{-# OPTIONS --safe #-}
open import Prelude
open import FreeMonad.PackagedTheory
open import Signatures
open import FinitenessConditions
module FreeMonad.Combinations.Sum
{ℓ}
(T₁ : FullTheory ℓ)
(T₂ : FullTheory ℓ)
where
open FullTheory T₁ renaming (𝒯 to 𝒯₁; finiteArity to finAr₁; finiteVars to finVar₁)
open FullTheory T₂ renaming (𝔽 to 𝔾; 𝒯 to 𝒯₂; finiteArity to finAr₂; finiteVars to finVar₂)
open Signature
open import FreeMonad.Theory
open import FreeMonad.Syntax
import FreeMonad.Quotiented
module F₁ = FreeMonad.Quotiented T₁
module F₂ = FreeMonad.Quotiented T₂
inj₁ : Syntax 𝔽 A → Syntax (𝔽 ⊞ 𝔾) A
inj₁ = interp _ (op ∘ inl-map) var
inj₂ : Syntax 𝔾 A → Syntax (𝔽 ⊞ 𝔾) A
inj₂ = interp _ (op ∘ inr-map) var
law₁ : Law 𝔽 ℓ → Law (𝔽 ⊞ 𝔾) ℓ
law₁ law .Γ = _
law₁ law .ν = _
law₁ law .eqn i = let lhs ≐ rhs = law .eqn i in inj₁ lhs ≐ inj₁ rhs
law₂ : Law 𝔾 ℓ → Law (𝔽 ⊞ 𝔾) ℓ
law₂ law .Γ = _
law₂ law .ν = _
law₂ law .eqn γ = let lhs ≐ rhs = law .eqn γ in inj₂ lhs ≐ inj₂ rhs
𝒯 : Theory (𝔽 ⊞ 𝔾) ℓ
𝒯 .Theory.Laws = 𝒯₁ .Theory.Laws ⊎ 𝒯₂ .Theory.Laws
𝒯 .Theory.Eqns = either (law₁ ∘ 𝒯₁ .Theory.Eqns) (law₂ ∘ 𝒯₂ .Theory.Eqns)
finArity : ∀ Oᵢ → SplitQuotientedChoiceω (Arity (𝔽 ⊞ 𝔾) Oᵢ)
finArity (inl x) = finAr₁ x
finArity (inr x) = finAr₂ x
finVars : FiniteVars 𝒯
finVars (inl x) = finVar₁ x
finVars (inr x) = finVar₂ x
combinedTheory : FullTheory ℓ
combinedTheory .FullTheory.𝔽 = 𝔽 ⊞ 𝔾
combinedTheory .FullTheory.𝒯 = 𝒯
combinedTheory .FullTheory.finiteArity = finArity
combinedTheory .FullTheory.finiteVars = finVars
interp₁ : (f : 𝔽 -Alg[ B ]) (g : 𝔾 -Alg[ B ]) (k : A → B)
→ (xs : Syntax 𝔽 A)
→ interp _ (f -⊞- g) k (inj₁ xs) ≡ interp _ f k xs
interp₁ f g k (var x) = refl
interp₁ f g k (op (O , xs)) = cong (f ∘ _,_ O) (funExt λ i → interp₁ f g k (xs i))
interp₂ : (f : 𝔽 -Alg[ B ]) (g : 𝔾 -Alg[ B ]) (k : A → B)
→ (xs : Syntax 𝔾 A)
→ interp _ (f -⊞- g) k (inj₂ xs) ≡ interp _ g k xs
interp₂ f g k (var x) = refl
interp₂ f g k (op (O , xs)) = cong (g ∘ _,_ O) (funExt λ i → interp₂ f g k (xs i))
inj₁-com : (f : (𝔽 ⊞ 𝔾) -Alg[ B ]) (k : A → B) (xs : Syntax 𝔽 A) →
interp _ (f ∘ inl-map) k xs ≡ interp _ f k (inj₁ xs)
inj₁-com f k (FreeMonad.Syntax.var x) = refl
inj₁-com f k (FreeMonad.Syntax.op (O , xs)) = cong (f ∘ _,_ (inl O)) (funExt λ i → inj₁-com f k (xs i))
inj₂-com : (f : (𝔽 ⊞ 𝔾) -Alg[ B ]) (k : A → B) (xs : Syntax 𝔾 A) →
interp _ (f ∘ inr-map) k xs ≡ interp _ f k (inj₂ xs)
inj₂-com f k (var x) = refl
inj₂-com f k (op (O , xs)) = cong (f ∘ _,_ (inr O)) (funExt λ i → inj₂-com f k (xs i))
open FreeMonad.Quotiented combinedTheory
lift₁ : F₁.Term A → Term A
lift₁ = F₁.interpₜ (opₜ ∘ inl-map) return resp squash/
where
resp : (opₜ ∘ inl-map) Models 𝒯₁
resp i t k =
let lhs ≐ rhs = Theory.Eqns 𝒯₁ i .eqn t
in interp _ (opₜ ∘ inl-map) k lhs ≡⟨ inj₁-com opₜ k lhs ⟩
interp _ opₜ k (inj₁ lhs) ≡⟨ opₜ-resp (inl i) t k ⟩
interp _ opₜ k (inj₁ rhs) ≡˘⟨ inj₁-com opₜ k rhs ⟩
interp _ (opₜ ∘ inl-map) k rhs ∎
⊞-resp : (ϕ : 𝔽 -Alg[ A ]) (ψ : 𝔾 -Alg[ A ])
→ ϕ Models 𝒯₁
→ ψ Models 𝒯₂
→ (ϕ -⊞- ψ) Models 𝒯
⊞-resp ϕ ψ resp₁ resp₂ (inl i) t k = let lhs ≐ rhs = Theory.Eqns 𝒯₁ i .eqn t in interp₁ ϕ ψ k lhs ; resp₁ i t k ; sym (interp₁ ϕ ψ k rhs)
⊞-resp ϕ ψ resp₁ resp₂ (inr i) t k = let lhs ≐ rhs = Theory.Eqns 𝒯₂ i .eqn t in interp₂ ϕ ψ k lhs ; resp₂ i t k ; sym (interp₂ ϕ ψ k rhs)
module _ {A : Type a} where
lift₂-alg : 𝔾 -Alg[ Term A ]
lift₂-alg = opₜ ∘ inr-map
lift₂-resp : lift₂-alg Models 𝒯₂
lift₂-resp i t k =
let lhs ≐ rhs = Theory.Eqns 𝒯₂ i .eqn t
in interp _ (opₜ ∘ inr-map) k lhs ≡⟨ inj₂-com opₜ k lhs ⟩
interp _ opₜ k (inj₂ lhs) ≡⟨ opₜ-resp (inr i) t k ⟩
interp _ opₜ k (inj₂ rhs) ≡˘⟨ inj₂-com opₜ k rhs ⟩
interp _ (opₜ ∘ inr-map) k rhs ∎
lift₂ : F₂.Term A → Term A
lift₂ = F₂.interpₜ lift₂-alg return lift₂-resp squash/