{-# OPTIONS --safe #-}

module Function where

open import Level

infixr 9 _∘′_
_∘′_ :  {A : Type a} {B : A  Type b} {C : {x : A}  B x  Type c} 
        (∀ {x} (y : B x)  C y)  (g : (x : A)  B x) 
        ((x : A)  C (g x))
f ∘′ g = λ x  f (g x)
{-# INLINE _∘′_ #-}

infixr 9 _∘_
_∘_ : (B  C)  (A  B)  A  C
f  g = λ x  f (g x)
{-# INLINE _∘_ #-}

flip :  {A : Type a} {B : Type b} {C : A  B  Type c} 
        ((x : A) (y : B)  C x y)  ((y : B) (x : A)  C x y)
flip f = λ y x  f x y
{-# INLINE flip #-}

id :  {A : Type a}  A  A
id x = x
{-# INLINE id #-}

const : A  B  A
const x _ = x
{-# INLINE const #-}

infixr -1 _$_
_$_ :  {A : Type a} {B : A  Type b}
       (∀ (x : A)  B x)
       (x : A)
       B x
f $ x = f x
{-# INLINE _$_ #-}

infixl 0 _|>_
_|>_ :  {A : Type a} {B : A  Type b}
       (x : A)
       (∀ (x : A)  B x)
       B x
_|>_ = flip _$_
{-# INLINE _|>_ #-}

infixl 1 _⟨_⟩_
_⟨_⟩_ : A  (A  B  C)  B  C
x  f  y = f x y
{-# INLINE _⟨_⟩_ #-}

infixl 0 the
the : (A : Type a)  A  A
the _ x = x
{-# INLINE the #-}

syntax the A x = x  A

Dom : {A : Type a}  (A  B)  Type a
Dom {A = A} _ = A

infix 0 case_of_
case_of_ : A  (A  B)  B
case x of f = f x
{-# INLINE case_of_ #-}

infixr -1 _⇒_
_⇒_ : (A  Type b)  (A  Type c)  Type _
F  G =  {x}  F x  G x

infixr -1 _↣_ _↠_ _↠!_
infixl -1 _↢_ _↞_ _!↞_

open import Path

Injective : (f : A  B)  Type _
Injective f =  {x y}  f x  f y  x  y

open import Data.Sigma

_↣_ : Type a  Type b  Type _
A  B = Σ[ f  (A  B) ] × Injective f

_↢_ : Type a  Type b  Type _
_↢_ = flip _↣_

↣-refl : A  A
↣-refl .fst = id
↣-refl .snd = id

↣-trans : A  B  B  C  A  C
↣-trans (f , fi) (g , gi) .fst = g  f
↣-trans (f , fi) (g , gi) .snd = fi  gi

private module RecordFibre where
  record Fibre {A : Type a} {B : Type b} (f : A  B) (y : B) : Type (a ℓ⊔ b)
  record Fibre f y where
    no-eta-equality; constructor _,↠_
    field  preimage  : Dom f
           reflects  : f preimage  y

open import Isomorphism

Fibre : (A  B)  B  Type _
Fibre f y =  x × f x  y

-- Surjected⇔Σ : (f : A → B) (y : B) → Fibre f y ⇔ fibre f y
-- Surjected⇔Σ f y .fun s = preimage s , reflects s
-- Surjected⇔Σ f y .inv s .preimage = fst s
-- Surjected⇔Σ f y .inv s .reflects = snd s
-- Surjected⇔Σ f y .rightInv s = refl
-- Surjected⇔Σ f y .leftInv s i .preimage = preimage s
-- Surjected⇔Σ f y .leftInv s i .reflects = reflects s

-- open import HLevels
-- open import Cubical.Data.Sigma.Properties using (Σ≡Prop)

-- Surj≡Prop : (f : A → B) (y : B) → isSet B → {lhs rhs : Fibre f y} → (preimage lhs ≡ preimage rhs) → lhs ≡ rhs
-- Surj≡Prop f y s {lhs = lhs} {rhs = rhs} p =
--   sym (Surjected⇔Σ f y .leftInv _) ;
--   cong (Surjected⇔Σ f y .inv) (Σ≡Prop (λ _ → s _ _) p) ;
--   Surjected⇔Σ f y .leftInv _

SplitSurjective : (f : A  B)  Type _
SplitSurjective f =  y  Fibre f y

_↠!_ : Type a  Type b  Type _
A ↠! B = Σ[ f  (A  B) ] × SplitSurjective f

_!↞_ : Type a  Type b  Type _
_!↞_ = flip _↠!_

surj-inv : (A ↠! B)  (B  A)
surj-inv s x = s .snd x .fst

open import Cubical.HITs.PropositionalTruncation

Surjective : (f : A  B)  Type _
Surjective f =  y   Fibre f y 

Iso : (A  B)  Type _
Iso {A = A} {B = B} f = Σ[ g  (B  A) ] × (f  g  id) × (g  f  id)

_↠_ : Type a  Type b  Type _
A  B = Σ[ f  (A  B) ] × Surjective f

_↞_ : Type a  Type b  Type _
_↞_ = flip _↠_

↠!-trans : (A ↠! B)  (B ↠! C)  A ↠! C
↠!-trans f g .fst = g .fst  f .fst 
↠!-trans f g .snd y .fst = f .snd (g .snd y .fst) .fst
↠!-trans f g .snd y .snd = cong (g .fst) (f .snd (g .snd y .fst) .snd) ; g .snd y .snd

↠!-refl : A ↠! A
↠!-refl .fst = id
↠!-refl .snd x .fst = x
↠!-refl .snd x .snd = refl

↠!⇒↢ : A ↠! B  A  B
↠!⇒↢ f .fst y = f .snd y .fst
↠!⇒↢ f .snd p = sym (f .snd _ .snd) ; cong (f .fst) p ; f .snd _ .snd

infix 4 _↔_
_↔_ : Type a  Type b  Type _
A  B = (A  B) × (B  A)

↔-refl : A  A
↔-refl = id , id

↔-sym : A  B  B  A
↔-sym (x , y) = (y , x)

↔-trans : A  B  B  C  A  C
↔-trans (f , f⁻) (g , g⁻) .fst = g  f
↔-trans (f , f⁻) (g , g⁻) .snd = f⁻  g⁻

iso⇒iff : A  B  A  B
iso⇒iff f = f .fun , f .inv