{-# OPTIONS --safe #-} open import Prelude open import FreeMonad.PackagedTheory open import Signatures open import FinitenessConditions module FreeMonad.Combinations.Tensor {ℓ} (T₁ : FullTheory ℓ) (T₂ : FullTheory ℓ) where import FreeMonad.Combinations.Sum T₁ T₂ as SumTheory open import FreeMonad.Combinations.Sum T₁ T₂ hiding (𝒯; finVars; lift₁; lift₂; combinedTheory) public open FullTheory T₁ renaming (𝒯 to 𝒯₁; finiteArity to finAr₁; finiteVars to finVar₁) open FullTheory T₂ renaming (𝔽 to 𝔾; 𝒯 to 𝒯₂; finiteArity to finAr₂; finiteVars to finVar₂) open Signature open import FreeMonad.Theory open import FreeMonad.Syntax hiding (Op⟦_⟧) import FreeMonad.Theory open import FreeMonad.Syntax (𝔽 ⊞ 𝔾) using (Op⟦_⟧) module _ where open SyntaxBind (𝔽 ⊞ 𝔾) commutative : Law (𝔽 ⊞ 𝔾) ℓ commutative .FreeMonad.Theory.Γ = Lift (Op 𝔽 × Op 𝔾) commutative .FreeMonad.Theory.ν (lift (fs , gs)) = Lift (Arity 𝔽 fs × Arity 𝔾 gs) commutative .FreeMonad.Theory.eqn = λ { (lift (fs , gs)) → (do f ← Op⟦ inl fs ⟧ ; g ← Op⟦ inr gs ⟧ ; return (lift (f , g))) ≐ (do g ← Op⟦ inr gs ⟧ ; f ← Op⟦ inl fs ⟧ ; return (lift (f , g))) } 𝒯′ : Theory _ _ 𝒯′ .Theory.Laws = ⊤ 𝒯′ .Theory.Eqns _ = commutative finVars′ : FiniteVars 𝒯′ finVars′ _ (lift (γ₁ , γ₂)) = quotientedChoiceLift (quotientedChoiceProd (finAr₁ γ₁) (finAr₂ γ₂)) open import FreeMonad.Combinations.Quotient SumTheory.combinedTheory 𝒯′ finVars′ public open import FreeMonad.Quotiented combinedTheory import FreeMonad.Quotiented SumTheory.combinedTheory as SumQuot lift₁ : F₁.Term A → Term A lift₁ = F₁.interpₜ (opₜ ∘ inl-map) return resp squash/ where resp : (opₜ ∘ inl-map) Models 𝒯₁ resp i t k = let lhs ≐ rhs = Theory.Eqns 𝒯₁ i .eqn t in interp _ (opₜ ∘ inl-map) k lhs ≡⟨ inj₁-com opₜ k lhs ⟩ interp _ opₜ k (inj₁ lhs) ≡⟨ opₜ-resp (inl (inl i)) t k ⟩ interp _ opₜ k (inj₁ rhs) ≡˘⟨ inj₁-com opₜ k rhs ⟩ interp _ (opₜ ∘ inl-map) k rhs ∎ lift₂ : F₂.Term A → Term A lift₂ = F₂.interpₜ (opₜ ∘ inr-map) return resp squash/ where resp : (opₜ ∘ inr-map) Models 𝒯₂ resp i t k = let lhs ≐ rhs = Theory.Eqns 𝒯₂ i .eqn t in interp _ (opₜ ∘ inr-map) k lhs ≡⟨ inj₂-com opₜ k lhs ⟩ interp _ opₜ k (inj₂ lhs) ≡⟨ opₜ-resp (inl (inr i)) t k ⟩ interp _ opₜ k (inj₂ rhs) ≡˘⟨ inj₂-com opₜ k rhs ⟩ interp _ (opₜ ∘ inr-map) k rhs ∎ lift₂-com : (O : Op 𝔾) (k : Arity 𝔾 O → F₂.Term B) → lift₂ (F₂.opₜ (O , k)) ≡ opₜ (inr O , lift₂ ∘ k) lift₂-com O = F₂.elim~canonical _ (λ _ → squash/ _ _) λ k → cong lift₂ (F₂.opₜ-com-[] k) lift₁-com : (O : Op 𝔽) (k : Arity 𝔽 O → F₁.Term B) → lift₁ (F₁.opₜ (O , k)) ≡ opₜ (inl O , lift₁ ∘ k) lift₁-com O = F₁.elim~canonical _ (λ _ → squash/ _ _) λ k → cong lift₁ (F₁.opₜ-com-[] k) commutes′ : (f : Op 𝔽) (g : Op 𝔾) (k : Arity 𝔽 f → Arity 𝔾 g → Syntax (𝔽 ⊞ 𝔾) A) → op (inl f , λ x → op (inr g , λ y → k x y)) ~ₜ op (inr g , λ y → op (inl f , λ x → k x y)) commutes′ f g k = >>=-cong (uncurry k ∘ lower) (eqₜ (inr tt) (lift (f , g)) Syntax.var) commutes : (f : Op 𝔽) (g : Op 𝔾) (k : Arity 𝔽 f → Arity 𝔾 g → Term A) → (do x ← Opₜ⟦ inl f ⟧ ; y ← Opₜ⟦ inr g ⟧ ; k x y) ≡ (do y ← Opₜ⟦ inr g ⟧ ; x ← Opₜ⟦ inl f ⟧ ; k x y) commutes f g k = cong (_>>= (uncurry k ∘ lower)) (eq/ _ _ (eqₜ (inr tt) (lift (f , g)) Syntax.var)) commutes-mult₁ : (fs : Op 𝔽) (ys : F₂.Term B) (k : Arity 𝔽 fs → B → Term C) → (do f ← [ op (inl fs , Syntax.var) ] ; y ← lift₂ ys ; k f y) ≡ (do y ← lift₂ ys ; f ← [ op (inl fs , Syntax.var) ] ; k f y) commutes-mult₁ fs ys k = elimProp/ {B = λ ys → (do f ← [ op (inl fs , Syntax.var) ] ; y ← lift₂ ys ; k f y) ≡ (do y ← lift₂ ys ; f ← [ op (inl fs , Syntax.var) ] ; k f y)} (λ _ → squash/ _ _) (elim-s _ _ (λ { (var x) → refl ; (op (Oy , ys) P⟨ys⟩) → (do f ← [ op (inl fs , Syntax.var) ] ; y ← lift₂ [ op (Oy , ys) ] ; k f y) ≡⟨ f ⇐ [ op (inl fs , Syntax.var) ] ;/ assoc [ op (inr Oy , Syntax.var) ] _ _ ⟩ (do f ← [ op (inl fs , Syntax.var) ] ; y′ ← [ op (inr Oy , Syntax.var) ] ; y ← lift₂ [ ys y′ ] ; k f y) ≡⟨ commutes fs Oy _ ⟩ (do y′ ← [ op (inr Oy , Syntax.var) ] ; f ← [ op (inl fs , Syntax.var) ] ; y ← lift₂ [ ys y′ ] ; k f y) ≡⟨ y′ ⇐ [ op (inr Oy , Syntax.var) ] ;/ P⟨ys⟩ y′ ⟩ (do y′ ← [ op (inr Oy , Syntax.var) ] ; y ← lift₂ [ ys y′ ] ; f ← [ op (inl fs , Syntax.var) ] ; k f y) ≡˘⟨ assoc [ op (inr Oy , Syntax.var) ] _ _ ⟩ (do y ← ([ op (inr Oy , Syntax.var) ] >>= λ y′ → lift₂ [ ys y′ ]) ; f ← [ op (inl fs , Syntax.var) ] ; k f y) ≡⟨⟩ (do y ← opₜ (inr Oy , λ y′ → lift₂ [ ys y′ ]) ; f ← [ op (inl fs , Syntax.var) ] ; k f y) ≡⟨⟩ (do y ← lift₂ [ op (Oy , ys) ] ; f ← [ op (inl fs , Syntax.var) ] ; k f y) ∎ })) ys commutes-mult : (xs : F₁.Term A) (ys : F₂.Term B) (k : A → B → Term C) → (do x ← lift₁ xs ; y ← lift₂ ys ; k x y) ≡ (do y ← lift₂ ys ; x ← lift₁ xs ; k x y) commutes-mult xs ys k = elimProp/ {B = λ xs → (do x ← lift₁ xs ; y ← lift₂ ys ; k x y) ≡ (do y ← lift₂ ys ; x ← lift₁ xs ; k x y)} (λ _ → squash/ _ _) (elim-s _ _ λ { (var x) → refl ; (op (Ox , xs) P⟨xs⟩) → (do x ← lift₁ [ op (Ox , xs) ] y ← lift₂ ys k x y) ≡⟨ assoc [ op (inl Ox , Syntax.var) ] _ _ ⟩ (do i ← [ op (inl Ox , Syntax.var) ] x ← lift₁ [ xs i ] y ← lift₂ ys k x y) ≡⟨ i ⇐ [ op (inl Ox , Syntax.var) ] ;/ P⟨xs⟩ i ⟩ (do i ← [ op (inl Ox , Syntax.var) ] y ← lift₂ ys x ← lift₁ [ xs i ] k x y) ≡⟨ commutes-mult₁ Ox ys _ ⟩ (do y ← lift₂ ys i ← [ op (inl Ox , Syntax.var) ] x ← lift₁ [ xs i ] k x y) ≡˘⟨ y ⇐ lift₂ ys ;/ assoc [ op (inl Ox , Syntax.var) ] _ _ ⟩ (do y ← lift₂ ys x ← lift₁ [ op (Ox , xs) ] k x y) ∎ }) xs ⊗-resp : (ϕ : 𝔽 -Alg[ A ]) (ψ : 𝔾 -Alg[ A ]) → (∀ t → (ϕ -⊞- ψ) Respects (commutative .eqn t)) → ϕ Models 𝒯₁ → ψ Models 𝒯₂ → (ϕ -⊞- ψ) Models 𝒯 ⊗-resp ϕ ψ resp⊞ resp₁ resp₂ (inr tt) t k = resp⊞ t k ⊗-resp ϕ ψ resp⊞ resp₁ resp₂ (inl (inl i)) t k = let lhs ≐ rhs = Theory.Eqns 𝒯₁ i .eqn t in interp₁ ϕ ψ k lhs ; resp₁ i t k ; sym (interp₁ ϕ ψ k rhs) ⊗-resp ϕ ψ resp⊞ resp₁ resp₂ (inl (inr i)) t k = let lhs ≐ rhs = Theory.Eqns 𝒯₂ i .eqn t in interp₂ ϕ ψ k lhs ; resp₂ i t k ; sym (interp₂ ϕ ψ k rhs)