{-# OPTIONS --safe #-}
module Cubical.Data.List.Base where
open import Agda.Builtin.List public
open import Cubical.Core.Everything
open import Cubical.Data.Maybe.Base as Maybe
open import Cubical.Data.Nat.Base
module _ {ℓ} {A : Type ℓ} where
infixr 5 _++_
infixl 5 _∷ʳ_
[_] : A → List A
[ a ] = a ∷ []
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
rev : List A → List A
rev [] = []
rev (x ∷ xs) = rev xs ++ [ x ]
_∷ʳ_ : List A → A → List A
xs ∷ʳ x = xs ++ x ∷ []
length : List A → ℕ
length [] = 0
length (x ∷ l) = 1 + length l
map : ∀ {ℓ'} {B : Type ℓ'} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
map2 : ∀ {ℓ' ℓ''} {B : Type ℓ'} {C : Type ℓ''}
→ (A → B → C) → List A → List B → List C
map2 f [] _ = []
map2 f _ [] = []
map2 f (x ∷ xs) (y ∷ ys) = f x y ∷ map2 f xs ys
filterMap : ∀ {ℓ'} {B : Type ℓ'} → (A → Maybe B) → List A → List B
filterMap f [] = []
filterMap f (x ∷ xs) = Maybe.rec (filterMap f xs) (_∷ filterMap f xs) (f x)
foldr : ∀ {ℓ'} {B : Type ℓ'} → (A → B → B) → B → List A → B
foldr f b [] = b
foldr f b (x ∷ xs) = f x (foldr f b xs)
foldl : ∀ {ℓ'} {B : Type ℓ'} → (B → A → B) → B → List A → B
foldl f b [] = b
foldl f b (x ∷ xs) = foldl f (f b x) xs