{-# OPTIONS --safe #-} module Cubical.HITs.S1.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.HITs.S1.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥ isConnectedS¹ base = ∣ refl ∣ isConnectedS¹ (loop i) = squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i isGroupoidS¹ : isGroupoid S¹ isGroupoidS¹ s t = PropTrunc.rec isPropIsSet (λ p → subst (λ s → isSet (s ≡ t)) p (PropTrunc.rec isPropIsSet (λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹) (isConnectedS¹ t))) (isConnectedS¹ s) IsoFunSpaceS¹ : ∀ {ℓ} {A : Type ℓ} → Iso (S¹ → A) (Σ[ x ∈ A ] x ≡ x) Iso.fun IsoFunSpaceS¹ f = (f base) , (cong f loop) Iso.inv IsoFunSpaceS¹ (x , p) base = x Iso.inv IsoFunSpaceS¹ (x , p) (loop i) = p i Iso.rightInv IsoFunSpaceS¹ (x , p) = refl Iso.leftInv IsoFunSpaceS¹ f = funExt λ {base → refl ; (loop i) → refl}