{-# OPTIONS --safe #-}
module Cubical.HITs.S1.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1.Base
open import Cubical.HITs.PropositionalTruncation as PropTrunc
isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥
isConnectedS¹ base = ∣ refl ∣
isConnectedS¹ (loop i) =
squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i
isGroupoidS¹ : isGroupoid S¹
isGroupoidS¹ s t =
PropTrunc.rec isPropIsSet
(λ p →
subst (λ s → isSet (s ≡ t)) p
(PropTrunc.rec isPropIsSet
(λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹)
(isConnectedS¹ t)))
(isConnectedS¹ s)
IsoFunSpaceS¹ : ∀ {ℓ} {A : Type ℓ} → Iso (S¹ → A) (Σ[ x ∈ A ] x ≡ x)
Iso.fun IsoFunSpaceS¹ f = (f base) , (cong f loop)
Iso.inv IsoFunSpaceS¹ (x , p) base = x
Iso.inv IsoFunSpaceS¹ (x , p) (loop i) = p i
Iso.rightInv IsoFunSpaceS¹ (x , p) = refl
Iso.leftInv IsoFunSpaceS¹ f = funExt λ {base → refl ; (loop i) → refl}