (5.5), eval-val (5.6), eval-op (5.7) of Fω

ha
.

Proof. Taking val-let for example, we need to show

val-let∗ : {𝐻∗, 𝐴∗, 𝐵∗} → (𝑎 : tm∗ 𝐴∗) → (𝑘 : tm∗ 𝐴→ co∗ 𝐻∗ 𝐵∗)
→ let-in∗ (val∗ 𝐻∗ 𝑎) 𝑘 = 𝑘 𝑎

Since the type co∗ 𝐻∗ 𝐵∗ is in the universe 𝑈 ir

0
, it is sufficient to show that

let-in∗ (val∗ 𝐻∗ 𝑎) 𝑘 and 𝑘 𝑎 are equal under 𝔬𝔟,

let-in∗ (val∗ 𝐻∗ 𝑎) 𝑘
= {under 𝔬𝔟, let-in∗ = let-in and val∗ = val}

let-in (val 𝐻∗ 𝑎) 𝑘
= {𝑀 satisfies val-let}
𝑘 𝑎

The case for other equational axioms are similar. □

5.4.6*8. We have completed the construction of 𝑀∗, which may be called the

synthetic fundamental lemma of logical predicates for System Fω
ha

.

5.4.6*9 Lemma (Fundamental). In the language TTstc for System Fω
ha

, given any

𝑃 : ({𝔬𝔟} → 𝑀.tm 𝑀.bool) → Ω• with 𝑡 : 𝑃 𝑀.tt and 𝑓 : 𝑃 𝑀.ff , there is an

𝑀∗ : {JFω
haK𝑈2

| 𝔬𝔟 ↩→ 𝑀}

such that 𝑀∗.tm 𝑀∗.bool = (𝑏 : 𝑀.tm 𝑀.bool)⋉ 𝑃 𝑏.

5.4.7 The External Canonicity Result

5.4.7*1. We have defined a glued model 𝑀∗ internal to the language TTstc, the

last part of our canonicity proof is to externalise the model 𝑀∗ in the ambient

meta theory, obtaining what we want to prove.

5.4.7*2. As we remarked in 5.3.3*25, the type theory TTstc can be interpreted

in the glued topos 𝒢 of Pr (Jdg Fω
ha) and Set along the global section functor Γ.

Thus 𝑀∗ gives rise to a diagrammatic model of Fω
ha

in 𝒢, which further induces

an LCC-functor 𝑀∗ : Jdg→ 𝒢 by Theorem 4.4*10. On the other hand, the model

𝑀 corresponds to the Yoneda embedding 𝑌 : Jdg Fω
ha→ Pr Jdg Fω

ha � 𝐺/𝔬𝔟. The

fact that 𝑀∗ restricts to 𝑀 under 𝔬𝔟 in the language TTstc means externally that

187



the following diagram commutes up to some unique natural isomorphism:

Jdg Fω
ha

𝒢

Pr (Jdg Fω
ha) 𝒢/𝔬𝔟

𝑖∗
Y

𝑀∗

�

�

(5.28)

where 𝑖∗ is the inverse image of the geometric morphism 𝑖 : Pr (Jdg Fω
ha) → 𝒢:

𝑖∗⟨𝐴, 𝑆, 𝑓 : 𝑆→ Γ𝐴⟩ = 𝐴 and 𝑖∗𝐴 = ⟨𝐴, Γ𝐴, id : Γ𝐴→ Γ𝐴⟩.

5.4.7*3 Theorem (Canonicity). For every closed Boolean term 𝑏 of System Fω
ha, i.e. a

morphism 𝑏 : 1 → tm bool in the category Jdg Fω
ha, either 𝑏 = tt or 𝑏 = ff holds (but

not both) in the equational theory of Fω
ha.

Proof. Instantiating Lemma 5.4.6*9 with 𝑃can as in (5.24), let 𝐵 := 𝑖∗(𝑀∗(tm bool))
and let 𝜙bool : 𝐵 � 𝑌(tm bool) be the component of the natural isomorphism (5.28)

at tm bool ∈ Jdg Fω
ha

. The functor 𝑀∗ maps the object tm bool to an object 𝐵∗ ∈ 𝒢:

𝐵∗ := ⟨𝐵, {𝑡 : 1→ 𝐵 | (𝜙bool · 𝑡 = Y tt) ∨ (𝜙bool · 𝑡 = Y ff )}, 𝑗⟩

where 𝑗 is the inclusion function into Γ𝐵 := {𝑡 : 1 → 𝐵}. The morphism

𝑏 : 1→ tm bool is then sent by 𝑀∗ to a morphism 1→ 𝐵∗ in 𝒢:

{∗} {𝑡 : 1→ 𝐵 | (𝜙bool · 𝑡 = Y tt) ∨ (𝜙bool · 𝑡 = Y ff )}

{∗} {𝑡 : 1→ 𝐵}
!

𝜆∗. 𝜙−1

bool·Y𝑏

𝑝

𝑗

The commutativity of this diagram entails Y𝑏 = Ytt or Y𝑏 = Yff , so 𝑏 = tt or

𝑏 = ff since Yoneda embedding is faithful. Moreover, 𝑏 = tt and 𝑏 = ff cannot

be true at the same time because tt and ff have different interpretations in the

realizability model in Section 5.2. □

5.4.7*4 Corollary. The realizability in Section 5.2 is adequate in the sense that for

for every closed Boolean term 𝑏, if its realizability interpretation is true (resp.

false), then 𝑏 equals tt (resp. ff ) in Fω
ha

. This is because 𝑏 is either equal to tt or ff
in Fω

ha
by canonicity, and if its realizability interpretation is true, then b must be

equal to tt (otherwise its realizability interpretation would be false).

5.5 Parametricity and Free Theorems

5.5*1. An appealing aspect of the synthetic fundamental lemma (5.4.6*9) is that

it is proved solely in the language TTstc, thus applicable to any category 𝒢 that

188



models TTstc. As an instance, we can deduce the abstraction theorem [Reynolds

1983], also known as parametricity [Wadler 1989], for System Fω
ha

.

5.5*2. Let 𝑀 : Jdg Fω
ha → 𝒞 be any model of Fω

ha
in a small LCCC 𝒞. As

commented in 5.3.3*25, we can interpret TTstc in the Artin gluing 𝒢𝒞 of Pr𝒞

and Set along the global section functor HomPr𝒞(1,−) : Pr𝒞 → Set, with the

object-space model 𝑀 of TTstc interpreted as the given functor 𝑀 : Jdg Fω
ha→ 𝒞

composed with Yoneda embedding Y : 𝒞→ Pr𝒞.

We have a functor𝑀∗ : Jdg Fω
ha→ 𝒢𝒞 by instantiating the fundamental lemma

(5.4.6*9) with 𝑃can as in (5.24). For every A : 1 → el ty ∈ Jdg Fω
ha

, we let 𝑃𝐴 be

𝑀∗ (tm A) ∈ 𝒢 (5.28) viewed as a predicate (in the ambient meta-theory) on

the set 𝒞(1, 𝑀 (tm A)). Similarly, for every K : 1 → ki ∈ Jdg Fω
ha

, we let 𝑃𝐾 be

𝑀∗ (el K) ∈ 𝒢 viewed as a family of sets indexed by the set 𝒞(1, 𝑀 (el K)).

5.5*3 Theorem (Unary Parametricity). Let 𝑀 and 𝑃 be as in 5.5∗2. For every
A : 1 → el ty and t : 1 → tm A in Jdg Fω

ha, 𝑃𝐴(𝑀 𝑡) holds. Moreover, for every
K : 1→ ki and t : 1→ el K, there is an element 𝑡∗ ∈ 𝑃𝐾(𝑀 𝑡).

Proof. Given 𝑡 : 1→ tm A ∈ Jdg Fω
ha

, it is mapped by the logical predicate model

𝑀∗ to a morphism 1→ 𝑀∗(tm A) in𝒢𝒞, which amounts to a commutative square:

{∗} {𝑡 : 1→ 𝑀(tm A) | 𝑃𝐴(𝑡)}

{∗} HomPr𝒞(1, 𝑀(tm A))
!

𝜆∗. 𝑀𝑡

𝑡∗

⊆

The commutativity of the square means that 𝑀𝑡 satisfies 𝑃𝐴.

The statement for 𝑡 : 1 → el K is essentially the same, with the element

𝑡∗ ∈ 𝑃𝐾(𝑡) given by the top arrow of the diagram. □

5.5*4 Example. Parametricity are useful for deriving ‘free theorems’ of pro-

gramming languages [Wadler 1989]. As a ‘hello world’-application, we can use

parametricity to deduce that for every closed Fω
ha

term 𝑡 : tm (All ty (𝜆𝛼. 𝛼⇒𝑡 𝛼)),
𝑡 applied to every closed type 𝐴 and closed term 𝑎 : tm A is equal 𝑎.

First of all, internal to TTstc, we prove the following statement:

lem : (𝑡∗ : tm∗ (All∗ ty∗ (𝜆𝛼. 𝛼⇒∗𝑡 𝛼)))
→ (𝐴 : {𝔬𝔟} → el ty) → (𝑎 : {𝔬𝔟} → tm 𝐴)
→  ({𝔬𝔟} → 𝑡∗ 𝐴 𝑎 = 𝑎)

lem 𝑡∗ 𝐴 𝑎 = ?0

Recall that prf 𝑡∗ is the proof that the object-space component of 𝑡∗ satisfies its

logical predicate. Expanding definitions (5.23, 5.4.2*6, 5.4.4*2), we have

prf 𝑡∗ : ∀(𝛼∗ : el∗ ty∗). pre (𝛼∗⇒∗𝑡 𝛼∗) (𝜆{_ : 𝔬𝔟}. (𝑡∗ 𝛼∗)).

189



To use prf 𝑡∗, we define a predicate 𝐴∗ : {el∗ ty∗ | 𝔬𝔟 ↩→ 𝐴} by

𝐴∗ := [𝔬𝔟 ↩→ 𝐴 | 𝜆𝑥.  ({𝔬𝔟} → 𝑥 = 𝑎)]

for which only the element 𝑎 : 𝔬𝔟→ tm A is satisfied. Now we have

prf 𝑡∗ 𝐴∗ : pre (𝐴∗⇒∗𝑡 𝐴∗) (𝜆{_ : 𝔬𝔟}. (𝑡∗ 𝐴)).

Expanding the definition of⇒∗𝑡 from 5.4.4*1, we have

prf 𝑡∗ 𝐴∗ : ∀(𝑥 : {𝔬𝔟} → 𝐴).  ({𝔬𝔟} → 𝑥 = 𝑎) →  ({𝔬𝔟} → 𝑡∗ 𝐴 𝑥 = 𝑎).

The element 𝑎 is always equal to itself, so we can complete the hole:

?0 = prf 𝑡∗ 𝐴∗ 𝑎 (𝜂• refl𝑎).

Now we interpret lem in the glued topos 𝒢 as in 5.5*2 with 𝑀 being the

identity functor. Evaluating the interpretation of lem at 𝑡, 𝐴, and 𝑎, we get a

global section of the interpretation of  (𝑡 𝐴 𝑎 = 𝑎), which implies 𝑡 𝐴 𝑎 and 𝑎

are equal morphisms 1→ tm A in Jdg Fω
ha

.

5.5*5. It is also possible to extend the unary parametricity result above to the

binary (or 𝑛-ary) case. Following Sterling and Harper [2021], given two models

𝑀𝐿 : Jdg Fω
ha → 𝒞 and 𝑀𝑅 : Jdg Fω

ha → 𝒞, we consider the Artin gluing 𝒢𝒞𝒟 of

the product category Pr𝒞 × Pr𝒟 and the category of sets along the functor

⟨𝐴, 𝐵⟩ ↦→ 𝒞(1, 𝐴) ×𝒟(1, 𝐵).

The category 𝒢𝒞𝒟 is equivalent to the presheaf topos over (𝒞 +𝒟)⊤, and every

object in the category 𝒢𝒞𝒟 is a tuple

⟨𝐴 ∈ Pr𝒞, 𝐵 ∈ Pr𝒟, 𝑃 ∈ Set, 𝑙 : 𝑃 → Hom(1, 𝐴), 𝑟 : 𝑃 → Hom(1, 𝐵)⟩,

i.e. a proof-relevant binary relation (also known as a span) over global elements

of the presheaves 𝐴 and 𝐵. The category 𝒢𝒞𝒟 has two subterminal objects

𝔬𝔟𝐿 := ⟨1Pr𝒞 , 0, ∅, !, !⟩ and 𝔬𝔟𝑅 := ⟨0, 1Pr𝒟, ∅, !, !⟩,

which determine two open subtoposes that are equivalent to Pr𝒞 and Pr𝒟

respectively. The disjunction of 𝔬𝔟𝐿 and 𝔬𝔟𝑅 is another subterminal object

𝔬𝔟 := ⟨1Pr𝒞 , 1Pr𝒟, ∅, !, !⟩,

whose corresponding open subtopos is equivalent to Pr (𝒞 +𝒟).

5.5*6. The type theory TTstc can be interpreted in 𝒢𝒞𝒟 as usual, with 𝔬𝔟 : Ω

interpreted as the subterminal object 𝔬𝔟 above. Moreover, we can extend TTstc

190



with the following new constants with the evident interpretation in 𝒢𝒞𝒟:

𝔬𝔟𝐿 : Ω 𝔬𝔟𝑅 : Ω _ : 𝔬𝔟𝐿 ∨ 𝔬𝔟𝑅 = 𝔬𝔟 _ : 𝔬𝔟𝐿 ∧ 𝔬𝔟𝑅 = 0

𝑀𝐿 : {𝔬𝔟𝐿} → JFω
haK𝑈0

𝑀𝑅 : {𝔬𝔟𝑅} → JFω
haK𝑈0

_ : 𝑀 = 𝜆{𝑧 : 𝔬𝔟}. case z of {inl (_ : 𝔬𝔟𝐿) ↦→ 𝑀𝐿; inr (_ : 𝔬𝔟𝑅) ↦→ 𝑀𝑅}

We refer to the extended language by 2-TTstc.

5.5*7. The synthetic fundamental lemma (5.4.6*9) holds in 2-TTstc without

needing any modification, since 2-TTstc only adds new axioms to TTstc. However,

in 2-TTstc an 𝔬𝔟-partial element {𝔬𝔟} → 𝐴 of some type 𝐴 is now equal to an

element of type {𝔬𝔟𝐿 ∨ 𝔬𝔟𝑅} → 𝐴, which are equivalently two partial elements

{𝔬𝔟𝐿} → 𝐴 and {𝔬𝔟𝑅} → 𝐴. Therefore the unary logical predicates in the proof

of Lemma 5.4.6*9 can be now read as binary logical relations.

Specially, we can set both 𝑀𝐿 and 𝑀𝑅 to be Id : Jdg Fω
ha → Jdg Fω

ha
, and we

obtain the binary version of parametricity of closed Fω
ha

-terms (Theorem 5.5*3)

by instantiating the fundamental lemma with the logical relation 𝑃 for bool to be

equality (this relation cannot be internally defined in 2-TTstc though, since this

relation only makes sense when 𝑀𝐿 = 𝑀𝑅).

5.6 General Recursion

5.6*1. Handling (higher-order) algebraic effects is a form of structural recursion,

where recursive calls are always made on structurally smaller input, so the recur-

sion is guaranteed to terminate. This is in contrast with general recursion, which

allows unrestricted recursive calls and thus results in possibly non-terminating

programs. General recursion is allowed in most ‘practical’ programming lan-

guages nowadays. Without getting into the discussion of whether we should or
not introduce general recursion into our language [McBride 2015; Turner 2004],

in this section we show how it can be done if we want to.

5.6.1 The Signature of Fω
ha with Recursion

5.6.1*1. We will refer to the extension of Fω
ha

with general recursion as rFω
ha

. The

signature of rFω
ha

extends that of Fω
ha

with a new family of judgements pco for

partial computations that has the same signature as co (5.1.3*1):

pco : (H : RawHFunctor) → (A : el ty) → J.

The original computation judgement co is still kept in the language and is used

for total computations as usual. Most accompanying rules for co in Section 5.1.3

are inherited by pco: val, let-in, th, op, and all their associated equations. We shall

191



refer to the copy of them for pco by same names as before, except for thunks of

partial computations, which we call pth : RawHFunctor→ el ty→ el ty.

5.6.1*2. The first new rule for pco is as expected a fixed-point combinator:

Y : {H,A} → (pth H A→ pco H A) → pco H A,

together with the equation:

Y-eq : {H,A, f } → Y f = f (⇓ Y f ).

5.6.1*3. Another difference between pco and co is the their elimination rule: eval
from 5.1.3*4 allows computations co H A to be evaluated into any raw monad T
equipped with an 𝐻-operation, but naturally, pco shall only be evaluated into

monads T that ‘support recursion’. In the current call-by-value setting, the only

thing that supports recursion is pco, so we will require that the raw monad 𝑇

send every type A : el ty to thunks of partial computations pth H (F A) for some

H : RawHFunctor and type constructor F : el ty→ el ty:

record MonadAlgRec (H : RawHFunctor) : J where

include MonadAlg H as T
H : RawHFunctor
F : el ty→ el ty
eq : (A : el ty) → T A = pth H (F A)

Here we have formulated the requirement eq using the equality type of LccLF,

and in an implementation of the type checker for rFω
ha

, the equation eq may be

mechanically checked since the kind language of rFω
ha

is normalising.

The language rFω
ha

then has the following declaration:

eval : {H } → (T : MonadAlgRec H) → (A : el ty) → pco H A→ tm (T A)

together with equations eval-val and eval-op similar to the those of co (5.6, 5.7) with

co replaced by pco, th replaced by pth, and MonadAlg replaced by MonadAlgRec.

5.6.1*4. We will further include in rFω
ha

the empty type:

empty : el ty
absurd : (A : el ty) → tm empty→ tm A
absurd-uniq : {A : el ty} → ( f : tm empty→ tm A) → f = absurd A

This gives us a judgement pco VoidH for effect-free partial computations, where

VoidH is the constant raw higher-order functor: VoidH _ _ = empty.

192



5.6.2 Synthetic Domain Theory in Assemblies

5.6.2*1. Simply typed 𝜆-calculi with general recursion famously can be modelled

by variations of complete partial orders from classical domain theory [Plotkin

1977; Scott 1993; Streicher 2006]. However, the language rFω
ha

has impredicative

polymorphism, which is very tricky to model using classical domain theory,

although not impossible [Coquand et al. 1989; Crole 1994].

5.6.2*2. Alongside a few other reasons, the difficulty of modelling polymorphism

in classical domain theory motivated the development of synthetic domain theory
(SDT) [Hyland 1991; Phoa 1991; Rosolini 1986]. The idea of SDT is to axiomatise

‘domains’, in the general sense of objects that provide meaning to (recursive)

programs, as special ‘sets’ satisfying certain properties in the logic of toposes

or constructive set theory, so that every function between those special sets is

automatically a ‘continuous map’ between domains. In this way, one can give

denotational semantics to recursive programs in a naive set-theoretic way.

5.6.2*3. The exact axiomatisation of SDT varies across authors, but there are

mainly two kinds of models: realizability toposes [Longley and Simpson 1997;

Phoa 1991] and Grothendieck toposes [Fiore and Plotkin 1997; Fiore and Rosolini

1997]. Since we are already modelling Fω
ha

using a realizability model in Section 5.2,

we will stick with the realizability model, following the ideas of SDT concretely

in this model (as opposed to using SDT as an axiomatic language).

5.6.2*4. The rest of this section is a short introduction to SDT based on Longley

and Simpson [1997]’s approach using well complete objects, adapted to a type-

theoretic language. See also Longley [1995]’s thesis, the more general treatment

by Simpson [2004, 1999], and the type-theoretic formalisation of SDT using well
complete Σ-spaces by Reus [1996, 1999] and Reus and Streicher [1999]. With the

machinery of SDT in this section, the interpretation of rFω
ha

will be almost trivial

and will be presented in the next section.

5.6.2*5. Before going into SDT, let us quickly recall a typical setup of interpreting

recursion in classical domain theory, which we are going to mirror in the SDT.

A predomain (or precisely, an 𝜔-cpo, in this setup) is a partially ordered set

⟨𝐴, ⊑⟩ that has suprema ⊔𝑖𝑎𝑖 for all 𝜔-chains 𝑎0 ⊑ 𝑎1 ⊑ 𝑎2 ⊑ 𝑎3 ⊑ · · · in 𝐴; a

predomain need not have a bottom element. Morphisms between predomains

are monotone functions preserving those suprema of 𝜔-chains.

A (Scott-) open set of a predomain 𝐴 is a subset 𝑂 ⊆ 𝐴 that is (1) upward

closed: for all 𝑥, 𝑦 ∈ 𝐴, if 𝑥 ∈ 𝑂 and 𝑥 ⊑ 𝑦 then 𝑦 ∈ 𝑂, and (2) continuous: for

all 𝜔-chains 𝑎𝑖 in 𝐴, ⊔𝑖𝑎𝑖 ∈ 𝑂 iff there exists some 𝑛 such that 𝑎𝑛 ∈ 𝑂. Open

sets of a predomain 𝐴 are in bĳection with morphisms 𝐴→ 𝔖, where 𝔖 is the

193



two-element predomain {⊥ ⊑ ⊤}, sometimes called the Sierpiński space (𝔖 is the

Fraktur letter for S). Namely, every open set 𝑂 ⊆ 𝐴 corresponds to the morphism

𝜒 : 𝐴→ 𝔖 where 𝜒(𝑎) = ⊤ if 𝑎 ∈ 𝑂 and 𝜒(𝑎) = ⊥ if 𝑎 ∉ 𝑂.

The lifting monad 𝐿𝐴 on predomains adjoins a new bottom element ⊥ to 𝐴, with

a monad structure similar to that of the monad 1 + − on sets. Kleisli morphisms

of predomains 𝑓 : Γ→ 𝐿𝐴 are in bĳection with partial morphisms ⟨𝑂, 𝑓 ⟩ : Γ ⇀ 𝐴,

each consisting of an open set 𝑂 ⊆ Γ and a (total) morphism 𝑓 : 𝑂 → 𝐴.

A domain 𝐷 is a predomain with bottom element ⊥𝐷 , which is the same

as an Eilenberg-Moore algebra of the lifting monad 𝐿. Every endo-morphism

𝑓 : 𝐷 → 𝐷 on domains then has a least fixed point by taking the supremum of

the chain ⊥𝐷 ⊑ 𝑓 (⊥𝐷) ⊑ 𝑓 ( 𝑓 (⊥𝐷)) ⊑ · · · in 𝐷.

Contexts Γ and types 𝜎 of a call-by-value programming language with recur-

sion are then interpreted as predomains JΓK, J𝜎K. Terms Γ ⊢ 𝑡 : 𝜎 are interpreted

as morphisms JΓK→ 𝐿J𝜎K, i.e. partial morphisms between predomains.

5.6.2*6. Recall that the internal language of assemblies Asm(A) over a partial

combinator algebraA, which we used to construct a model of Fω
ha

in Section 5.2,

is an extensional MLTT with three cumulative universes 𝑃 : 𝑉1 : 𝑉2 such that

* each closed under the unit type, Σ, Π, and inductive types (𝑊-types);

* for all types 𝐴 and 𝑎, 𝑏 : 𝐴, the equality type 𝑎 = 𝑏 is in the universe 𝑃;

* for all types 𝐴 and 𝑃-valued type families 𝐵 : 𝐴→ 𝑃, Π 𝐴 𝐵 is in 𝑃.

The interpretation of 𝑃 is the assembly of modest sets (i.e. PERs), and 𝑉𝑖 is the

assembly of 𝑈𝑖-small assemblies, for universe of sets 𝑈𝑖 in the meta-theory. A

detailed description of the interpretation can be found in Reus [1996, §8]’s thesis.

5.6.2*7. In the following, we will further fix the PCAA to be Kleene’s first algebra
K [Oosten 2008], whose elements are natural numbers (which intuitively play

dual roles as both data and computation via Gödel codes of Turing machines), and

partial application 𝑛 𝑚 is defined to be 𝜙𝑛(𝑚), the possibly divergent result of

running the Turing machine coded by 𝑛 with input 𝑚. We will write 𝑛 𝑚 ↑ and

𝑛 𝑚 ↓ to mean that the partial application diverges and converges respectively.

Specialising A to K is only for providing more intuition, and interested

readers can consult Longley and Simpson [1997] to see how it can be done more

generally with an arbitrary PCA equipped with a notion of divergence.

5.6.2*8. A type 𝐴 is said to be a proposition if the type is-prop 𝐴 := (𝑎, 𝑏 : 𝐴) →
𝑥 = 𝑦 is inhabited [Univalent Foundations Program 2013]. The subuniverse

𝑃−1 ⊆ 𝑃 of propositional modest sets is then defined by

𝑃−1 : 𝑉1

𝑃−1 = Σ(𝐴 : 𝑃). is-prop 𝐴

194



whose elements are decoded as types by first projection 𝜋1, which we will left as

implicit, as if 𝑃−1 is a Russell-style universe.

It might be useful to see an external description for the universe 𝑃−1, in the

sense of universes in categories (Section 4.3.1). The semantics of the universe

(𝑃−1,𝜋1) is (isomorphic to) an assembly morphism 𝑖 : �̃�−1→ 𝑃−1, where 𝑃−1 has

an underlying set containing all sub-singleton modest sets 𝐴, and 𝑟 |=𝑃−1
𝐴 holds

for all 𝑟 and 𝐴. The assembly �̃�−1 has an underlying set containing all modest

sets 𝐴 with exactly one element 𝑎 ∈ |𝐴|, and 𝑟 |=�̃�−1

𝐴 if and only if 𝑟 |=𝐴 𝑎. The

morphism 𝑖 : �̃�−1→ 𝑃−1 is the inclusion morphism.

From the above explicit description, we can see that the universe 𝑃−1 satisfies

Voevodsky’s propositional resizing axiom: in the internal language of Asm(K), for

every propositional type 𝐴, there is some ⌈𝐴⌉ : 𝑃−1 isomorphic to 𝐴, since a

sub-singleton assembly 𝐴 is necessarily a modest set.

5.6.2*9. The universe 𝑃−1 is similar to the universe Ω of propositions in elemen-

tary toposes as axiomatised in 5.3.3*3, and we can define logical connectives ⊤,

⊥, ∧, ∨, ∀, and ∃ on 𝑃−1 in exactly the same way as we did in Section 5.3.3.

The crucial difference between 𝑃−1 and the universe Ω in elementary toposes

is that 𝑃−1 is not univalent: given 𝑝, 𝑞 : 𝑃−1 with 𝑝 � 𝑞, it is not always the case

that 𝑝 = 𝑞. Indeed, two singleton modest sets ⟨{∗}, |=𝑝⟩ and ⟨{∗}, |=𝑞⟩ can have

different realizing relations even when their underlying sets are exactly the same.

This seemingly insignificant flaw of 𝑃−1 has an impact bigger than one may

expect on doing mathematics internal to Asm(K). For one thing, we cannot

construct quotient types using 𝑃−1 as we did in 5.3.3*12: [𝑥] and [𝑦] will not be

equal for 𝑅 𝑥 𝑦 if we follow the formula in 5.3.3*12.

We can switch to the realizability topos to use the better-behaved universe Ω,

but we will stay in category of assemblies, as it turns out to be good enough for

carrying out our development, and more importantly, the simplicity of Asm(K)
allows us to give simple external descriptions of many constructions of SDT,

which I found essential when learning SDT for the first time.

5.6.2*10. The universe 𝑃−1 has a subuniverse of semi-decidable propositions:

𝑃𝑠−1
:= {𝑝 : 𝑃−1 | ∃ 𝑓 :N→ 2. 𝑝 � (∃𝑛 :N. 𝑓 𝑛 = 0)}. (5.29)

Roughly speaking, a proposition in 𝑃𝑠−1
is determined by the (semi-decidable)

property of the existence of zero points for a computable function 𝑓 :N→ 2.

A simple external description of 𝑃𝑠−1
is available: the assembly 𝑃𝑠−1

is isomor-

phic, up to bi-implication in 𝑃−1, to the assembly 𝔖 := ⟨{⊥,⊤}, |=𝔖⟩ where

𝑟 |=𝔖 ⊥ iff 𝑟 0 ↑ and 𝑟 |=𝔖 ⊤ iff 𝑟 0 ↓ .

In sketch, the direction 𝔖→ 𝑃𝑠−1
sends ⊥ and ⊤ to the empty and terminal

195



assemblies respectively, and is realized by the Turing machine accepting 𝑟 and

returning the computable function 𝑓 : N → 2 that accepts 𝑛 and returns 0 if

and only if running the Turing machine 𝑟 halts in 𝑛 steps. The other direction

𝑃𝑠−1
→ 𝔖 sends sends an assembly to ⊤ iff it is non-empty, and this is realized by

the Turing machine accepting the code for 𝑓 :N→ 2 (and 𝑝 � ∃𝑛. 𝑓 𝑛 = 0) and

returns the machine 𝑟 that searches for a zero point of 𝑓 iteratively.

5.6.2*11. The type 𝔖 can be viewed as a universe directly: every element 𝑝 : 𝔖

is decoded as the equality type 𝑝 = ⊤. Although 𝑃𝑠−1
and 𝔖 are equivalent

universes, we will prefer using the universe 𝔖 over 𝑃𝑠−1
because 𝔖 is univalent:

(𝑝, 𝑞 : 𝔖) → (𝑝 � 𝑞) → (𝑝 = 𝑞).

The universe 𝔖 is closed under truth ⊤ : 𝔖 and dependent conjunction

Σ(𝑝 : 𝔖). 𝑞(𝑝) : 𝔖 for all 𝑝 : 𝔖 and 𝑞 : 𝑝 → 𝔖. Therefore, it is a dominance
[Rosolini 1986], which is the fundamental notion in general SDT [Hyland 1991].

In the present situation, the dominance 𝔖 is moreover closed under falsity ⊥ and

countable disjunction ∃𝑛 :N. 𝑝(𝑛) for 𝑝 :N→ 𝔖.

As suggested by the notation, the universe 𝔖 of semi-decidable propositions

will play the role of the Sierpiński space {⊥ ⊑ ⊤} in classical domain theory

(5.6.2*5). In the internal language, a (Scott-) open of a type 𝐴 is defined as a

function 𝑂 : 𝐴→ 𝔖, giving rise to a subtype {𝑎 : 𝐴 | 𝑂 𝑎 = ⊤}, which we shall

usually just write as 𝑂 when no confusion. An (𝔖-) partial function Γ ⇀ 𝐴 is

again an open set 𝑂 of Γ with a function 𝑂 → 𝐴. Externally, an open set of an

assembly ⟨|𝐴|, |=𝐴⟩ is a subset 𝑂 ⊆ 𝐴 such that there is some Turing machine 𝑟

satisfying that whenever 𝑛 |=𝐴 𝑎, then 𝑟 𝑛 ↓ iff 𝑎 ∈ 𝑂.

5.6.2*12. Analogous to the lifting monad in 5.6.2*5, we have a lifting monad

𝐿 : 𝑃 → 𝑃

𝐿 𝐴 = Σ(𝑝 : 𝔖). ({𝑝} → 𝐴)

on modest sets in the internal language of Asm(K). We can actually define 𝐿 on

all types but we shall only need it on 𝑃. The monad structure for 𝐿 is

𝜂 : 𝐴→ 𝐿 𝐴

𝜂 𝑎 = (⊤, 𝑎)
𝜇 : (𝐴→ 𝐿 𝐵) → 𝐿 𝐵

𝜇 (𝑝, 𝑎) 𝑘 = (Σ(_ : 𝑝). 𝜋1 (𝑘 𝑎), 𝜋2 (𝑘 𝑎))

An isomorphic external description of the monad 𝐿 is that it sends every

modest set ⟨|𝐴|, |=𝐴⟩ to the modest set ⟨1 + |𝐴|, |=𝐿𝐴⟩ where

𝑟 |=𝐿𝐴 inl ∗ iff 𝑟 0 ↑,
𝑟 |=𝐿𝐴 inr 𝑎 iff 𝑟 0 ↓ ∧ 𝑟 0 |=𝐴 𝑎.

That is to say, if a Turing machine 𝑟 diverges on the input 0 then it realizes the

196



‘bottom element’ inl ∗, and otherwise 𝑟 realizes inr 𝑎, for elements 𝑎 ∈ |𝐴| that

are realized by 𝑟 0. The input 0 here is completely arbitrary, and the definition

will be isomorphic if 0 is replaced by any other fixed number or 𝑟 itself. The

monad structure on 𝐿 is the same as the one on 1 + − : Set→ Set; see Longley

and Simpson [1997, §4] for details.

Note that 𝐿𝐴 is not the same as the coproduct 1 + 𝐴 in Asm(K). The latter

has the same underlying set 1 + |𝐴|, but the existence predicate of 1 + 𝐴 is

𝑟 |=1+𝐴 inl ∗ iff 𝜋1 𝑟 = 0

𝑟 |=1+𝐴 inr 𝑎 iff 𝜋1 𝑟 ≠ 0 ∧ 𝜋2 𝑟 |=𝐴 𝑎,

where 𝜋1, 𝜋2, and ⟨−,−⟩ are some Turing machines implementing projections

and pairing of natural numbers N ×N � N. The crucial difference between

𝐿𝐴 and 1 + 𝐴 is that morphisms of assemblies 𝑓 : 𝑋 → 1 + 𝐴 must be realised

by Turing machines that can decide whether 𝑓 (𝑥) is inr 𝑎 given a realizer of 𝑥,

while morphisms 𝑓 : 𝑋 → 𝐿𝐴 need only be realised by Turing machines that

semi-decide whether 𝑓 (𝑥) is inr 𝑎. Thus 𝐿𝐴 is the right choice of the lifting monad

capturing the idea of ‘possibly divergent elements of 𝐴’.

5.6.2*13. As an endofunctor on the universe 𝑃, 𝐿 has both a final coalgebra

⟨�̄� : 𝑃, 𝜎 : �̄� → 𝐿�̄�⟩ and an initial algebra ⟨𝜔 : 𝑃, 𝜏 : 𝐿𝜔 → 𝜔⟩. The following

formulae of �̄� and 𝜔 are due to Jibladze [1997]:

�̄� = { 𝑓 :N→ 𝔖 | ∀𝑛. 𝑓 (𝑛 + 1) → 𝑓 𝑛}
𝜔 = { 𝑓 : �̄� | ∀𝑝 : 𝑃−1.

(
∀(𝑛 :N). ( 𝑓 𝑛 → 𝑝) → 𝑝

)
→ 𝑝}

which in fact works for any dominance in any elementary topos with a natural

number object (with 𝑃−1 in the formula of 𝜔 replaced by Ω).

Again, we have simple external descriptions for �̄� and 𝜔 in the case of Asm(K).
The carrier �̄� is isomorphic to the assembly ⟨N ∪ {∞}, |=�̄�⟩ where

𝑟 |=�̄� 𝑛 iff ∀𝑘 ∈ N. (𝑘 < 𝑛) ↔ (𝑟 𝑘 ↓)
𝑟 |=�̄� ∞ iff ∀𝑘 ∈ N. 𝑟 𝑘 ↓

with 𝜎 : �̄�→ 𝐿�̄� given by 𝜎(0) = inl ∗, 𝜎(𝑛 + 1) = inr 𝑛, and 𝜎(∞) = inr ∞. The

type 𝜔 is given by the assembly ⟨N, |=𝜔⟩ that restricts �̄� to the sub-underlying

setN. The algebra 𝜏 : 𝐿𝜔→ 𝜔 is simply 𝜏(inl ∗) = 0 and 𝜏(inr 𝑛) = 𝑛 + 1.

From the explicit description we see that the assembly 𝜔 is a non-standard

representation of natural numbers as an assembly, different from the standard

representation ⟨N, {(𝑛, 𝑛) | 𝑛 ∈ N}⟩ that satisfies the universal property of

a natural number object in Asm(K). In 𝜔, every natural number 𝑛 ∈ N is

represented as a Turing machine that halts exactly for inputs 𝑘 smaller than 𝑛.

Since Turing machines are unable to tell whether other machine halts, assembly

197



maps 𝜔→ 𝐴 are constrained to be ‘continuous’ in a sense.

5.6.2*14. Let 𝜅 : 𝜔 → �̄� be the canonical inclusion morphism (given as the

unique algebra homomorphism from the initial algebra 𝜏 : 𝐿𝜔 → 𝜔 to the

𝐿-algebra 𝜎−1
: 𝐿�̄�→ �̄�). The morphism 𝜅 plays an important role in synthetic

domain theory: a morphism 𝑐 : 𝜔 → 𝑋 of assemblies will play the role of an

𝜔-chain of elements 𝑐0 ⊑ 𝑐1 ⊑ · · · in a partial order 𝑋. Similarly, a morphism

𝑐∗ : �̄�→ 𝑋 is analogous to a chain 𝑐𝑖 together with its supremum ⊔𝑖𝑐𝑖 .

5.6.2*15 Definition. A modest set 𝑋 : 𝑃 is called complete if the function

(− · 𝜅) : (�̄�→ 𝑋) → (𝜔→ 𝑋)

is an isomorphism, i.e. the following proposition holds

complete 𝑋 := ∃(−) : (𝜔→ 𝑋) → (�̄�→ 𝑋). (∀𝑐. 𝑐 · 𝜅 = 𝑐) ∧ (∀𝑑. 𝑑 · 𝜅 = 𝑑)

internally in Asm(K). A modest set 𝑋 : 𝑃 is called well complete if 𝐿𝑋 is complete.

5.6.2*16. Well complete types will be our synthetic version of predomains:

PDom : 𝑉1

PDom = Σ(𝐴 : 𝑃). complete (𝐿 𝐴)

They are intuitively modest sets in which an 𝜔-chain of partial elements has a

unique (partial) supremum. Their crucial difference from predomains in classical

domain theory is that they are just ‘sets’ satisfying a property, rather than sets

carrying additional data (the partial order).

5.6.2*17. There are some nuances in the external meaning of (well) completeness.

Firstly, we notice that complete : 𝑃 → 𝑃−1 in Definition 5.6.2*15 is a proper

realizability predicate in the sense that complete X for a modest set 𝑋 : 𝑃 has non-

trivial realizers. Namely, complete X is realized by machines sending realizers

of 𝜔 → 𝑋 to realizers of �̄� → 𝑋, in a way that is an inverse to − · 𝜅. Secondly,

complete X : 𝑃−1 makes sense in an arbitrary context Γ in the internal language of

Asm(K). Therefore, externally 𝑋 is not one modest set but a family of modest

sets Γ→ 𝑃 indexed by an assembly Γ of the context.

If we forget about realizers of completeness and consider only global elements

𝑋 : 𝑃, then complete X has a realizer if and only if the morphism 𝑋𝜅
: 𝑋 �̄� → 𝑋𝜔

in Asm(K) is an isomorphism. The latter condition is precisely the definition

of completeness for an object in Asm(A) by Longley and Simpson [1997]. This

further means that for all assemblies Γ and 𝑐 : Γ × 𝜔 → 𝑋, there is a unique

198



𝑐 : Γ × �̄�→ 𝑋 making the following diagram commute:

Γ × 𝜔 𝑋

Γ × �̄�

𝑐

𝜅
𝑐

To see this, by Yoneda embedding, 𝑋 is complete if and only if

(𝑋𝜅 · −) : Hom(Γ, 𝑋 �̄�) → Hom(Γ, 𝑋𝜔)

is an isomorphism, natural in Γ. By adjointness, this is equivalent to asking

(− · Γ × 𝜅) : Hom(Γ × �̄�, 𝑋) → Hom(Γ × 𝜔, 𝑋)

to be a natural isomorphism. A natural transformation is a natural isomorphism

iff every component of it is an isomorphism, so 𝑋 is complete if and only if for

every 𝑐 : Γ × 𝜔→ 𝑋, there is a unique 𝑐 : Γ × �̄�→ 𝑋 such that 𝑐 · Γ × 𝜅 = 𝑐.

5.6.2*18 Theorem. The subuniverse PDom ⊆ 𝑃 is closed under liftings 𝐿, the unit
type, Σ-types, Π-types, equality types, coproducts, the natural number type N in 𝑃.
Moreover, predomains are also complete (i.e. well completeness implies completeness).

Proof. This is essentially shown by Longley and Simpson [1997, §7] aside from the

difference between Longley and Simpson’s external definition of completeness

and our internal definition (5.6.2*17). Longley and Simpson defined completeness

of an assembly 𝑋 as a proposition in the ambient logic (𝑋𝜅
: 𝑋 �̄� → 𝑋𝜔

being

an isomorphism), while our definition is in internal in the language of Asm(K),
which has non-trivial realizers (Turing machines accepting code of 𝑐 : 𝜔 → 𝑋

and outputting code of �̄� → 𝑋). Therefore, we have to check that the proofs

of the closure properties by Longley and Simpson are realizable. For example,

to show 𝐿 : 𝑃 → 𝑃 restricts to 𝐿 : PDom→ PDom, we need to check that there

is a Turing machine sending realizers of 𝑋 being well complete to realizers of

𝐿𝑋 being well complete. This is indeed the case by observing that the proofs by

Longley and Simpson can be carried internally in the language of Asm(K). □

5.6.2*19 Definition. Mirroring the setup of 5.6.2*5, the universe of domains is

defined as the type of Eilenberg-Moore algebras of the monad 𝐿 : PDom→ PDom:

record Dom : V1 where

A : PDom
𝛼 : L A→ A
_ : (x : A) → 𝛼 (𝜂L x) = x
_ : (x : L (L A)) → 𝛼 (𝜇L x) = 𝛼 (L 𝛼 x)

As usual, given 𝐷 : Dom, we usually write the type 𝜋1 (𝐷.𝐴) as just 𝐷.

199



5.6.2*20. The crucial property of domains 𝐷 : Dom is that they admit fixed

points for all endofunctions 𝑓 : 𝐷 → 𝐷:

fix : {𝐷 : Dom} → ( 𝑓 : 𝐷 → 𝐷) → 𝐷

which is defined as follows: first we define a function 𝛼 𝑓 : 𝐿 𝐷 → 𝐷 by 𝛼 𝑓 = 𝛼 ·𝐿 𝑓 .
By the initiality of 𝜏 : 𝐿𝜔 → 𝜔, we have a homomorphism 𝑐 : 𝜔 → 𝐷. Then

using the completeness of 𝐷, we have 𝑐 : �̄� → 𝐷, and we let fix f := 𝑐 ∞. It is

then the case that 𝑓 ( fix f ) = fix f [Reus and Streicher 1999, Theorem 7.3].

5.6.2*21. We note in passing that by Longley and Simpson [1997, Theorem 5.6],

Eilenberg-Moore 𝐿-algebras on a predomain are unique if exist, so it makes sense

to say ‘a predomain is a domain’ as a proposition.

5.6.3 The Interpretation of rFω
ha

5.6.3*1. Now we are ready to construct a (𝑉2-small) model of the signature rFω
ha

(Section 5.6.1) in Asm(K). Our goal is to define an element 𝑀 of the record type

JrFω
haK𝑉2

containing all the declarations of rFω
ha

with J replaced by the universe𝑉2.

5.6.3*2. The non-recursive fragment of rFω
ha

will be interpreted in almost the

same way as Fω
ha

in Section 5.2, except that all the occurrences of the universe

𝑃 : 𝑉1 in the model will be replaced by the subuniverse PDom : 𝑉1. For example,

𝑀.ty is now PDom instead of 𝑃, and the computation judgement 𝑀.co is now

𝑀.co : 𝑀.RawHFunctor→ 𝑀.el 𝑀.ty→ PDom
𝑀.co 𝐻 𝐴 = (𝑇 : 𝑀.MonadAlg H) → (𝐵 : PDom) → (𝐴→ 𝑇 𝐵) → 𝑇 𝐵

The constructions in Section 5.2 still work because by Theorem 5.6.2*18, the

universe PDom is closed under the type formers that we used to interpret Fω
ha

, in

particular, impredicative Π-types.

5.6.3*3. The empty type from 5.6.1*4 is as expected interpreted as the empty

modest set 0, which is trivially well complete.

5.6.3*4. The interesting thing is modelling partial computations pco (5.6.1*1).

In 5.6.1*3, we had a type MonadAlgRec of monads supporting recursion (and

some effectful operations). However, we cannot simply define 𝑀.pco by replac-

ing MonadAlg in the definition of 𝑀.co above with MonadAlgRec, because the

definition of MonadAlgRec depends on 𝑀.pth and thus 𝑀.pco.

The type MonadAlgRec ensures that a monad 𝑇 in rFω
ha

supports recursion by

requiring the monad 𝑇 to be partial thunks syntactically. What we need here is a

semantic counterpart of monad supporting recursion:

record MonadAlgL (H : RawHFunctor) : V2 where

200



include MonadAlg H as T
dom : (A : PDom) → {D : Dom | D.A = T A}

which requires that T A : PDom is a domain for all A : PDom.

The model of partial computations is then

𝑀.pco : 𝑀.RawHFunctor→ 𝑀.el 𝑀.ty→ PDom
𝑀.pco 𝐻 𝐴 = (𝑇 : MonadAlgL H) → (𝐵 : PDom) → (𝐴→ 𝑇 𝐵) → 𝑇 𝐵

The models of the declarations val, let-in, pth and op are the same as those for co
in Section 5.2, which we shall not repeat here.

5.6.3*5. The model for the fixed-point combinator has type

𝑀.𝑌 : {𝐻, 𝐴} → (𝑀.pth 𝐻 𝐴→ 𝑀.pco 𝐻 𝐴) → 𝑀.pco 𝐻 𝐴

In the present model, pth 𝐻 𝐴 is simply equal to pco H A, so by 5.6.2*20, it is

sufficient to show that 𝑀.pco 𝐻 𝐴 is a domain. We define the algebra by

𝛼 : {𝐻, 𝐴} → 𝐿 (𝑀.pco 𝐻 𝐴) → 𝑀.pco 𝐻 𝐴

𝛼 (𝑝, 𝑐) = 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑝, 𝑐 𝑇 𝐵 𝑘)

where 𝛽𝑇𝐵 : 𝐿 (𝑇 𝐵) → 𝑇 𝐵 is 𝛽𝑇𝐵 := (𝑇.dom 𝐵).𝛼. The 𝐿-algebra 𝛼 is a product

of a family of 𝐿-algebras, so it is easy to check that 𝛼 satisfies the laws:

𝛼 (⊤, 𝑐)
= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (⊤, 𝑐 𝑇 𝑏 𝑘)
= {𝛽𝑇𝐵 is an Eilenberg-Moore algebra}
𝜆𝑇 𝐵 𝑘. 𝑐 𝑇 𝑏 𝑘

= 𝑐

and similarly for all (𝑝, (𝑞, 𝑐)) : 𝐿 (𝐿 (𝑀.pco 𝐻 𝐴)),

𝛼 (𝐿 𝛼 (𝑝, (𝑞, 𝑐)))
= 𝛼 (𝑝,𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑞, 𝑐 𝑇 𝐵 𝑘))
= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝑝, 𝛽𝑇𝐵 (𝑞, 𝑐 𝑇 𝐵 𝑘))
= {𝛽𝑇𝐵 is an Eilenberg-Moore algebra}
𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (𝜇𝐿 (𝑝, (𝑞, 𝑐 𝑇 𝐵 𝑘)))

= 𝜆𝑇 𝐵 𝑘. 𝛽𝑇𝐵 (Σ(_ : 𝑝). 𝑞, 𝑐 𝑇 𝐵 𝑘)
= 𝛼 (𝜇𝐿 (𝑝, (𝑞, 𝑐)))

We have shown that pco H A is a domain, so we can use fix (5.6.2*20) to define

𝑀.𝑌 𝑓 = fix 𝑓 .

201



5.6.3*6. Finally, we need to give an interpretation of eval from 5.6.1*3:

𝑀.eval : {𝐻} → (𝑇 : 𝑀.MonadAlgRec 𝐻) → (𝐴 : 𝑀.el ty)
→ 𝑀.pco 𝐻 𝐴→ 𝑀.tm (𝑇 𝐴)

Note that the type of 𝑇 is MonadAlgRec rather than MonadAlgL. By the definition

of MonadAlgRec in 5.6.1*3, there exists some 𝐹 : 𝑀.el 𝑀.ty → 𝑀.el 𝑀.ty such

that the monad 𝑇 maps every 𝐴 : PDom to 𝑀.pth 𝐻 (𝐹 𝐴). By the discussion

above in 5.6.3*5, 𝑀.pth 𝐻 (𝐹 𝐴), which is just 𝑀.pco 𝐻 (𝐹 𝐴), is always a domain.

Therefore we have a conversion function

𝜎 : (𝑇 : 𝑀.MonadAlgRec 𝐻) → {𝑇′ : MonadAlgL 𝐻 | 𝑇.𝑇 = 𝑇′.𝑇},

and we define the model of eval to be

𝑀.eval 𝑇 𝐴 𝑐 = 𝑐 (𝜎 𝑇) 𝐴 𝑇.ret

This completes the definition of the model 𝑀 : JrFω
haK𝑉2

.

5.6.3*7. The realizability model 𝑀 of rFω
ha

gives a way to compute recursive

programs written in rFω
ha

by program extraction. Since 𝐿 𝐴 is a domain, the

monad 𝐿 : PDom→ PDom can be extended to

𝐿′ : {𝐿′ : 𝑀.MonadAlgL VoidH | 𝐿′.𝑇 = 𝐿}

Therefore we have a function

toL : {𝐴 : PDom} → 𝑀.pco VoidH 𝐴→ 𝐿 𝐴

toL 𝑐 = 𝑐 𝐿′ 𝐴 𝜂𝐿

Every closed program p : pco VoidH bool is interpreted as a global element of

𝑀.pco VoidH 2 in Asm(K). Composing it with toL, we then have a global element

of the modest set 𝐿 2. The realizer of this element is then a possibly divergent

Turing machine 𝑟 that yields a Boolean value if it halts.

5.6.3*8. We conjecture that the realizability model of rFω
ha

in this section is

adequate in the following sense:

For all closed program 𝑐 : pco VoidH bool in rFω
ha

, if the morphism

toL · J𝑐K : 1 → 𝐿 2 in Asm(K) is inr tt (or inr ff ), then 𝑐 = val tt (or

c = val ff ) in the theory of rFω
ha

.

This implies that if toL · J𝑐K = inl ∗, then 𝑐 does not equal to val tt or val ff ,

otherwise toL · J𝑐K would not be inl ∗.
We expect adequacy can be proved using synthetic Tait computability (STC)

internally in the effective topos Eff, in which we glue the (internal) category 𝑃

with the category of 𝑃-valued presheaves over the category of judgements of rFω
ha

202



(constructed internally in Eff). Such an internal STC argument has been used

by Sterling and Harper [2022] to prove adequacy for a language with security
levels and general recursion but without impredicative polymorphism, whose

denotational semantics is a sheaf-model of SDT.

203



Chapter 6

Epilogue

6*1. Let us conclude this thesis with a summary of what we have done in each

chapter and some potential future directions.

6*2. In Chapter 2, we explored some basic properties of the category of equational

systems, which we used as a convenient way for presenting algebraic theories.

Future work about equational systems includes the following.

1. Whenever an equational system has the free-forgetful adjunction it is monadic,

and we have paid our attention solely to such equational systems in this thesis. It

is not clear to me whether equational systems that do not have the free-forgetful

adjunction is useful. Particularly, do they make the category of equational

systems as a kind of completion of the category of monads?

2. Related to the last question, what is an intrinsic characterisation (similar

to the monadicity theorem or the definition of algebraic categories) of functors

𝑈 ¤Σ : ¤Σ-Alg→ 𝒞 arising from equational systems ¤Σ?

3. The framework of equational system is 1-categorical. Although in 2.2.1*9 we

noted that inequations or higher-dimensional cells can be encoded in equational

systems, they have to be preserved strictly by algebra homomorphisms. Therefore

it is worthwhile in the long term to develop a 2-dimensional theory of equational

systems, mimicking the 2-dimensional theory of monads [Blackwell et al. 1989].

6*3. In Section 2.3, we introduced monoidal algebraic theories for describing

constructions over monoidal categories conveniently. Besides the questions in

2.3.1*10, proving normalisation of the terms of a monoidal algebraic theory

without equational axioms is also an interesting question. Ideally, we could

extend synthetic Tait computability to handle linear variable contexts.

Another interesting direction about monoidal algebraic theories is functional
data structures in monoidal categories: the inductive datatype 𝜇𝑋. 𝐼 + 𝐴 □ 𝑋

is one representation of □-lists over 𝐴, but there are many other sophisticated

representations of lists in functional programming with better asymptotic com-

plexities [Hinze and Paterson 2005; Okasaki 1998]. These data structures were

204



invented in languages such as Haskell or ML, but some of them are still valid

in (symmetric) monoidal algebraic theories, therefore can be interpreted in

arbitrary (symmetric) monoidal categories. An initial example is Okasaki’s

catenable list, which supports amortised constant time list concatenation and

pattern matching. After a re-inspection of Okasaki’s algorithm, we can see

that it is valid in any closed symmetric monoidal category, so we can derive

from it an efficient representation of free applicative functors with amortised

constant time multiplication and pattern matching [Yang 2022]. It is interesting

to revisit those functional data structures and find out which of them can be

generalised in this way. Particularly, the author hopes to find an efficient version

of free monads to optimise substitution based normalisation algorithms. If we

managed to find a representation of free monads whose substitution operation

needs only 𝑂(1)-time for each variable in the term, with suitable lazy evaluation,

a naive substitution based evaluator for untyped 𝜆-calculus (with all bound

variables renamed to be distinct a priori) should be asymptotically as efficient as

the normalisation-by-evaluation algorithm for evaluating a term.

6*4. In Sections 2.4 and 2.5, we looked into theories of operations on a monoid and

some subcategories of such theories. The main results here are that the category

of algebraic operations is equivalent to the category of monoids (Theorem 2.5*10),

and that the category of algebraic operations is a coreflective subcategory of all

operations with free-forgetful adjunction (Theorem 2.5*14). Currently these two

sections lack concrete examples, so the most important future work is to study

more concrete examples with the abstract framework here. Specifically, theories

of operations on applicative functors seem interesting to explore.

6*5. In Chapter 3, we proposed a formal theory of modularity in algebraic

structures using the framework of lifting functors along fibrations, or model
transformers as how we called them in this context. As the first step of this

theory, a number of general and concrete constructions were presented (3.3*1).

Although this framework is only applied to models of computational effects in

this thesis, the author hopes that in the future this framework can be applied

to theories and models of more interesting programming languages to mitigate

one aspect of programming language theory nowadays that the author finds

very unsatisfactory – the fact that theorems about programming language are so

rarely reusable. However, the framework in this thesis is still quite crude, and

more subtle forms of modularity, such as the modularity in normalisation proofs

of programming languages, need to be uncovered with more careful analysis.

6*6. In Chapter 4, we gave an introduction to Sterling’s [2021] logical framework

and proved in detail the existence of classifying locally cartesian closed categories

for signatures defined in this logical framework (Theorem 4.4*10). The most

205



useful future work is probably mechanising the logical framework in a proof

assistant. It is not difficult to implement a type checker and an evaluator for

the logical framework by for example embedding it in Agda using postulates

and rewriting rules, but this is not enough for formalising models of signatures,

which do not live in the logical framework. Instead, a full formalisation will need

to carry out everything we did in Chapter 4 in a proof assistant (e.g. Cubical

Agda), which will be a much more ambitious formalisation project.

6*7. In Chapter 5, we defined Fω
ha

, an extension of Fω with (a restricted form

of) higher-order algebraic effects. We gave a denotational model of it using

realizability and proved the canonicity of closed terms using synthetic Tait

computability. A further extension with general recursion was introduced and

was modelled using synthetic domain theory. Future work abound:

1. We should be able to prove normalisation of open Fω
ha

-terms following the

lines of Sterling [2021]. A subtlety is that we will need in TTstc an impredicative
universe𝑈0 that contains the normalisation model and the syntactic model 𝑀 :

{𝔬𝔟} → JFω
haK𝑈0

, which means that in the first place the category of judgements

of Fω
ha

has to be constructed in some impredicative universe of the ambient

meta-theory, and as we commented in 4.5*2, this should be workable since we

did not rely on anything classical in Chapter 4.

2. The language Fω
ha

is a core calculus. Although we commented in Section 5.1.4

that important features such as effect systems and modular models may be

implemented as libraries, for practical use they should be supported in a more

seamless way, such as by elaboration or by directly baking into the language.

3. Although our categorical foundation allows arbitrary monoidal structures,

only monadic computations are considered in Fω
ha

for simplicity. Generalising Fω
ha

from monads to arbitrary user-defined (right closed) monoidal structures should

be very useful. There does not seem to be any theoretical obstacle, but designing

a user-friendly syntax, or allowing user-designed syntax, may be challenging.

4. Efficiency of implementations is also an interesting aspect. Note that

a continuation-passing style translation for Fω
ha

-computations can be readily

extracted from the realizability model of Fω
ha

, which will be (asymptotically)

faster than a naive implementation based on structural operational semantics,

but it should be possible to further optimise out computations at all for statically

known computations and handlers.

5. We based Fω
ha

on fine-grain call-by-value (FGCBV) rather than call-by-push-

value (CBPV) since our theory of higher-order algebraic effects was based on

monads/monoids rather than adjunctions, but CBPV is also possible and we

sketch the judgements for a CBPV variant of Fω
ha

(without stack judgements) here.

Again, starting with Fω, instead of co : RawHFunctor→ el ty→ J, we add to Fω a

206



new kind for computation types and a judgement for computation terms:

cty : RawHFunctor→ ki ctm : {H } → el (cty H) → J

We then add two new type formers for value-returning computations (called

returners by Levy [2003]) and thunk values:

F : (H : RawHFunctor) → el ty→ el (cty H) U : {H } → el (cty H) → el ty

We have value returning and sequential composition as usual:

val : {H,A} → tm A→ ctm (F H A)
let-in : {H,A,X} → ctm (F H A) → (tm A→ ctm X) → ctm X

Note that the second argument of let-in can be an arbitrary computation type

X : el (cty H) rather than just value-returning computations F H A : el (cty H).
Terms of a thunk type are in bĳection with the terms of the computation type:

U-iso : {H } {X : el (cty H)} → tm (U X) � ctm X

The computation judgement co H A in Fω
ha

then corresponds to ctm (F H A) in
the CBPV language. What we have in CBPV but not in FGCBV are function
computation types from a value type A to a computation type X:

_⇒𝑐_ : {H } → (A : el ty) → (X : el (cty H)) → el (cty H)
⇒c-iso : {H,A,X} → ctm (A⇒𝑐 X) � (tm A→ ctm X)

Finally, we have 𝐻-operations and evaluation by raw monads with 𝐻-operations:

th : RawHFunctor→ el ty→ el ty
th H A = U (F H A)
op : {H,A,X} → tm (H (th H) A) → (tm A→ ctm X) → ctm X
eval : {H,A} → (m : MonadAlg H) → ctm (F H A) → tm (m .M0 A)

The author sees no obvious difficulties in adapting the rest of the development

for Fω
ha

in Chapter 5 to this CBPV variant by interpreting 𝐹 and 𝑈 using the

Eilenberg-Moore adjunction of the monads that we used to model Fω
ha

.

6. The biggest limitation of Fω
ha

is probably that equations have no place in the

language, since we did not have dependent types, in particular equality/identity

types, in Fω
ha

. Adding (intensional) identity types to Fω
ha

is straightforward

Id : {A : el ty} → (a, b : tm A) → el ty
refl : {A : el ty} → (a : tm A) → el (Id a a)
J : {A : el ty} {C : (a, b : tm A) → Id a b→ el ty}
→ ((x : tm A) → C x x (refl x))
→ {a, b : tm A} → (p : Id a b) → C a b p

and Σ and Π types are no more difficult. With Id we can then define in Fω
ha

law-abiding functors, monads, higher-order functors, equational systems, etc.

207



These allow us to ensure that a user-defined monad to be used with eval must

satisfy the equations associated to the operations. However, what is challenging

is adding equalities from the algebraic theory of effectful operations to the

computations without breaking the canonicity of the type theory. This difficulty

is the same as that of adding quotient types to types theories without breaking

canonicity, which is possible in observational type theory [Pujet and Tabareau

2022] and cubical type theory [Coquand et al. 2018]. Apart from the difficulty

with quotients, having general recursion, impredicative polymorphism, and

dependent types all together is not straightforward either because the category

of well complete objects that we used in Section 5.6 as predomains is unlikely

locally cartesian closed, so we need to find another category of predomains.

∗ ∗ ∗

6*8. Thank you for getting this far into the thesis! I hope you enjoyed (at

least some part of) it even though the thesis was written in a rather personal

way, exploring the author’s point of view on higher-order algebraic effects,

using categorical and logical tools liberally, while not trying very hard (if at all)

to explain the background knowledge or convince the reader that the theory

developed here is immediately useful. By the standard of PLT top conferences

nowadays, the material of this thesis is almost unpublishable, yet I decided to

write the thesis in this manner for the following reasons.

Firstly, the writing of thesis has convinced me that profound scientific work

is more likely done if immediate applications (i.e. immediate publications) are

not constantly the top priority. There was no technical obstacles for me to write

everything in this thesis two years ago, but it is only when I was liberated from

the 25-page acmart format, all the ideas naturally flowed into my mind. I don’t

mean that these ideas are necessarily significant, but I do believe that the way of

writing it is more likely to lead us to bigger intellectual enrichment and scientific

discoveries than the current practice of our community.

Secondly, faced with the reality I know that this thesis may become the

tombstone of my academic life, so this thesis may be a now-or-never opportunity

for me to write something that I’m actually interested in. Still, I hope the thesis

will be of some value to future researchers interested in computational effects.

208



Bibliography

Samson Abramsky and Achim Jung. Domain Theory, page 1–168.

Oxford University PressOxford, 1995. ISBN 9781383026108.

doi:10.1093/oso/9780198537625.003.0001. URL https://www.cs.bham.

ac.uk/~axj/pub/papers/handy1.pdf.

Jiří Adámek. Free algebras and automata realizations in the language of categories.

Commentationes Mathematicae Universitatis Carolinae, 015(4):589–602, 1974. URL

http://eudml.org/doc/16649.

Jiří Adámek and Jiří Rosicky. Locally Presentable and Accessible Categories. London

Mathematical Society Lecture Note Series. Cambridge University Press, 1994.

doi:10.1017/CBO9780511600579.

Alejandro Aguirre, Shin-ya Katsumata, and Satoshi Kura. Weakest preconditions

in fibrations. Mathematical Structures in Computer Science, 32(4):472–510, 2022.

doi:10.1017/S0960129522000330.

Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified

types. In Peter Sestoft, editor, Programming Languages and Systems, pages 69–83.

Springer Berlin Heidelberg, 2006.

Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using

quotient inductive types. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, page

18–29, New York, NY, USA, 2016. Association for Computing Machinery.

doi:10.1145/2837614.2837638.

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical

reconstruction of a reduction free normalization proof. In David Pitt, David E.

Rydeheard, and Peter Johnstone, editors, Category Theory and Computer Science,
pages 182–199. Springer Berlin Heidelberg, 1995.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational

equality, now! In Proceedings of the 2007 Workshop on Programming Languages
Meets Program Verification, PLPV ’07, page 57–68. Association for Computing

Machinery, 2007. doi:10.1145/1292597.1292608.

209

https://doi.org/10.1093/oso/9780198537625.003.0001
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
http://eudml.org/doc/16649
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/1292597.1292608


Thorsten Altenkirch, Paolo Capriotti, Gabe Dĳkstra, Nicolai Kraus, and Fredrik

Nordvall Forsberg. Quotient inductive-inductive types. In Christel Baier and

Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures,
pages 293–310. Springer International Publishing, 2018.

Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau.

Setoid Type Theory – A Syntactic Translation, page 155–196. Springer International

Publishing, 2019. doi:10.1007/978-3-030-33636-3_7.

Carlo Angiuli and Daniel Gratzer. Principles of dependent type theory. Draft,

2024. URL https://www.danielgratzer.com/papers/type-theory-book.pdf.

M. A. Arbib and E. G. Manes. A categorist’s view of automata and systems. In

Ernest Gene Manes, editor, Category Theory Applied to Computation and Control,
pages 51–64, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

Nathanael Arkor. Monadic and Higher-Order Structure. PhD thesis, University of

Cambridge, 2022.

Andrea Asperti and Simone Martini. Categorical models of polymorphism.

Information and Computation, 99(1):1–79, 1992. doi:10.1016/0890-5401(92)90024-

A.

Robert Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19(3-4):335–376, 2009. doi:10.1017/S095679680900728X.

Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model

of dependent type theory. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, page 503–515.

Association for Computing Machinery, 2014. doi:10.1145/2535838.2535852.

Steve Awodey. Natural models of homotopy type theory. Mathematical Structures
in Computer Science, 28(2):241–286, 2018. doi:10.1017/S0960129516000268.

Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher)

inductive types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’18, page 76–85. Association for Computing

Machinery, 2018. doi:10.1145/3209108.3209130.

E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism.

Theoretical Computer Science, 70(1):35–64, 1990. doi:10.1016/0304-3975(90)90151-

7.

Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral

metrics via functor lifting. In Venkatesh Raman and S. P. Suresh, editors,

210

https://doi.org/10.1007/978-3-030-33636-3_7
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://doi.org/10.1016/0890-5401(92)90024-A
https://doi.org/10.1016/0890-5401(92)90024-A
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1016/0304-3975(90)90151-7
https://doi.org/10.1016/0304-3975(90)90151-7


34th International Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS 2014), volume 29 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 403–415, Dagstuhl, Germany, 2014. Schloss Dagstuhl

– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2014.403.

Andrej Bauer and Matĳa Pretnar. An effect system for algebraic effects and

handlers. Logical Methods in Computer Science, Volume 10, Issue 4, 2014.

doi:10.2168/LMCS-10(4:9)2014.

Jean Bénabou. Problèmes dans les topos: d’après le cours de Questions spéciales
de mathématique: rapport no 34, mars 1973, Seminaires de mathématique pure.
Université catholique de Louvain, 1973.

R. Blackwell, G.M. Kelly, and John Power. Two-dimensional monad theory. Journal
of Pure and Applied Algebra, 59(1):1–41, 1989. ISSN 00224049. doi:10.1016/0022-

4049(89)90160-6.

William W. Boone. The word problem. Proceedings of the National Academy of
Sciences, 44(10):1061–1065, 1958. doi:10.1073/pnas.44.10.1061.

Francis Borceux. Handbook of Categorical Algebra: Volume 1, Basic Category Theory,

volume 1. Cambridge University Press, 1994a.

Francis Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures,
volume 2. Cambridge University Press, 1994b.

Francis Borceux. Handbook of Categorical Algebra: Volume 3, Sheaf Theory, volume 3.

Cambridge University Press, 1994c.

John Cartmell. Generalised Algebraic Theories and Contextual Categories. PhD

thesis, University of Oxford, 1978. URL https://ncatlab.org/nlab/files/

Cartmell-Thesis.pdf.

John Cartmell. Generalised algebraic theories and contextual categories. Annals
of Pure and Applied Logic, 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.

Luca Castellano, Giorgio De Michelis, and Lucia Pomello. Concurrency vs

interleaving: An instructive example. Bulletin of the European Association for
Theoretical Computer Science (EATCS), 31, 1987.

Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in

denotational semantics. Technical report, In Proceedings of the Conference on

Category Theory and Computer Science, 1993.

Paul M. Cohn. Universal Algebra. Mathematics and Its Applications. Springer

Dordrecht, 1981. doi:10.1007/978-94-009-8399-1.

211

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1016/0022-4049(89)90160-6
https://doi.org/10.1073/pnas.44.10.1061
https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf
https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1007/978-94-009-8399-1


Thierry Coquand. An analysis of Girard’s paradox. In Proceedings of the First
Annual IEEE Symposium on Logic in Computer Science (LICS 1986), pages 227–236.

IEEE Computer Society Press, 1986.

Thierry Coquand. Reduction free normalisation for a proof irrelevant type of

propositions. Logical Methods in Computer Science, Volume 19, Issue 3, 2023.

doi:10.46298/lmcs-19(3:5)2023.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Computation, 76(2):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

Thierry Coquand, Carl Gunter, and Glynn Winskel. Domain theoretic mod-

els of polymorphism. Information and Computation, 81(2):123–167, 1989.

doi:10.1016/0890-5401(89)90068-0.

Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive

types in cubical type theory. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, page 255–264, New York,

NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355834.

doi:10.1145/3209108.3209197.

Roy L. Crole. Categories for Types. Cambridge University Press, 1994.

Brian Day. On closed categories of functors. In S. Mac Lane, H. Applegate,

M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street, M. Tierney, and

S. Swierczkowski, editors, Reports of the Midwest Category Seminar IV, pages

1–38, Berlin, Heidelberg, 1970. Springer Berlin Heidelberg.

Menno de Boer. A proof and formalization of the initiality conjecture of dependent

type theory, 2020. Licentiate defense over Zoom.

Marcelo Fiore. Discrete generalised polynomial functors, 2012. URL https:

//www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf. Talk given at ICALP 2012.

Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda

calculus, 2022. doi:10.48550/arXiv.2207.08777.

Marcelo Fiore and Chung-Kil Hur. Equational systems and free constructions.

In Proceedings of the 34th International Conference on Automata, Languages and
Programming, ICALP’07, page 607–618, Berlin, Heidelberg, 2007. Springer-

Verlag. doi:10.1007/978-3-540-73420-8_53.

Marcelo Fiore and Chung-Kil Hur. On the construction of free algebras for

equational systems. Theoretical Computer Science, 410(18):1704–1729, 2009.

doi:10.1016/j.tcs.2008.12.052.

212

https://doi.org/10.46298/lmcs-19(3:5)2023
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(89)90068-0
https://doi.org/10.1145/3209108.3209197
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
https://doi.org/10.48550/arXiv.2207.08777
https://doi.org/10.1007/978-3-540-73420-8_53
https://doi.org/10.1016/j.tcs.2008.12.052


Marcelo Fiore and Chung-Kil Hur. Second-order equational logic. In Anuj Dawar

and Helmut Veith, editors, Computer Science Logic, pages 320–335, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg.

Marcelo Fiore and Ola Mahmoud. Second-order algebraic theories. In Petr

Hliněný and Antonín Kučera, editors, Mathematical Foundations of Computer Sci-
ence 2010, pages 368–380, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Marcelo Fiore and Ola Mahmoud. Functorial semantics of second-order algebraic

theories, 2014.

Marcelo Fiore and Gordon Plotkin. An extension of models of Axiomatic

Domain Theory to models of Synthetic Domain Theory. In Gerhard Goos,

Juris Hartmanis, Jan Leeuwen, Dirk Dalen, and Marc Bezem, editors, Computer
Science Logic, volume 1258, pages 129–149. Springer Berlin Heidelberg, 1997.

doi:10.1007/3-540-63172-0_36.

Marcelo Fiore and Giuseppe Rosolini. Two models of synthetic domain theory.

Journal of Pure and Applied Algebra, 116(1–3):151–162, 1997. doi:10.1016/S0022-

4049(96)00164-8.

Marcelo Fiore and Philip Saville. List objects with algebraic structure. In Dale

Miller, editor, 2nd International Conference on Formal Structures for Computation
and Deduction (FSCD 2017), volume 84 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Germany, 2017. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSCD.2017.16.

Marcelo Fiore and Sam Staton. Substitution, jumps, and algebraic effects. Pro-
ceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer
Science Logic, CSL 2014 and the 29th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2014, 2014. doi:10.1145/2603088.2603163.

Marcelo Fiore and Dmitrĳ Szamozvancev. Formal metatheory of second-order

abstract syntax. Proc. ACM Program. Lang., 6(POPL), 2022. doi:10.1145/3498715.

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable

binding. In Proceedings. 14th Symposium on Logic in Computer Science, pages

193–202, 1999. doi:10.1109/LICS.1999.782615.

Marcelo Fiore, Andrew M. Pitts, and S. C. Steenkamp. Quotients, inductive

types, & quotient inductive types. Logical Methods in Computer Science, 18(2):

15:1–15:37, 2022. doi:10.46298/lmcs-18(2:15)2022.

Peter Freyd. On proving that 1 is an indecomposable projective in various free

categories. Manuscript, 1978.

213

https://doi.org/10.1007/3-540-63172-0_36
https://doi.org/10.1016/S0022-4049(96)00164-8
https://doi.org/10.1016/S0022-4049(96)00164-8
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.46298/lmcs-18(2:15)2022


Neil Ghani, Tarmo Uustalu, and Makoto Hamana. Explicit substitutions

and higher-order syntax. Higher-Order and Symbolic Computation, 2006.

doi:10.1007/s10990-006-8748-4.

Jeremy Gibbons, Donnacha Oisín Kidney, Tom Schrĳvers, and Nicolas Wu.

Breadth-first traversal via staging. In Ekaterina Komendantskaya, editor, Math-
ematics of Program Construction, pages 1–33, Cham, 2022. Springer International

Publishing. doi:10.1007/978-3-031-16912-0_1.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to defor-

estation. In Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, FPCA ’93, page 223–232, New York, NY, USA, 1993.

Association for Computing Machinery. doi:10.1145/165180.165214.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’État, Université Paris VII, 1972.

Jean-Yves Girard. The System F of variable types, fifteen years later. Theoretical
Computer Science, 45:159–192, 1986. doi:10.1016/0304-3975(86)90044-7.

Jean-Yves Girard. Proofs and types. Cambridge tracts in theoretical computer

science. Cambridge University Press, 1989.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial Algebra

Semantics and Continuous Algebras. Journal of the ACM, 24(1):68–95, 1977.

Daniel Gratzer. Syntax and semantics of modal type theory. PhD thesis,

Aarhus University, 2023. URL https://pure.au.dk/portal/en/publications/

syntax-and-semantics-of-modal-type-theory.

Daniel Gratzer and Jonathan Sterling. Syntactic categories for dependent type

theory: sketching and adequacy, 2021. URL https://arxiv.org/abs/2012.

10783.

Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for

Grothendieck topoi, 2022. URL https://arxiv.org/abs/2202.12012.

Philip Greenspun. The 10th rule of programming, 2003. URL

https://philip.greenspun.com/bboard/q-and-a-fetch-msg?msg_id=

000tgU&topic_id=22&topic=Ask+Philip. [Online; accessed 09-September-

2024].

Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. Decalf: A

directed, effectful cost-aware logical framework. Proceedings of the ACM on
Programming Languages, 8(POPL):273–301, 2024. doi:10.1145/3632852.

214

https://doi.org/10.1007/s10990-006-8748-4
https://doi.org/10.1007/978-3-031-16912-0_1
https://doi.org/10.1145/165180.165214
https://doi.org/10.1016/0304-3975(86)90044-7
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2202.12012
https://philip.greenspun.com/bboard/q-and-a-fetch-msg?msg_id=000tgU&topic_id=22&topic=Ask+Philip
https://philip.greenspun.com/bboard/q-and-a-fetch-msg?msg_id=000tgU&topic_id=22&topic=Ask+Philip
https://doi.org/10.1145/3632852


Robert Harper. Practical Foundations for Programming Languages. Cambridge

University Press, Cambridge, 2nd edition, 2016.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.

Ralf Hinze. Kan extensions for program optimisation or: Art and Dan explain

an old trick. In Jeremy Gibbons and Pablo Nogueira, editors, Mathematics of
Program Construction, pages 324–362, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg. doi:10.1007/978-3-642-31113-0_16.

Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data

structure. Journal of Functional Programming, 16(02):197, 2005. ISSN 1469-7653.

doi:10.1017/s0956796805005769.

Ralf Hinze, Thomas Harper, and Daniel W. H. James. Theory and practice

of fusion. In Jurriaan Hage and Marco T. Morazán, editors, Implementation
and Application of Functional Languages, pages 19–37, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-24276-2_2.

Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis,

University of Edinburgh, 1995a. URL https://era.ed.ac.uk/handle/1842/

399.

Martin Hofmann. On the interpretation of type theory in locally cartesian

closed categories. Lecture Notes in Computer Science, 933:427–441, 1995b.

doi:10.1007/bfb0022273.

Martin Hofmann. Syntax and semantics of dependent types. In Andrew M. Pitts

and P.Editors Dybjer, editors, Semantics and Logics of Computation, Publications

of the Newton Institute, page 79–130. Cambridge University Press, 1997.

doi:10.1017/CBO9780511526619.004.

Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory.

Oxford University Press, 1998. doi:10.1093/oso/9780198501275.003.0008.

Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes.

Unpublished note, 1999. URL https://www2.mathematik.tu-darmstadt.de/

~streicher/NOTES/lift.pdf.

Kuen-Bang Hou (Favonia). Higher-Dimensional Types in the Mechanization of
Homotopy Theory. PhD thesis, Carnegie Mellon University, 2017. URL https:

//favonia.org/thesis.

John Hughes. A novel representation of lists and its application to the function

"reverse". Inf. Process. Lett., 22:141–144, 1986.

215

https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1017/s0956796805005769
https://doi.org/10.1007/978-3-642-24276-2_2
https://era.ed.ac.uk/handle/1842/399
https://era.ed.ac.uk/handle/1842/399
https://doi.org/10.1007/bfb0022273
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1093/oso/9780198501275.003.0008
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://favonia.org/thesis
https://favonia.org/thesis


John Hughes. Generalising monads to arrows. Science of Computer Programming,

37(1):67–111, 2000. doi:10.1016/S0167-6423(99)00023-4.

J.M.E. Hyland. The Effective Topos, volume 110, page 165–216. Elsevier, 1982.

doi:10.1016/S0049-237X(09)70129-6.

J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic, 40(2):

135–165, 1988. doi:10.1016/0168-0072(88)90018-8.

J.M.E. Hyland. First steps in synthetic domain theory. In Aurelio Car-

boni, Maria Cristina Pedicchio, and Guiseppe Rosolini, editors, Category
Theory, volume 1488, pages 131–156. Springer Berlin Heidelberg, 1991.

doi:10.1007/BFb0084217.

J.M.E. Hyland, Gordon Plotkin, and John Power. Combining effects:

Sum and tensor. Theoretical Computer Science, 357(1):70–99, 2006.

doi:10.1016/j.tcs.2006.03.013.

Martin Hyland. Classical lambda calculus in modern dress. Mathematical Struc-
tures in Computer Science, 27(5):762–781, 2017. doi:10.1017/S0960129515000377.

Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic

and the Foundations of Mathematics. North Holland, Amsterdam, 1999.

Bart Jacobs, Chris Heunen, and Ichiro Hasuo. Categorical semantics

for arrows. Journal of Functional Programming, 19(3-4):403–438, 2009.

doi:10.1017/S0956796809007308.

Mauro Jaskelioff. Modular monad transformers. In Giuseppe Castagna, editor,

Programming Languages and Systems, pages 64–79, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-00590-9_6.

Mauro Jaskelioff and Eugenio Moggi. Monad transformers as monoid

transformers. Theoretical Computer Science, 411:4441–4466, 2010.

doi:10.1016/j.tcs.2010.09.011.

Mamuka Jibladze. A presentation of the initial lift-algebra. Journal of Pure and
Applied Algebra, 116(1–3):185–198, 1997. doi:10.1016/S0022-4049(96)00108-9.

Niles Johnson and Donald Yau. 2-dimensional categories, 2020. URL https:

//arxiv.org/abs/2002.06055.

Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In

Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applications,
volume 664 of Lecture Notes in Computer Science, pages 245–257. Springer-Verlag,

1993. doi:10.1007/BFb0037110.

216

https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/10.1016/0168-0072(88)90018-8
https://doi.org/10.1007/BFb0084217
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1007/978-3-642-00590-9_6
https://doi.org/10.1016/j.tcs.2010.09.011
https://doi.org/10.1016/S0022-4049(96)00108-9
https://arxiv.org/abs/2002.06055
https://arxiv.org/abs/2002.06055
https://doi.org/10.1007/BFb0037110


Ohad Kammar and Gordon Plotkin. Algebraic foundations for effect-dependent

optimisations. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 349–360. ACM, 2012.

doi:10.1145/2103656.2103698.

Ohad Kammar, Paul Blain Levy, Sean K. Moss, and Sam Staton. A monad for full

ground reference cells. Proceedings - Symposium on Logic in Computer Science,
2017. doi:10.1109/LICS.2017.8005109.

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quo-

tient inductive-inductive types. Proc. ACM Program. Lang., 3(POPL), 2019.

doi:10.1145/3290315.

Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-

induction, induction is enough. In Marc Bezem and Assia Mahboubi, ed-

itors, 25th International Conference on Types for Proofs and Programs (TYPES
2019), volume 175 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 6:1–6:30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

doi:10.4230/LIPIcs.TYPES.2019.6.

Chris Kapulkin and Yufeng Li. Extensional concepts in intensional type theory,

revisited, 2023. doi:https://doi.org/10.48550/arXiv.2310.05706.

Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of

Univalent Foundations (after Voevodsky). Journal of the European Mathematical
Society, 23(6):2071–2126, 2021. doi:10.4171/jems/1050.

Shin-ya Katsumata. A Semantic Formulation of ⊤⊤-Lifting and Logical Predicates for
Computational Metalanguage, volume 3634 of Lecture Notes in Computer Science,
page 87–102. Springer Berlin Heidelberg, 2005. doi:10.1007/11538363_8.

Shin-ya Katsumata. Parametric effect monads and semantics of effect systems.

In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, page 633–645, New York, NY, USA, 2014.

Association for Computing Machinery. doi:10.1145/2535838.2535846.

Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. Codensity lifting of monads

and its dual. Logical Methods in Computer Science, Volume 14, Issue 4, 2018.

doi:10.23638/LMCS-14(4:6)2018. URL https://lmcs.episciences.org/4924.

Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu, and Nicolas Wu. Flexible

presentations of graded monads. Proc. ACM Program. Lang., 6(ICFP), 2022.

doi:10.1145/3547654.

217

https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1145/3290315
https://doi.org/10.4230/LIPIcs.TYPES.2019.6
https://doi.org/https://doi.org/10.48550/arXiv.2310.05706
https://doi.org/10.4171/jems/1050
https://doi.org/10.1007/11538363_8
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.23638/LMCS-14(4:6)2018
https://lmcs.episciences.org/4924
https://doi.org/10.1145/3547654


G. M. Kelly. Structures defined by finite limits in the enriched context, i. Cahiers
de Topologie et Géométrie Différentielle Catégoriques, 23(1):3–42, 1982.

G.M. Kelly and John Power. Adjunctions whose counits are coequalizers, and

presentations of finitary enriched monads. Journal of Pure and Applied Algebra,

89(1):163–179, 1993. doi:10.1016/0022-4049(93)90092-8.

Donnacha Oisín Kidney and Nicolas Wu. Algebras for weighted search. Proc.
ACM Program. Lang., 5(ICFP), 2021. doi:10.1145/3473577.

Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23:

113–120, 1972. doi:10.1007/BF01304852.

András Kovács. Type-theoretic signatures for algebraic theories and inductive types.
PhD thesis, Eötvös Loránd University, 2023. URL https://arxiv.org/abs/

2302.08837.

J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge

University Press, 1986.

Joachim Lambek. The mathematics of sentence structure. The American Mathemati-
cal Monthly, 65(3):154–170, 1958. URL http://www.jstor.org/stable/2310058.

Joachim Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151–161, 1968. doi:10.1007/BF01110627.

Søren Bøgh Lassen. Relational Reasoning about Functions and Nondeterminism. PhD

thesis, Aarhus University, 1998. URL https://www.brics.dk/DS/98/2/. Series:

BRICS Dissertation Series.

F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the
National Academy of Sciences, 50(5):869–872, 1963a. doi:10.1073/pnas.50.5.869.

F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia

University, 1963b. URL http://www.tac.mta.ca/tac/reprints/articles/5/

tr5abs.html.

Daan Leĳen. Koka: Programming with row polymorphic effect types.

Electronic Proceedings in Theoretical Computer Science, 153:100–126, 2014.

doi:10.4204/eptcs.153.8.

Paul Blain Levy. Possible world semantics for general storage in call-by-value. In

Julian Bradfield, editor, Computer Science Logic, volume 2471 of Lecture Notes
in Computer Science, page 232–246, Berlin, Heidelberg, 2002. Springer Berlin

Heidelberg. doi:10.1007/3-540-45793-3_16.

218

https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.1145/3473577
https://doi.org/10.1007/BF01304852
https://arxiv.org/abs/2302.08837
https://arxiv.org/abs/2302.08837
http://www.jstor.org/stable/2310058
https://doi.org/10.1007/BF01110627
https://www.brics.dk/DS/98/2/
https://doi.org/10.1073/pnas.50.5.869
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.1007/3-540-45793-3_16


Paul Blain Levy. Call-By-Push-Value. Springer Netherlands, 2003. doi:10.1007/978-

94-007-0954-6.

Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in

call-by-value programming languages. Information and Computation, 185(2):

182–210, 2003. doi:10.1016/S0890-5401(03)00088-9.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular

interpreters. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’95, pages 333–343. ACM, 1995. doi:10.1145/199448.199528.

Sam Lindley and James Cheney. Row-based effect types for database integration.

In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’12, page 91–102. Association for Computing Machinery,

2012. doi:10.1145/2103786.2103798.

Sam Lindley and Ian Stark. Reducibility and ⊤⊤-lifting for computation types.

In Paweł Urzyczyn, editor, Typed Lambda Calculi and Applications, volume 3461

of Lecture Notes in Computer Science, page 262–277. Springer Berlin Heidelberg,

2005. doi:10.1007/11417170_20.

Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are

meticulous, monads are promiscuous. Electronic Notes in Theoretical Computer
Science, 229(5):97–117, 2011. ISSN 1571-0661. doi:10.1016/j.entcs.2011.02.018.

Sam Lindley, Cristina Matache, Sean Moss, Sam Staton, Nicolas Wu, and Zhixuan

Yang. Scoped Effects as Parameterized Algebraic Theories, page 3–21. Springer

Nature Switzerland, 2024. doi:10.1007/978-3-031-57262-3_1.

F. E. J. Linton. Some aspects of equational categories. In S. Eilenberg, D. K. Harri-

son, S. Mac Lane, and H. Röhrl, editors, Proceedings of the Conference on Categorical
Algebra, pages 84–94. Springer Berlin Heidelberg, 1966. doi:10.1007/978-3-642-

99902-4_3.

John R. Longley. Realizability Toposes and Language Semantics. PhD thesis, Univer-

sity of Edinburgh, 1995. URL https://era.ed.ac.uk/handle/1842/402.

John R. Longley and Alex K. Simpson. A uniform approach to domain theory in

realizability models. Mathematical Structures in Computer Science, 7(5):469–505,

1997. doi:10.1017/S0960129597002387.

Fosco Loregian. (Co)end Calculus. London Mathematical Society Lecture Note

Series. Cambridge University Press, 2021. doi:10.1017/9781108778657.

219

https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1007/11417170_20
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1007/978-3-031-57262-3_1
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-3-642-99902-4_3
https://era.ed.ac.uk/handle/1842/402
https://doi.org/10.1017/S0960129597002387
https://doi.org/10.1017/9781108778657


J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’88, page 47–57. Association for Computing Machinery, 1988.

doi:10.1145/73560.73564.

Zhaohui Luo. Computation and reasoning: a type theory for computer science. Oxford

University Press, 1994.

Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in

Mathematics. Springer, Berlin, 2nd edition, 1998.

Saunders MacLane. Categorical algebra. Bulletin of the American Mathematical
Society, 71(1):40 – 106, 1965. doi:bams/1183526392.

Maria Emilia Maietti. Modular correspondence between dependent type theories

and categories including pretopoi and topoi. Mathematical Structures in Computer
Science, 15(6):1089–1149, 2005. doi:10.1017/S0960129505004962.

Martin Markl. Operads and PROPs, 2006. URL https://arxiv.org/abs/math/

0601129.

Jean-Pierre Marquis and Gonzalo Reyes. The history of categorical logic: 1963-

1977. In Dov M. Gabbay, John Woods, and Akihiro Kanamori, editors, Handbook
of the history of logic. Elsevier, 2004.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose

and J. C. Shepherdson, editors, Logic Colloquium 73 Proceedings of the Logic
Colloquium, pages 73–118. Elsevier, 1975a.

Per Martin-Löf. About models for intuitionistic type theories and the notion

of definitional equality. In Studies in Logic and the Foundations of Mathematics,
volume 82, pages 81–109. Elsevier, 1975b.

Per Martin-Löf. Intuitionistic type theory, volume 6. Bibliopolis Naples, 1984.

Christian Maurer. Universes in topoi. In F. William Lawvere, Christian Maurer,

and Gavin C. Wraith, editors, Model Theory and Topoi, pages 284–296. Springer

Berlin Heidelberg, 1975. doi:10.1007/BFb0061298.

Conor McBride. Turing-completeness totally free. In Ralf Hinze and Janis Voigtlän-

der, editors, Mathematics of Program Construction, pages 257–275. Springer

International Publishing, 2015. doi:10.1007/978-3-319-19797-5_13.

Conor Mcbride and Ross Paterson. Applicative programming with effects. Journal
of Functional Programming, 18(1):1–13, 2008. doi:10.1017/S0956796807006326.

220

https://doi.org/10.1145/73560.73564
https://doi.org/bams/1183526392
https://doi.org/10.1017/S0960129505004962
https://arxiv.org/abs/math/0601129
https://arxiv.org/abs/math/0601129
https://doi.org/10.1007/BFb0061298
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1017/S0956796807006326


Dylan McDermott and Tarmo Uustalu. Flexibly graded monads and graded

algebras. In Ekaterina Komendantskaya, editor, Mathematics of Program Con-
struction, pages 102–128, Cham, 2022a. Springer International Publishing.

doi:10.1007/978-3-031-16912-0_4.

Dylan McDermott and Tarmo Uustalu. What makes a strong monad?

Electronic Proceedings in Theoretical Computer Science, 360:113–133, 2022b.

doi:10.4204/EPTCS.360.6.

Eugenio Moggi. Interpretation of second order lambda-calculus in categories.

Unpublished, 1987.

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings.
Fourth Annual Symposium on Logic in Computer Science, pages 14–23, 1989a.

doi:10.1109/LICS.1989.39155.

Eugenio Moggi. An abstract view of programming languages. Technical Report

ECS-LFCS-90-113, Edinburgh University, Department of Computer Science,

1989b.

Eugenio Moggi. Notions of computation and monads. Information and Computation,

93(1):55–92, 1991. doi:10.1016/0890-5401(91)90052-4.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. Build systems à la carte.

Proc. ACM Program. Lang., 2(ICFP), 2018. doi:10.1145/3236774.

Clive Newstead. Algebraic Models of Dependent Type Theory. PhD thesis, Carnegie

Mellon University, 2018.

Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A cost-aware log-

ical framework. Proc. ACM Program. Lang., 6(POPL), 2022. doi:10.1145/3498670.

nLab. Cantor’s theorem. https://ncatlab.org/nlab/show/Cantor%27s+theorem,

2024a. Revision 25.

nLab. complete small category. https://ncatlab.org/nlab/show/complete+

small+category, 2024b. Revision 16.

nLab. concept with an attitude. https://ncatlab.org/nlab/show/concept+with+

an+attitude, 2024. Revision 23.

nLab. free monad. https://ncatlab.org/nlab/show/free+monad, 2024a. Revi-

sion 20.

nLab. mate. https://ncatlab.org/nlab/show/mate, 2024b. Revision 26.

221

https://doi.org/10.1007/978-3-031-16912-0_4
https://doi.org/10.4204/EPTCS.360.6
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3236774
https://doi.org/10.1145/3498670
https://ncatlab.org/nlab/show/Cantor%27s+theorem
https://ncatlab.org/nlab/revision/Cantor%27s+theorem/25
https://ncatlab.org/nlab/show/complete+small+category
https://ncatlab.org/nlab/show/complete+small+category
https://ncatlab.org/nlab/revision/complete+small+category/16
https://ncatlab.org/nlab/show/concept+with+an+attitude
https://ncatlab.org/nlab/show/concept+with+an+attitude
https://ncatlab.org/nlab/revision/concept+with+an+attitude/23
https://ncatlab.org/nlab/show/free+monad
https://ncatlab.org/nlab/revision/free+monad/20
https://ncatlab.org/nlab/revision/free+monad/20
https://ncatlab.org/nlab/show/mate
https://ncatlab.org/nlab/revision/mate/26


nLab. monads of probability, measures, and valuations. https://ncatlab.org/

nlab/show/monads+of+probability%2C+measures%2C+and+valuations, 2024c.

Revision 45.

nLab. slice of presheaves is presheaves on slice. https://ncatlab.org/nlab/

show/slice+of+presheaves+is+presheaves+on+slice, 2024d. Revision 20.

Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in Martin-Löf’s
type theory, volume 200. Oxford University Press, 1990.

Ulf Norell. Dependently typed programming in Agda. In Pieter Koopman, Rinus

Plasmeĳer, and Doaitse Swierstra, editors, Advanced Functional Programming:
6th International School, AFP 2008, Heĳen, The Netherlands, May 2008, Revised
Lectures, pages 230–266. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-

642-04652-0_5.

M. Okada and P. J. Scott. A note on rewriting theory for uniqueness of iteration.

Theory and Applications of Categories, 6:47–64, 2000. URL http://www.tac.mta.

ca/tac/volumes/6/n4/6-04abs.html.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

1998. ISBN 9780511530104. doi:10.1017/cbo9780511530104.

Jaap van Oosten. Realizability: an introduction to its categorical side. Studies in logic

and the foundations of mathematics. Elsevier, Oxford, 1st edition, 2008.

Dominic Orchard, Philip Wadler, and Harley Eades. Unifying graded and

parameterised monads. Electronic Proceedings in Theoretical Computer Science,
EPTCS, 317(MSFP):18–38, 2020. doi:10.4204/EPTCS.317.2.

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999. doi:10.2307/421090.

Ross Paterson. Constructing applicative functors. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7342 LNCS:300–323, 2012. doi:10.1007/978-3-642-31113-0_15.

Wesley Phoa. Domain Theory in Realizability Toposes. PhD thesis, Univer-

sity of Edinburgh, 1991. URL https://www.lfcs.inf.ed.ac.uk/reports/91/

ECS-LFCS-91-171/.

Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and

modest sets. Technical Report ECS-LFCS-92-208, University of Edinburgh,

1992. URL https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-208/.

222

https://ncatlab.org/nlab/show/monads+of+probability%2C+measures%2C+and+valuations
https://ncatlab.org/nlab/show/monads+of+probability%2C+measures%2C+and+valuations
https://ncatlab.org/nlab/revision/monads+of+probability%2C+measures%2C+and+valuations/45#detailed_list
https://ncatlab.org/nlab/show/slice+of+presheaves+is+presheaves+on+slice
https://ncatlab.org/nlab/show/slice+of+presheaves+is+presheaves+on+slice
https://ncatlab.org/nlab/revision/slice+of+presheaves+is+presheaves+on+slice/20
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
http://www.tac.mta.ca/tac/volumes/6/n4/6-04abs.html
http://www.tac.mta.ca/tac/volumes/6/n4/6-04abs.html
https://doi.org/10.1017/cbo9780511530104
https://doi.org/10.4204/EPTCS.317.2
https://doi.org/10.2307/421090
https://doi.org/10.1007/978-3-642-31113-0_15
https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171/
https://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-171/
https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-208/


Ruben P. Pieters, Exequiel Rivas, and Tom Schrĳvers. Generalized monoi-

dal effects and handlers. Journal of Functional Programming, 30:e23, 2020.

doi:10.1017/S0956796820000106.

Maciej Piróg, Tom Schrĳvers, Nicolas Wu, and Mauro Jaskelioff. Syntax and

semantics for operations with scopes. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, page 809–818. Association

for Computing Machinery, 2018. doi:10.1145/3209108.3209166.

Andrew M. Pitts. Polymorphism is set theoretic, constructively, page 12–39. Springer

Berlin Heidelberg, 1987. doi:10.1007/3-540-18508-9_18.

Andrew M. Pitts. Categorical logic. In Handbook of Logic in Computer Sci-
ence: Volume 5. Algebraic and Logical Structures. Oxford University Press, 2001.

doi:10.1093/oso/9780198537816.003.0002.

Gordon Plotkin. Lambda definability and logical relations. Memorandum SAI-

RM-4, University of Edinburgh, 1973. URL https://homepages.inf.ed.ac.

uk/gdp/publications/logical_relations_1973.pdf.

Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):

452–487, 1976. doi:10.1137/0205035.

Gordon Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5(3):223–255, 1977. doi:10.1016/0304-3975(77)90044-5.

Gordon Plotkin. Lambda-definability in the full type hierarchy. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 363–373. Academic Press, 1980. URL https:

//homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf.

Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism, page

361–375. Springer-Verlag, 1993. doi:10.1007/bfb0037118.

Gordon Plotkin and John Power. Semantics for algebraic operations. Electronic
Notes in Theoretical Computer Science, 45:332–345, 2001a. doi:10.1016/S1571-

0661(04)80970-8.

Gordon Plotkin and John Power. Semantics for algebraic operations. Electronic
Notes in Theoretical Computer Science, 45:332–345, 2001b. doi:10.1016/S1571-

0661(04)80970-8.

Gordon Plotkin and John Power. Notions of computation determine monads.

In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science
and Computation Structures, 5th International Conference, FOSSACS 2002, pages

342–356. Springer, 2002. doi:10.1007/3-540-45931-6_24.

223

https://doi.org/10.1017/S0956796820000106
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1007/3-540-18508-9_18
https://doi.org/10.1093/oso/9780198537816.003.0002
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://doi.org/10.1137/0205035
https://doi.org/10.1016/0304-3975(77)90044-5
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
https://doi.org/10.1007/bfb0037118
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24


Gordon Plotkin and John Power. Algebraic Operations and Generic Effects.

Applied Categorical Structures, 11(1):69–94, 2003. doi:10.1023/A:1023064908962.

Gordon Plotkin and John Power. Computational effects and operations: An

overview. Electronic Notes in Theoretical Computer Science, 73:149–163, 2004.

doi:10.1016/j.entcs.2004.08.008.

Gordon Plotkin and Matĳa Pretnar. Handlers of algebraic effects. In Giuseppe

Castagna, editor, Programming Languages and Systems, pages 80–94. Springer

Berlin Heidelberg, 2009. doi:10.1007/978-3-642-00590-9_7.

Gordon Plotkin and Matĳa Pretnar. Handling algebraic effects. Logical Methods
in Computer Science, 9(4), 2013. doi:10.2168/lmcs-9(4:23)2013.

Loïc Pujet and Nicolas Tabareau. Observational equality: now for good. Proc.
ACM Program. Lang., 6(POPL), 2022. doi:10.1145/3498693.

Bernhard Reus. Program verification in synthetic domain theory. PhD thesis, Lud-

wig Maximilian University of Munich, 1996. URL https://www2.mathematik.

tu-darmstadt.de/~streicher/THESES/reus.pdf.

Bernhard Reus. Formalizing Synthetic Domain Theory. Journal of Automated
Reasoning, 23(3):411–444, 1999. doi:10.1023/A:1006258506401.

Bernhard Reus and Thomas Streicher. General synthetic domain theory – a

logical approach. Mathematical Structures in Computer Science, 9(2):177–223,

1999. doi:10.1017/S096012959900273X.

John C. Reynolds. Towards a theory of type structure. In Bernard Robinet, editor,

Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France,
April 9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423.

Springer, 1974. doi:10.1007/3-540-06859-7_148.

John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, 1983.

Exequiel Rivas and Mauro Jaskelioff. Notions of computation as

monoids. Journal of Functional Programming, 27(September), 2017.

doi:10.1017/S0956796817000132.

Edmund Robinson. Variations on algebra: Monadicity and generalisations of

equational theories. 13(3):308–326, 2002. doi:10.1007/s001650200014.

Giuseppe Rosolini. Continuity and effectiveness in topoi. PhD thesis, University of

Oxford, 1986.

224

https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/lmcs-9(4:23)2013
https://doi.org/10.1145/3498693
https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/reus.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/THESES/reus.pdf
https://doi.org/10.1023/A:1006258506401
https://doi.org/10.1017/S096012959900273X
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1017/S0956796817000132
https://doi.org/10.1007/s001650200014


Tom Schrĳvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad

transformers and modular algebraic effects: What binds them together. In

Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019, pages 98–113, 2019.

doi:10.1145/3331545.3342595.

Dana Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes, Algebraic
Geometry and Logic, pages 97–136, Berlin, Heidelberg, 1972. Springer Berlin

Heidelberg. doi:10.1007/BFb0073967.

Dana Scott. Data Types as Lattices. SIAM Journal on Computing, 5(3):522–587,

1976. doi:10.1137/0205037.

Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121(1):411–440, 1993. doi:10.1016/0304-3975(93)90095-B.

R. A.G. Seely. Locally cartesian closed categories and type theory. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 95(1):33–48, 1984.

doi:10.1017/S0305004100061284.

Michael A. Shulman. Set theory for category theory, 2008. URL https://arxiv.

org/abs/0810.1279.

Alex Simpson. Computational adequacy for recursive types in models of intu-

itionistic set theory. Annals of Pure and Applied Logic, 130(1-3):207–275, 2004.

doi:10.1016/j.apal.2003.12.005.

Alex K. Simpson. Computational Adequacy in an Elementary Topos. In Computer
Science Logic, volume 1584, pages 323–342. Springer Berlin Heidelberg, 1999.

doi:10.1007/10703163_22. Series Title: Lecture Notes in Computer Science.

Michael B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):

23–36, 1978. doi:10.1016/0022-0000(78)90048-X.

Ian Stark. Free-algebra models for the 𝜋-calculus. Theoretical Computer Science,
390(2):248–270, 2008. doi:10.1016/j.tcs.2007.09.024. Foundations of Software

Science and Computational Structures.

R. Statman. Logical relations and the typed 𝜆-calculus. Information and Control,
65(2):85–97, 1985. doi:10.1016/S0019-9958(85)80001-2.

Sam Staton. Completeness for algebraic theories of local state. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6014 LNCS:48–63, 2010. doi:10.1007/978-3-642-

12032-9_5.

225

https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1137/0205037
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1017/S0305004100061284
https://arxiv.org/abs/0810.1279
https://arxiv.org/abs/0810.1279
https://doi.org/10.1016/j.apal.2003.12.005
https://doi.org/10.1007/10703163_22
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/j.tcs.2007.09.024
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1007/978-3-642-12032-9_5
https://doi.org/10.1007/978-3-642-12032-9_5


Jonathan Sterling. Algebraic type theory and universe hierarchies, 2019.

doi:10.48550/arXiv.1902.08848.

Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory
of Cubical Type Theory. PhD thesis, Carnegie Mellon University, 2021. Version

1.1, revised May 2022.

Jonathan Sterling and Carlo Angiuli. Normalization for cubical type theory.

Proceedings - Symposium on Logic in Computer Science, 2021-June:1–22, 2021.

doi:10.1109/LICS52264.2021.9470719. arXiv: 2101.11479.

Jonathan Sterling and Robert Harper. Logical relations as types: Proof-

relevant parametricity for program modules. Journal of the ACM, 68(6), 2021.

doi:10.1145/3474834.

Jonathan Sterling and Robert Harper. Sheaf semantics of termination-insensitive

noninterference. In Amy P. Felty, editor, 7th International Conference on Formal
Structures for Computation and Deduction (FSCD 2022), volume 228 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:19. Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSCD.2022.5.

Jonathan Sterling and Bas Spitters. Normalization by gluing for free 𝜆-theories,

2018. doi:10.48550/arXiv.1809.08646.

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Denotational semantics

of general store and polymorphism, 2023. URL https://arxiv.org/abs/2210.

02169.

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Towards univalent reference

types: The impact of univalence on denotational semantics. In Aniello Murano

and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science
Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 47:1–47:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2024.47.

Thomas Streicher. Semantics of Type Theory: Correctness, Completeness and Indepen-
dence Results. Birkhäuser Boston, Boston, MA, 1991. doi:10.1007/978-1-4612-

0433-6_2.

Thomas Streicher. Universes in toposes. From Sets and Types to Topology and
Analysis: Towards practical foundations for constructive mathematics., 48, 2005.

doi:10.1093/acprof:oso/9780198566519.001.0001.

Thomas Streicher. Domain-theoretic foundations of functional programming. World

Scientific Publishing Company, 2006.

226

https://doi.org/10.48550/arXiv.1902.08848
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1145/3474834
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://doi.org/10.48550/arXiv.1809.08646
https://arxiv.org/abs/2210.02169
https://arxiv.org/abs/2210.02169
https://doi.org/10.4230/LIPIcs.CSL.2024.47
https://doi.org/10.1007/978-1-4612-0433-6_2
https://doi.org/10.1007/978-1-4612-0433-6_2
https://doi.org/10.1093/acprof:oso/9780198566519.001.0001


Thomas Streicher. Fibered categories a la Jean Benabou, 2023. URL https:

//arxiv.org/abs/1801.02927.

William W. Tait. Intensional interpretations of functionals of finite type i. The
Journal of Symbolic Logic, 32(2):198–212, 1967. URL http://www.jstor.org/

stable/2271658.

Robert D Tennent. Semantics of programming languages, volume 1. Prentice Hall

New York, 1991.

David A Turner. Total functional programming. J. Univers. Comput. Sci., 10(7):

751–768, 2004. doi:10.3217/JUCS-010-07-0751.

Taichi Uemura. Abstract and concrete type theories. PhD thesis, Univer-

sity of Amsterdam, 2021. URL https://dare.uva.nl/search?identifier=

41ff0b60-64d4-4003-8182-c244a9afab3b.

Taichi Uemura. A general framework for the semantics of type the-

ory. Mathematical Structures in Computer Science, 33(3):134–179, 2023.

doi:10.1017/s0960129523000208.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, 2013.

Birthe van den Berg and Tom Schrĳvers. A framework for higher-order effects &

handlers. Sci. Comput. Program., 234(C), 2024. doi:10.1016/j.scico.2024.103086.

Vladimir Voevodsky. A C-system defined by a universe category. Theory and
Applications of Categories, 30:1181–1214, 2015.

Vladimir Voevodsky. The (Π,𝜆)-structures on the C-systems defined by universe

categories. Theory and Applications of Categories, 32:113–121, 2017.

Philip Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture - FPCA
’89, volume 19, page 347–359. ACM Press, 1989. doi:10.1145/99370.99404.

Glynn Winskel. On powerdomains and modality. Theoretical Computer Science,
36:127–137, 1985. doi:10.1016/0304-3975(85)90037-4.

Nicolas Wu, Tom Schrĳvers, and Ralf Hinze. Effect handlers in scope. Proceedings
of the 2014 ACM SIGPLAN Symposium on Haskell - Haskell ’14, pages 1–12, 2014.

doi:10.1145/2633357.2633358.

Zhixuan Yang. Efficient free applicatives from Okasaki’s functional

data structures, 2022. URL https://gist.github.com/yangzhixuan/

07c2b3abf676b797cdfa0e77aa7700e8.

227

https://arxiv.org/abs/1801.02927
https://arxiv.org/abs/1801.02927
http://www.jstor.org/stable/2271658
http://www.jstor.org/stable/2271658
https://doi.org/10.3217/JUCS-010-07-0751
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://doi.org/10.1017/s0960129523000208
https://homotopytypetheory.org/book
https://doi.org/10.1016/j.scico.2024.103086
https://doi.org/10.1145/99370.99404
https://doi.org/10.1016/0304-3975(85)90037-4
https://doi.org/10.1145/2633357.2633358
https://gist.github.com/yangzhixuan/07c2b3abf676b797cdfa0e77aa7700e8
https://gist.github.com/yangzhixuan/07c2b3abf676b797cdfa0e77aa7700e8


Zhixuan Yang and Nicolas Wu. Reasoning about effect interaction by fusion.

Proc. ACM Program. Lang., 5(ICFP), 2021. doi:10.1145/3473578.

Zhixuan Yang and Nicolas Wu. Modular models of monoids with operations.

Proc. ACM Program. Lang., 7(ICFP), 2023. doi:10.1145/3607850.

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom

Schrĳvers. Structured Handling of Scoped Effects, page 462–491. Springer

International Publishing, 2022. doi:10.1007/978-3-030-99336-8_17.

228

https://doi.org/10.1145/3473578
https://doi.org/10.1145/3607850
https://doi.org/10.1007/978-3-030-99336-8_17


Appendix A

Complete Signatures of Languages

This appendix contains the full signatures of the languages in this thesis.

A.1 Signature of System Fω
ha

The following is the signature of System Fω
ha

from Section 5.1.

* Kinds

ki : J

el : ki→ J
ty : ki
_⇒𝑘_ : ki→ ki→ ki

* Elements of the kind of types

unit : el ty
bool : el ty
_⇒𝑡_ : el ty→ el ty→ el ty
All : (k : ki) → (el k→ el ty) → el ty

* Elements of function kinds

record A � B : J where

fwd : A→ B
bwd : B→ A
_ : (a : A) → bwd (fwd a) = a
_ : (b : B) → fwd (bwd b) = b
⇒k-iso : {A, B : ki} → el (A⇒𝑘 B) � (el A→ el B)

* Terms

tm : el ty→ J
unit-iso : tm unit � 1

229



⇒t-iso : {A, B : el ty} → tm (A⇒𝑡 B) � (tm A→ tm B)
All-iso : {k : _} {A : _} → tm (All k A) � ((𝛼 : el k) → tm (A 𝛼))
tt : tm bool
ff : tm bool

* Functors

tyco : ki
tyco = (ty⇒𝑘 ty)
fmap-ty : (F : el tyco) → el ty
fmap-ty F = All ty (𝜆𝛼. All ty (𝜆𝛽. (𝛼⇒𝑡 𝛽) ⇒𝑡 (F 𝛼⇒𝑡 F 𝛽)))
record RawFunctor : J where

F0 : el tyco
F1 : tm ( fmap-ty F0)

* Monads

record RawMonad : J where

M0 : el tyco
ret : tm (All ty (𝜆𝛼. 𝛼⇒𝑡 M0 𝛼))
bind : tm (All ty (𝜆𝛼. All ty (𝜆𝛽. M0 𝛼⇒𝑡 (𝛼⇒𝑡 M0 𝛽) ⇒𝑡 M0 𝛽)))

* Higher-order functors

htyco : ki
htyco = tyco⇒𝑘 tyco
trans : (F,G : el tyco) → el ty
trans F G = All ty (𝜆𝛼. F 𝛼⇒𝑡 G 𝛼)
record RawHFunctor : J where

H0 : el htyco
hfmap : (F : RawFunctor) → tm ( fmap-ty (H0 (F .F0)))
hmap : (F,G : RawFunctor) → tm (trans (F .F0) (G .F0))

→ tm (trans (H0 (F .F0)) (H0 (G .F0)))

* Computations

co : (H : RawHFunctor) → (A : el ty) → J
val : {H,A} → tm A→ co H A
let-in : {H,A, B} → co H A→ (tm A→ co H B) → co H B

230



* Laws of computations

val-let : {H,A, B} → (a : tm A) → (k : tm A→ co H B)
→ let-in (val a) k = k a

let-val : {H,A} → (m : co H A) → let-in m val = m
let-assoc : {H,A, B,C} → (m1 : co H A)

→ (m2 : tm A→ co H B) → (m3 : tm B→ co H C)
→ let-in (let-in m1 m2) m3 = let-in m1 (𝜆a. let-in (m2 a) m3)

* Thunks

th : RawHFunctor→ el ty→ el ty
th-iso : {H,A} → tm (th H A) � co H A
⇑ : {H,A} → tm (th H A) → co H A
⇑ = th-iso .fwd
⇓ : {H,A} → co H A→ tm (th H A)
⇓ = th-iso .bwd
th-mnd : RawHFunctor→ RawMonad
th-mnd H .M0 = th H
th-mnd H .ret = 𝜆A x. ⇓ (val x)
th-mnd H .bind = 𝜆A B m k. ⇓ (let-in (force m) (𝜆a. ⇑ (k a)))

* Operations

op : {H,A, B} → tm (H (th H) A) → (tm A→ co H B) → co H B
let-op : {H,A, B,C} → (p : tm (H (th H) A))

→ (k : tm A→ co H B) → (k′ : tm B→ co H C)
→ let-in (op p k) k′ = op p (𝜆a. let-in (k a) k′)

* Monads with algebras

record MonadAlg (H : RawHFunctor) : J where

include RawMonad as M
malg : tm (trans (H .H0 M0)M0)

th-alg : (H : RawHFunctor) →MonadAlg H
th-alg H .M = th-mnd H
th-alg H .malg = 𝜆𝛼 o. ⇓ (op o val)

* Evaluation of computations

eval : {H } → (m : MonadAlg H) → (A : el ty) → co H A→ tm (m .M0 A)
eval-val : {H,A} → (m : MonadAlg H) → (a : tm A)

231



→ eval m A (val a) = m .ret A a
eval-op : {H,A, B} → (m : MonadAlg H)

→ (p : tm (H (th H) A)) → (k : tm A→ co H B)
→ let bind = m .bind A B

malg = m .malg A
T = fct-of -mnd (th-mnd H)
M = fct-of -mnd (m .M)

in eval m B (op p k)
= bind (malg (H .hmap T M (𝜆𝛼 c. eval m 𝛼 (⇑c)) A p))

(𝜆a. eval m B (k a))
fct-of -mnd : RawMonad→ RawFunctor
fct-of -mnd m .F0 = m .M0
fct-of -mnd m .F1 𝛼 𝛽 f ma = m .bind 𝛼 𝛽 ma (𝜆a. m .ret _ ( f a ))

A.2 Effect Families in Fω
ha

The definition of effect families and modular handlers in 5.1.4*3, together with

the full definition of the effect family algFam in Example 5.1.4*4 (including the

required type connectives), is collected in this section for reference.

* Families

record Fam : J where

eff : ki
sig : el eff → RawHFunctor
add : el eff → el eff → el eff

MonadEff : (F : Fam) → (e : el (F .eff )) → J
MonadEff F e = MonadAlg (F .sig e)
co[_∋_] : (F : Fam) → (e : el (F .eff )) → el ty→ J
co[F ∋ e] = co (F .sig e)

* Modular handlers

record Hdl (F : Fam) (e o : el (F .eff )) : J where

alg : (𝜇 : el (F .eff )) →MonadEff F (F .add o 𝜇)
→MonadEff F (F .add e 𝜇)

res : el (ty⇒𝑘 ty)
run : (𝜇 : el (F .eff )) → (Mo : MonadEff F (F .add o 𝜇))
→ tm (trans (alg 𝜇 Mo .M0) (𝜆A. Mo .M0 (res A)))

handle : {F, e, o, 𝜇,A} → (h : Hdl F e o) → co[F ∋ (F .add e 𝜇)] A
→ co[F ∋ (F .add o 𝜇)] (h .res A)

232



handle h c = ⇑ (h .run 𝜇 T A c′) where

T : MonadEff F (F .add o 𝜇)
T = th-alg (F .sig (F .add o 𝜇))
c′ : tm (h .alg 𝜇 T .M0 A)
c′ = eval (h .alg 𝜇 (th-alg (F .sig (F .add o 𝜇)))) _ c

* Kind-level and type-level products

_ ×𝑘 _ : ki→ ki→ ki
×k-iso : {k k′ : ki} → el (k ×𝑘 k′) = Σ (el k) (𝜆_. el k′)
_ ×𝑡 _ : el ty→ el ty→ el ty
×t-iso : {A B : el ty} → tm (A ×𝑡 B) = Σ (tm A) (𝜆_. tm B)

* The empty type

empty : el ty
absurd : (A : el ty) → tm empty→ tm A
absurd-uniq : {A : el ty} → (f : tm empty→ tm A) → f = absurd A

* Coproducts

We only need type-level coproducts, but for generality we define coproducts

parameterised by judgements U : J and T : U→ J:

record coprod_intro (U : J) (T : U→ J) : J where

_+_ : U→ U→ U
inl : {a, b} → T a→ T (a + b)
inr : {a, b} → T b→ T (a + b)

record coprod_elim (U : J) (T : U→ J) (V : J) (S : U→ J)
(intr : coprod_intro U T) : J where

open coprod_intro intr
case : {a, b, c} → (T a→ S c) → (T b→ S c) → (T (a + b) → S c)
case_𝛽_l : {a, b, c} → (l : T a→ S c) → (r : T b→ S c) → (x : T a)

→ case l r (inl x) = l x
case_𝛽_r : {a, b, c} → (l : T a→ S c) → (r : T b→ S c) → (x : T b)

→ case l r (inr x) = r x
case_𝜂 : {a, b, c} → (f : T (a + b) → S c)

→ case (𝜆x. f (inl x)) (𝜆x. f (inr x)) = f
record coprod (U : J) (T : U→ J) : J where

cpintr : coprod_intro U T
cpelim : coprod_elim U T U T cpintr

233



We then instantiate with U = el ty and T = tm to get type-level coproducts:

coprodTy : coprod (el ty) tm

In this way, if kind-level coproducts are also needed, they can be easily added

by a declaration coprodKi : coprod ki el.

* Kind-level lists with elimination to ML-style signatures

We first define the judgements of lists parameterised by the universe (𝑈,𝑇)
that the lists live in and the universe (𝑉, 𝑆) that the lists can eliminate into:

record ListAlg {U : J } {V : J } (T : U→ J) (S : V→ J)
(k : U) (a : V) : J
where

fst : S a
snd : T k→ S a→ S a

record ListHom {U : J } {V : J } {W : J }
{T : U→ J } {S : V→ J } {R : W→ J }
{k : U} {a : V } {b : W }
(alga : ListAlg T S k a) (algb : ListAlg T R k b) : J
where

f : S a→ R b
homnil : f (alga .fst) = algb .fst
homcons : (x : T k) → (a : S a) → f (alga .snd x a) = algb .snd x (f a)

record ListIntro (U : J) (T : U→ J) : J where

listc : U→ U
listcalg : {k : U} → ListAlg T T k (listc k)
nil : (k : U) → T (listc k)
nil k = listcalg .fst
cons : {k : U} → T k→ T (listc k) → T (listc k)
cons x xs = listcalg .snd x xs

record ListElim (U : J) (T : U→ J) (V : J) (S : V→ J)
(intr : ListIntro U T) : J
where

open ListIntro intr
fold : {k : U} → {a : V } → (alga : ListAlg T S k a)
→ T (listc k) → S a

fold𝛽nil : {k, a} → (alga : ListAlg T S k a)
→ fold alga (nil k) = alga .fst

fold𝛽cons : {k, a} → (alga : ListAlg T S k a)
→ (x : T k) (xs : T (listc k))

234



→ fold alga (cons x xs) = alga .snd x (fold alga xs)
fold𝜂 : {k, a} → (alga : ListAlg T S k a)

→ (h : ListHom listcalg alga)
→ fold alga = h .f

record List (U : J) (T : U→ J) (V : J) (S : V→ J) : J where

intr : ListIntro U T
elim : ListElim U T V S intr

We have kind-level lists with declarations

ListKi : List ki el ki el

We additionally have elimination of kind-level lists to ML-style signatures

si : J

si = Σ ki (𝜆k. (el k→ el ty))
mo : si→ J
mo (k, t) = Σ (el k) (𝜆𝛼. tm (t 𝛼))
ListKiTyElim : ListElim ki el si mo (ListKi .intr)

In the following we will rename the components of lists as follows:

open List ListKi renaming

(listc ↦→ listk; nil ↦→ nilk; cons ↦→ consk;

fold ↦→ foldk; fold𝛽nil ↦→ foldk𝛽ni;
fold𝛽cons ↦→ foldk𝛽cons; fold𝜂 ↦→ foldk𝜂)

open ListElim ListKiTyElim renaming

(fold ↦→ foldkt; fold𝛽nil ↦→ foldkt𝛽nil;
fold𝛽cons ↦→ foldkt𝛽cons; fold𝜂 ↦→ foldkt𝜂)

* The constantly empty higher-order functor

VoidH : RawHFunctor
VoidH = record {H0 = voidH0

; hfmap = hfmapVoid
; hmap = hmapVoid}

where

voidH0 : el htyco
voidH0 _ _ = empty
hfmapVoid : (F : RawFunctor) → tm (fmap-ty (voidH0 (F0 F)))
hfmapVoid F 𝛼 𝛽 f x = x
hmapVoid : (F G : RawFunctor) → tm (trans (F0 F) (F0 G))

235



→ tm (nat − ty (voidH0 (F0 F)) (voidH0 (F0 G)))
hmapVoid F G _ 𝛼 x = x

* Coproduct of higher-order functors

coprodHF : RawHFunctor→ RawHFunctor→ RawHFunctor
coprodHF H1 H2 .H0 = 𝜆F A. (H1 .H0 F A) + (H2 .H0 F A)
coprodHF H1 H2 .hfmap = 𝜆F 𝛼 𝛽 f x.

case {c = H1 .H0 (F0 F) 𝛽 +H2 .H0 (F0 F) 𝛽 }
(𝜆l. inl (H1 .hfmap F 𝛼 𝛽 f l))
(𝜆r. inr (H2 .hfmap F 𝛼 𝛽 f r))
x

coprodHF H1 H2 .hmap = 𝜆F G s 𝛼 x.
case {c = H1 .H0 (F0 G) 𝛼 +H2 .H0 (F0 G) 𝛼 }
(𝜆l. inl (H1 .hmap F G s 𝛼 l))
(𝜆r. inr (H2 .hmap F G s 𝛼 r))
x

* Higher-order functor for an algebraic operation

AlgOpHFun : el ty→ el ty→ RawHFunctor
AlgOpHFun P A =

record {H0 = 𝜆_ X. P ×𝑡 (A⇒𝑡 X)
; hfmap = 𝜆F 𝛼 𝛽 f (p, k). (p, (𝜆x. f (k x)))
; hmap = 𝜆F G s 𝛼 pk. pk}

* The ML-style signature corresponding of functors

FctSig : si
FctSig = tyco, fmap-ty
FctToMod : RawFunctor→ mo FctSig
FctToMod F = (F0 F), (F1 F)
FctFromMod : mo FctSig→ RawFunctor
FctFromMod (F, fmap) = record {F0 = F; F1 = fmap}

* The ML-style signature corresponding of higher-order functors

HFctSig : si
HFctSig = htyco, (𝜆H. hfmapTy H ×𝑡 hmapTy H) where

hfmapTy : (H : el htyco) → el ty
hfmapTy H = All tyco (𝜆F. fmap-ty F⇒𝑡 fmap-ty (H F))
hmapTy : (H : el htyco) → el ty

236



hmapTy H = All tyco (𝜆F. fmap-ty F⇒𝑡

All tyco (𝜆G. fmap-ty G⇒𝑡

(trans F G⇒𝑡 nat_ty (H F) (H G))))
HFctToMod : RawHFunctor→ mo HFctSig
HFctToMod H = (H .H0),
((𝜆F fmap. H .hfmap (FctFromMod (F, fmap)))
,𝜆F fmap1 G fmap2.

H .hmap (FctFromMod (F, fmap1))
(FctFromMod (G, fmap2)))

HFctFromMod : mo HFctSig→ RawHFunctor
HFctFromMod (H, (hfmap, hmap)) =

record {H0 = H
; hfmap = 𝜆F. hfmap (F .F0) (F .F1)
; hmap = 𝜆F G. hmap (F .F0) (F .F1) (G .F0) (G .F1)}

* The family of algebraic operations

AlgSig : el (listk (ty⇒𝑘 ty)) → RawHFunctor
AlgSig es = HFctFromMod
(foldkt {a = HFctSig}
(record { fst = HFctToMod VoidH

; snd = 𝜆(P,A) H.
HFctToMod (coprodHF (AlgOpHFun P A)

(HFctFromMod H))})
es)

ListAppk : {k : ki} → el (listk k) → el (listk k) → el (listk k)
ListAppk {k} x y =

foldk {a = listk k}
(record { fst = y; snd = consk }) x

algFam : Fam
algFam = record {eff = listk (ty ×𝑘 ty)

; sig = AlgSig
; add = ListAppk }

237


	Prologue
	Denotational Semantics in the 70s and 80s
	Computational Effects as Monads
	Computational Effects Post-Moggi
	Higher-Order Algebraic Effects
	Structure of This Thesis
	How to Read This Thesis

	I Structure
	Algebraic Theories of Monoids with Operations
	Notions of Computation as Monoids in Monoidal Categories
	Equational Systems and Translations
	A Type Theory for Monoidal Categories
	Equational Systems for Monoids with Operations
	Families of Operations

	Modular Constructions of Algebraic Structures
	Modular Models of Monoids
	Model Transformers
	Constructions of Model Transformers


	II Language
	A Logical Framework for LCCCs
	Syntax of the Logical Framework
	Functorial Semantics of Signatures
	Diagrammatic Semantics of Signatures
	Equivalence of Two Notions of Models
	Discussion

	A Polymorphic Language with Effects
	The Signature of System Ftoha
	Realizability Model of Ftoha
	Logical Relations, Categorically and Synthetically
	Canonicity of System Ftoha
	Parametricity and Free Theorems
	General Recursion

	Epilogue
	Bibliography
	Complete Signatures of Languages
	Signature of System Ftoha
	Effect Families in Ftoha



