{-# OPTIONS --safe --postfix-projections #-}
open import Cubical.Core.Everything
open import Cubical.Functions.Embedding
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
module Cubical.Foundations.Univalence.Universe {ℓ ℓ'}
(U : Type ℓ)
(El : U → Type ℓ')
(un : ∀ s t → El s ≃ El t → s ≡ t)
(comp : ∀{s t} (e : El s ≃ El t) → cong El (un s t e) ≡ ua e)
where
private
variable
A : Type ℓ'
module UU-Lemmas where
reg : transport (λ _ → A) ≡ idfun A
reg {A} i z = transp (λ _ → A) i z
nu : ∀ x y → x ≡ y → El x ≃ El y
nu x y p = transportEquiv (cong El p)
cong-un-te
: ∀ x y (p : El x ≡ El y)
→ cong El (un x y (transportEquiv p)) ≡ p
cong-un-te x y p
= comp (transportEquiv p) ∙ uaTransportη p
nu-un : ∀ x y (e : El x ≃ El y) → nu x y (un x y e) ≡ e
nu-un x y e
= equivEq {e = nu x y (un x y e)} {f = e} λ i z
→ (cong (λ p → transport p z) (comp e) ∙ uaβ e z) i
El-un-equiv : ∀ x i → El (un x x (idEquiv _) i) ≃ El x
El-un-equiv x i = λ where
.fst → transp (λ j → p j) (i ∨ ~ i)
.snd → transp (λ j → isEquiv (transp (λ k → p (j ∧ k)) (~ j ∨ i ∨ ~ i)))
(i ∨ ~ i) (idIsEquiv T)
where
T = El (un x x (idEquiv _) i)
p : T ≡ El x
p j = (comp (idEquiv _) ∙ uaIdEquiv {A = El x}) j i
un-refl : ∀ x → un x x (idEquiv (El x)) ≡ refl
un-refl x i j
= hcomp (λ k → λ where
(i = i0) → un x x (idEquiv (El x)) j
(i = i1) → un x x (idEquiv (El x)) (j ∨ k)
(j = i0) → un x x (idEquiv (El x)) (~ i ∨ k)
(j = i1) → x)
(un (un x x (idEquiv (El x)) (~ i)) x (El-un-equiv x (~ i)) j)
nu-refl : ∀ x → nu x x refl ≡ idEquiv (El x)
nu-refl x = equivEq {e = nu x x refl} {f = idEquiv (El x)} reg
un-nu : ∀ x y (p : x ≡ y) → un x y (nu x y p) ≡ p
un-nu x y p
= J (λ z q → un x z (nu x z q) ≡ q) (cong (un x x) (nu-refl x) ∙ un-refl x) p
open UU-Lemmas
open Iso
equivIso : ∀ s t → Iso (s ≡ t) (El s ≃ El t)
equivIso s t .fun = nu s t
equivIso s t .inv = un s t
equivIso s t .rightInv = nu-un s t
equivIso s t .leftInv = un-nu s t
pathIso : ∀ s t → Iso (s ≡ t) (El s ≡ El t)
pathIso s t .fun = cong El
pathIso s t .inv = un s t ∘ transportEquiv
pathIso s t .rightInv = cong-un-te s t
pathIso s t .leftInv = un-nu s t
minivalence : ∀{s t} → (s ≡ t) ≃ (El s ≃ El t)
minivalence {s} {t} = isoToEquiv (equivIso s t)
path-reflection : ∀{s t} → (s ≡ t) ≃ (El s ≡ El t)
path-reflection {s} {t} = isoToEquiv (pathIso s t)
isEmbeddingEl : isEmbedding El
isEmbeddingEl s t = snd path-reflection