{-# OPTIONS --safe #-}
module Cubical.Data.Bool.Properties where
open import Cubical.Core.Everything
open import Cubical.Functions.Involution
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Data.Bool.Base
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
notnot : ∀ x → not (not x) ≡ x
notnot true = refl
notnot false = refl
notIso : Iso Bool Bool
Iso.fun notIso = not
Iso.inv notIso = not
Iso.rightInv notIso = notnot
Iso.leftInv notIso = notnot
notIsEquiv : isEquiv not
notIsEquiv = involIsEquiv {f = not} notnot
notEquiv : Bool ≃ Bool
notEquiv = involEquiv {f = not} notnot
notEq : Bool ≡ Bool
notEq = involPath {f = not} notnot
private
variable
ℓ : Level
nfalse : Bool
nfalse = transp (λ i → notEq i) i0 true
nfalsepath : nfalse ≡ false
nfalsepath = refl
K-Bool
: (P : {b : Bool} → b ≡ b → Type ℓ)
→ (∀{b} → P {b} refl)
→ ∀{b} → (q : b ≡ b) → P q
K-Bool P Pr {false} = J (λ{ false q → P q ; true _ → Lift ⊥ }) Pr
K-Bool P Pr {true} = J (λ{ true q → P q ; false _ → Lift ⊥ }) Pr
isSetBool : isSet Bool
isSetBool a b = J (λ _ p → ∀ q → p ≡ q) (K-Bool (refl ≡_) refl)
true≢false : ¬ true ≡ false
true≢false p = subst (λ b → if b then Bool else ⊥) p true
false≢true : ¬ false ≡ true
false≢true p = subst (λ b → if b then ⊥ else Bool) p true
¬true→false : (x : Bool) → ¬ x ≡ true → x ≡ false
¬true→false false _ = refl
¬true→false true p = rec (p refl)
¬false→true : (x : Bool) → ¬ x ≡ false → x ≡ true
¬false→true false p = rec (p refl)
¬false→true true _ = refl
not≢const : ∀ x → ¬ not x ≡ x
not≢const false = true≢false
not≢const true = false≢true
zeroˡ : ∀ x → true or x ≡ true
zeroˡ false = refl
zeroˡ true = refl
zeroʳ : ∀ x → x or true ≡ true
zeroʳ false = refl
zeroʳ true = refl
or-identityˡ : ∀ x → false or x ≡ x
or-identityˡ false = refl
or-identityˡ true = refl
or-identityʳ : ∀ x → x or false ≡ x
or-identityʳ false = refl
or-identityʳ true = refl
or-comm : ∀ x y → x or y ≡ y or x
or-comm false y =
false or y ≡⟨ or-identityˡ y ⟩
y ≡⟨ sym (or-identityʳ y) ⟩
y or false ∎
or-comm true y =
true or y ≡⟨ zeroˡ y ⟩
true ≡⟨ sym (zeroʳ y) ⟩
y or true ∎
or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z
or-assoc false y z =
false or (y or z) ≡⟨ or-identityˡ _ ⟩
y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩
((false or y) or z) ∎
or-assoc true y z =
true or (y or z) ≡⟨ zeroˡ _ ⟩
true ≡⟨ sym (zeroˡ _) ⟩
true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩
(true or y) or z ∎
or-idem : ∀ x → x or x ≡ x
or-idem false = refl
or-idem true = refl
⊕-identityʳ : ∀ x → x ⊕ false ≡ x
⊕-identityʳ false = refl
⊕-identityʳ true = refl
⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x
⊕-comm false false = refl
⊕-comm false true = refl
⊕-comm true false = refl
⊕-comm true true = refl
⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z
⊕-assoc false y z = refl
⊕-assoc true false z = refl
⊕-assoc true true z = notnot z
not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y
not-⊕ˡ false y = refl
not-⊕ˡ true y = notnot y
⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y
⊕-invol false x = refl
⊕-invol true x = notnot x
isEquiv-⊕ : ∀ x → isEquiv (x ⊕_)
isEquiv-⊕ x = involIsEquiv (⊕-invol x)
⊕-Path : ∀ x → Bool ≡ Bool
⊕-Path x = involPath {f = x ⊕_} (⊕-invol x)
⊕-Path-refl : ⊕-Path false ≡ refl
⊕-Path-refl = isInjectiveTransport refl
¬transportNot : ∀(P : Bool ≡ Bool) b → ¬ (transport P (not b) ≡ transport P b)
¬transportNot P b eq = not≢const b sub
where
sub : not b ≡ b
sub = subst {A = Bool → Bool} (λ f → f (not b) ≡ f b)
(λ i c → transport⁻Transport P c i) (cong (transport⁻ P) eq)
module BoolReflection where
data Table (A : Type₀) (P : Bool ≡ A) : Type₀ where
inspect : (b c : A)
→ transport P false ≡ b
→ transport P true ≡ c
→ Table A P
table : ∀ P → Table Bool P
table = J Table (inspect false true refl refl)
reflLemma : (P : Bool ≡ Bool)
→ transport P false ≡ false
→ transport P true ≡ true
→ transport P ≡ transport (⊕-Path false)
reflLemma P ff tt i false = ff i
reflLemma P ff tt i true = tt i
notLemma : (P : Bool ≡ Bool)
→ transport P false ≡ true
→ transport P true ≡ false
→ transport P ≡ transport (⊕-Path true)
notLemma P ft tf i false = ft i
notLemma P ft tf i true = tf i
categorize : ∀ P → transport P ≡ transport (⊕-Path (transport P false))
categorize P with table P
categorize P | inspect false true p q
= subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (reflLemma P p q)
categorize P | inspect true false p q
= subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (notLemma P p q)
categorize P | inspect false false p q
= rec (¬transportNot P false (q ∙ sym p))
categorize P | inspect true true p q
= rec (¬transportNot P false (q ∙ sym p))
⊕-complete : ∀ P → P ≡ ⊕-Path (transport P false)
⊕-complete P = isInjectiveTransport (categorize P)
⊕-comp : ∀ p q → ⊕-Path p ∙ ⊕-Path q ≡ ⊕-Path (q ⊕ p)
⊕-comp p q = isInjectiveTransport (λ i x → ⊕-assoc q p x i)
open Iso
reflectIso : Iso Bool (Bool ≡ Bool)
reflectIso .fun = ⊕-Path
reflectIso .inv P = transport P false
reflectIso .leftInv = ⊕-identityʳ
reflectIso .rightInv P = sym (⊕-complete P)
reflectEquiv : Bool ≃ (Bool ≡ Bool)
reflectEquiv = isoToEquiv reflectIso