{-

Type quotients:

-}

{-# OPTIONS --safe #-}
module Cubical.HITs.TypeQuotients.Properties where

open import Cubical.HITs.TypeQuotients.Base

open import Cubical.Core.Everything

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels

open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥ ; ∣_∣ ; squash)
open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂
                                                              ; isSetSetTrunc)

private
  variable
     ℓ' ℓ'' : Level
    A : Type 
    R : A  A  Type ℓ'
    B : A /ₜ R  Type ℓ''
    C : A /ₜ R  A /ₜ R  Type ℓ''


elim : (f : (a : A)  (B [ a ]))
      ((a b : A) (r : R a b)  PathP  i  B (eq/ a b r i)) (f a) (f b))
    ------------------------------------------------------------------------
      (x : A /ₜ R)  B x
elim f feq [ a ] = f a
elim f feq (eq/ a b r i) = feq a b r i

rec : {X : Type ℓ''}
     (f : A  X)
     (∀ (a b : A)  R a b  f a  f b)
   -------------------------------------
     A /ₜ R  X
rec f feq [ a ] = f a
rec f feq (eq/ a b r i) = feq a b r i

elimProp : ((x : A /ₜ R )  isProp (B x))
          ((a : A)  B ( [ a ]))
        ---------------------------------
          (x : A /ₜ R)  B x
elimProp Bprop f [ a ] = f a
elimProp Bprop f (eq/ a b r i) = isOfHLevel→isOfHLevelDep 1 Bprop (f a) (f b) (eq/ a b r) i

elimProp2 : ((x y : A /ₜ R )  isProp (C x y))
           ((a b : A)  C [ a ] [ b ])
         --------------------------------------
           (x y : A /ₜ R)  C x y
elimProp2 Cprop f = elimProp  x  isPropΠ  y  Cprop x y))
                              x  elimProp  y  Cprop [ x ] y) (f x))