{-# OPTIONS --safe #-}

module Path.Reasoning where

open import Level
open import Path

infixr 2 ≡˘⟨⟩-syntax _≡⟨⟩_ ≡⟨∙⟩-syntax ≡⟨∙⟩[∙]-syntax ≡⟨↦⟩-syntax

≡˘⟨⟩-syntax :  (x : A) {y z}  y  z  y  x  x  z
≡˘⟨⟩-syntax _ y≡z y≡x = sym y≡x ; y≡z

syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x  y≡z

≡⟨∙⟩-syntax :  (x : A) {y z}  y  z  x  y  x  z
≡⟨∙⟩-syntax _ y≡z x≡y = x≡y ; y≡z

syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y  y≡z

≡⟨↦⟩-syntax :  (x : A) {y z}  y  z  x  y  x  z
≡⟨↦⟩-syntax = ≡⟨∙⟩-syntax

syntax ≡⟨↦⟩-syntax x y≡z  i  x≡y) = x ≡⟨ i  x≡y  y≡z

_≡⟨⟩_ :  (x : A) {y}  x  y  x  y
_ ≡⟨⟩ x≡y = x≡y

infix 2.5 _∎
_∎ :  {A : Type a} (x : A)  x  x
_∎ x = refl

≡⟨∙⟩[∙]-syntax :  (x : A) {x′ y′ : B} {y z}  y  z  x′  y′  (x′  y′  x  y)  x  z
≡⟨∙⟩[∙]-syntax _ y≡z x′≡y′ x′≡y′⇒x≡y = x′≡y′⇒x≡y x′≡y′ ; y≡z

syntax ≡⟨∙⟩[∙]-syntax x y≡z x′≡y′ x′≡y′⇒x≡y = x ≡⟨ x′≡y′⇒x≡y ⟩[ x′≡y′ ] y≡z

infixr 2 begin[_]_
begin[_]_ : {x y : A}  I  x  y  A
begin[ i ] p = p i