{-# OPTIONS --safe #-}
module Cubical.Foundations.Equiv.PathSplit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Data.Sigma
record isPathSplitEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where
field
sec : hasSection f
secCong : (x y : A) → hasSection (λ (p : x ≡ y) → cong f p)
PathSplitEquiv : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
PathSplitEquiv A B = Σ[ f ∈ (A → B) ] isPathSplitEquiv f
open isPathSplitEquiv
idIsPathSplitEquiv : ∀ {ℓ} {A : Type ℓ} → isPathSplitEquiv (λ (x : A) → x)
sec idIsPathSplitEquiv = (λ x → x) , (λ _ → refl)
secCong idIsPathSplitEquiv = λ _ _ → (λ p → p) , λ p _ → p
module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where
open Iso
toIso : (f : A → B) → isPathSplitEquiv f → Iso A B
fun (toIso f _) = f
inv (toIso _ p) = p .sec .fst
rightInv (toIso _ p) = p .sec .snd
leftInv (toIso f p) x = p .secCong (p .sec .fst (f x)) x .fst (p .sec .snd (f x))
toIsEquiv : (f : A → B) → isPathSplitEquiv f → isEquiv f
toIsEquiv f p = isoToIsEquiv (toIso f p)
sectionOfEquiv' : (f : A → B) → isEquiv f → B → A
sectionOfEquiv' f isEqv x = isEqv .equiv-proof x .fst .fst
isSec : (f : A → B) → (pf : isEquiv f) → section f (sectionOfEquiv' f pf)
isSec f isEqv x = isEqv .equiv-proof x .fst .snd
sectionOfEquiv : (f : A → B) → isEquiv f → hasSection f
sectionOfEquiv f e = sectionOfEquiv' f e , isSec f e
module _ {ℓ} {A B : Type ℓ} where
fromIsEquiv : (f : A → B) → isEquiv f → isPathSplitEquiv f
sec (fromIsEquiv f pf) = sectionOfEquiv' f pf , isSec f pf
secCong (fromIsEquiv f pf) x y = sectionOfEquiv (cong f) (isEquivCong (f , pf))
pathSplitToEquiv : PathSplitEquiv A B → A ≃ B
fst (pathSplitToEquiv (f , _)) = f
snd (pathSplitToEquiv (_ , e)) = toIsEquiv _ e
equivToPathSplit : A ≃ B → PathSplitEquiv A B
fst (equivToPathSplit (f , _)) = f
snd (equivToPathSplit (_ , e)) = fromIsEquiv _ e
equivHasUniqueSection : (f : A → B) → isEquiv f → ∃![ g ∈ (B → A) ] section f g
equivHasUniqueSection f eq = helper'
where
helper : isContr (fiber (λ (φ : B → A) → f ∘ φ) (idfun B))
helper = (equiv-proof (snd (postCompEquiv (f , eq)))) (idfun B)
helper' : ∃![ φ ∈ (B → A) ] ((x : B) → f (φ x) ≡ x)
fst helper' = (helper .fst .fst , λ x i → helper .fst .snd i x)
snd helper' y i = (fst (η i) , λ b j → snd (η i) j b)
where η = helper .snd (fst y , λ i b → snd y b i)
isPropIsPathSplitEquiv : ∀ {ℓ} {A B : Type ℓ} (f : A → B) → isProp (isPathSplitEquiv f)
isPropIsPathSplitEquiv {_} {A} {B} f
record { sec = sec-φ ; secCong = secCong-φ }
record { sec = sec-ψ ; secCong = secCong-ψ } i
=
record {
sec = sectionsAreEqual i ;
secCong = λ x y → congSectionsAreEqual x y (secCong-φ x y) (secCong-ψ x y) i
}
where
φ' = record { sec = sec-φ ; secCong = secCong-φ }
ψ' = record { sec = sec-ψ ; secCong = secCong-ψ }
sectionsAreEqual : sec-φ ≡ sec-ψ
sectionsAreEqual = (sym (contraction sec-φ)) ∙ (contraction sec-ψ)
where contraction = snd (equivHasUniqueSection f (toIsEquiv f φ'))
congSectionsAreEqual : (x y : A) (l u : hasSection (λ (p : x ≡ y) → cong f p)) → l ≡ u
congSectionsAreEqual x y l u = (sym (contraction l)) ∙ (contraction u)
where contraction = snd (equivHasUniqueSection
(λ (p : x ≡ y) → cong f p)
(isEquivCong (pathSplitToEquiv (f , φ'))))
module _ {ℓ} {A B : Type ℓ} where
isEquivIsPathSplitToIsEquiv : (f : A → B) → isEquiv (fromIsEquiv f)
isEquivIsPathSplitToIsEquiv f =
isoToIsEquiv
(iso (fromIsEquiv f) (toIsEquiv f) (λ b → isPropIsPathSplitEquiv f _ _) (λ a → isPropIsEquiv f _ _ ))
isEquivPathSplitToEquiv : isEquiv (pathSplitToEquiv {A = A} {B = B})
isEquivPathSplitToEquiv =
isoToIsEquiv
(iso pathSplitToEquiv equivToPathSplit
(λ {(f , e) i → (f , isPropIsEquiv f (toIsEquiv f (fromIsEquiv f e)) e i)})
(λ {(f , e) i → (f , isPropIsPathSplitEquiv f (fromIsEquiv f (toIsEquiv f e)) e i)}))
equivPathSplitToEquiv : (PathSplitEquiv A B) ≃ (A ≃ B)
equivPathSplitToEquiv = (pathSplitToEquiv , isEquivPathSplitToEquiv)
secCongDep : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : A → Type ℓ''}
→ (f : ∀ a → B a → C a) {a a' : A} (q : a ≡ a')
→ (∀ a (x y : B a) → hasSection (λ (p : x ≡ y) → cong (f a) p))
→ (∀ (x : B a) (y : B a') → hasSection (λ (p : PathP (λ i → B (q i)) x y) → cong₂ f q p))
secCongDep {B = B} f {a} p secCong
= J (λ a' q → (x : B a) (y : B a') → hasSection (λ (p : PathP (λ i → B (q i)) x y) → cong₂ f q p))
(secCong a) p