{-# OPTIONS --safe #-}
module Function where
open import Level
infixr 9 _∘′_
_∘′_ : ∀ {A : Type a} {B : A → Type b} {C : {x : A} → B x → Type c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘′ g = λ x → f (g x)
{-# INLINE _∘′_ #-}
infixr 9 _∘_
_∘_ : (B → C) → (A → B) → A → C
f ∘ g = λ x → f (g x)
{-# INLINE _∘_ #-}
flip : ∀ {A : Type a} {B : Type b} {C : A → B → Type c} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
flip f = λ y x → f x y
{-# INLINE flip #-}
id : ∀ {A : Type a} → A → A
id x = x
{-# INLINE id #-}
const : A → B → A
const x _ = x
{-# INLINE const #-}
infixr -1 _$_
_$_ : ∀ {A : Type a} {B : A → Type b}
→ (∀ (x : A) → B x)
→ (x : A)
→ B x
f $ x = f x
{-# INLINE _$_ #-}
infixl 0 _|>_
_|>_ : ∀ {A : Type a} {B : A → Type b}
→ (x : A)
→ (∀ (x : A) → B x)
→ B x
_|>_ = flip _$_
{-# INLINE _|>_ #-}
infixl 1 _⟨_⟩_
_⟨_⟩_ : A → (A → B → C) → B → C
x ⟨ f ⟩ y = f x y
{-# INLINE _⟨_⟩_ #-}
infixl 0 the
the : (A : Type a) → A → A
the _ x = x
{-# INLINE the #-}
syntax the A x = x ⦂ A
Dom : {A : Type a} → (A → B) → Type a
Dom {A = A} _ = A
infix 0 case_of_
case_of_ : A → (A → B) → B
case x of f = f x
{-# INLINE case_of_ #-}
infixr -1 _⇒_
_⇒_ : (A → Type b) → (A → Type c) → Type _
F ⇒ G = ∀ {x} → F x → G x
infixr -1 _↣_ _↠_ _↠!_
infixl -1 _↢_ _↞_ _!↞_
open import Path
Injective : (f : A → B) → Type _
Injective f = ∀ {x y} → f x ≡ f y → x ≡ y
open import Data.Sigma
_↣_ : Type a → Type b → Type _
A ↣ B = Σ[ f ⦂ (A → B) ] × Injective f
_↢_ : Type a → Type b → Type _
_↢_ = flip _↣_
↣-refl : A ↣ A
↣-refl .fst = id
↣-refl .snd = id
↣-trans : A ↣ B → B ↣ C → A ↣ C
↣-trans (f , fi) (g , gi) .fst = g ∘ f
↣-trans (f , fi) (g , gi) .snd = fi ∘ gi
private module RecordFibre where
record Fibre {A : Type a} {B : Type b} (f : A → B) (y : B) : Type (a ℓ⊔ b)
record Fibre f y where
no-eta-equality; constructor _,↠_
field preimage : Dom f
reflects : f preimage ≡ y
open import Isomorphism
Fibre : (A → B) → B → Type _
Fibre f y = ∃ x × f x ≡ y
SplitSurjective : (f : A → B) → Type _
SplitSurjective f = ∀ y → Fibre f y
_↠!_ : Type a → Type b → Type _
A ↠! B = Σ[ f ⦂ (A → B) ] × SplitSurjective f
_!↞_ : Type a → Type b → Type _
_!↞_ = flip _↠!_
surj-inv : (A ↠! B) → (B → A)
surj-inv s x = s .snd x .fst
open import Cubical.HITs.PropositionalTruncation
Surjective : (f : A → B) → Type _
Surjective f = ∀ y → ∥ Fibre f y ∥
Iso : (A → B) → Type _
Iso {A = A} {B = B} f = Σ[ g ⦂ (B → A) ] × (f ∘ g ≡ id) × (g ∘ f ≡ id)
_↠_ : Type a → Type b → Type _
A ↠ B = Σ[ f ⦂ (A → B) ] × Surjective f
_↞_ : Type a → Type b → Type _
_↞_ = flip _↠_
↠!-trans : (A ↠! B) → (B ↠! C) → A ↠! C
↠!-trans f g .fst = g .fst ∘ f .fst
↠!-trans f g .snd y .fst = f .snd (g .snd y .fst) .fst
↠!-trans f g .snd y .snd = cong (g .fst) (f .snd (g .snd y .fst) .snd) ; g .snd y .snd
↠!-refl : A ↠! A
↠!-refl .fst = id
↠!-refl .snd x .fst = x
↠!-refl .snd x .snd = refl
↠!⇒↢ : A ↠! B → A ↢ B
↠!⇒↢ f .fst y = f .snd y .fst
↠!⇒↢ f .snd p = sym (f .snd _ .snd) ; cong (f .fst) p ; f .snd _ .snd
infix 4 _↔_
_↔_ : Type a → Type b → Type _
A ↔ B = (A → B) × (B → A)
↔-refl : A ↔ A
↔-refl = id , id
↔-sym : A ↔ B → B ↔ A
↔-sym (x , y) = (y , x)
↔-trans : A ↔ B → B ↔ C → A ↔ C
↔-trans (f , f⁻) (g , g⁻) .fst = g ∘ f
↔-trans (f , f⁻) (g , g⁻) .snd = f⁻ ∘ g⁻
iso⇒iff : A ⇔ B → A ↔ B
iso⇒iff f = f .fun , f .inv